Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-gq7q9 Total loading time: 0 Render date: 2024-07-19T13:17:16.819Z Has data issue: false hasContentIssue false

31 - Ocular Inflammation Models

from PART VI - ANIMAL MODELS OF INFLAMMATION

Published online by Cambridge University Press:  05 April 2014

Karsten Gronert
Affiliation:
University of California
Charles N. Serhan
Affiliation:
Harvard Medical School
Peter A. Ward
Affiliation:
University of Michigan, Ann Arbor
Derek W. Gilroy
Affiliation:
University College London
Get access

Summary

INTRODUCTION

The eye is one of the primary sense organs. This unique organ is composed of highly specialized tissues: an outgrowth of the central nervous system, the retina, on the posterior end and a highly modified transparent skin, the cornea, on the anterior end (Figure 31.1). In the simplest terms, the primary function of the eye is to convert light energy into nerve action potentials. This essential and evolutionarily conserved function directly depends on maintaining (1) the refractive properties of the cornea, lens, aqueous humor, and vitreous humor; (2) formation and reabsorption of fluids that keep intraocular pressure in the fluid-filled eyeball constant; and (3) the function of retinal neurons. The eye, as an organ that faces the external environment, provides a unique opportunity to directly access highly specialized and diverse tissues such as the immune-privileged avascular cornea and the conjunctiva, a mucosal tissue that directs host defense and immune response of the ocular surface. Moreover, since light has to pass through the eye, physiological processes and cells in the anterior (cornea), interior (lens, uvea), and posterior (neural and vascular retinal layers) tissues of the eye (Figure 31.1) can be studied by noninvasive procedures in animals and humans [1 – 7].

The visual axis is a delicate sensory organ that has to maintain an avascular and transparent state in order to preserve ocular function. Hence, in the eye, especially in the cornea and retina, the threat of inflammation is incompatible with good vision.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Odgen, T.E., Hinton, D.R., and Schachat, A.P. 2004. Retina. Philadelphia: Mosby.Google Scholar
2. Streilein, J.W. 1995. Unraveling immune privilege. Science 270:1158–1159.CrossRefGoogle ScholarPubMed
3. Kaplan, H.J. 2007. Anatomy and function of the eye. Chem Immunol Allergy 92:4–10.Google Scholar
4. Niederkorn, J.Y. 2006. See no evil, hear no evil, do no evil: the lessons of immune privilege. Nat Immunol 7:354–359.CrossRefGoogle ScholarPubMed
5. Streilein, J.W. 2003. Ocular immune privilege: therapeutic opportunities from an experiment of nature. Nat Rev Immunol 3:879–889.CrossRefGoogle ScholarPubMed
6. Kumar, V., Fausto, N., and Abbas, A. 2004. Robbins and Cotran Pathological Basis of Disease. Philadelphia: W.B. Saunders Company.Google Scholar
7. Krachmer, J.H., Mannis, M.J., and Holland, E.J. 2005. Cornea. Philadelphia: Elsevier Mosby.Google Scholar
8. Streilein, J.W. 2003. Ocular immune privilege: the eye takes a dim but practical view of immunity and inflammation. J Leukoc Biol 74:179–185.CrossRefGoogle ScholarPubMed
9. Kaplan, H.J., and Niederkorn, J.Y. 2007. Regional immunity and immune privilege. Chem Immunol Allergy 92:11–26.Google ScholarPubMed
10. Niederkorn, J.Y., and Kaplan, H.J. 2007. Rationale for immune response and the eye. Chem Immunol Allergy 92:1–3.Google ScholarPubMed
11. Niederkorn, J.Y., and Kaplan, H.J. 2007. Immune Response and the Eye. New York: Karger.CrossRefGoogle ScholarPubMed
12. Niederkorn, J.Y. 2007. The induction of anterior chamber-associated immune deviation. Chem Immunol Allergy 92:27–35.Google ScholarPubMed
13. Carlson, E.C., Drazba, J., Yang, X., and Perez, V.L. 2006. Visualization and characterization of inflammatory cell recruitment and migration through the corneal stroma in endotoxin-induced keratitis. Invest Ophthalmol Vis Sci 47:241–248.CrossRefGoogle ScholarPubMed
14. Groneberg, D.A., Bielory, L., Fischer, A., Bonini, S., and Wahn, U. 2003. Animal models of allergic and inflammatory conjunctivitis. Allergy 58:1101–1113.CrossRefGoogle ScholarPubMed
15. Barabino, S., and Dana, M.R. 2004. Animal models of dry eye: a critical assessment of opportunities and limitations. Invest Ophthalmol Vis Sci 45:1641–1646.CrossRefGoogle ScholarPubMed
16. Barabino, S., Rolando, M., Chen, L., and Dana, M.R. 2007. Exposure to a dry environment induces strain-specific responses in mice. Exp Eye Res 84:973–977.CrossRefGoogle ScholarPubMed
17. Gronert, K. 2005. Lipoxins in the eye and their role in wound healing. Prostaglandins Leukot Essent Fatty Acids 73:221–229.CrossRefGoogle ScholarPubMed
18. Chakravarti, S. 2001. The cornea through the eyes of knockout mice. Exp Eye Res 73:411–419.CrossRefGoogle ScholarPubMed
19. Bora, N.S., and Kaplan, H.J. 2007. Intraocular diseases-anterior uveitis. Chem Immunol Allergy 92:213–220.Google ScholarPubMed
20. Forrester, J.V. 2007. Intermediate and posterior uveitis. Chem Immunol Allergy 92:228–243.Google ScholarPubMed
21. Hazlett, L.D. 2007. Bacterial infections of the cornea (Pseudomonas aeruginosa). Chem Immunol Allergy 92:185–194.Google Scholar
22. Smith, J.R., Hart, P.H., and Williams, K.A. 1998. Basic pathogenic mechanisms operating in experimental models of acute anterior uveitis. Immunol Cell Biol 76:497–512.CrossRefGoogle ScholarPubMed
23. McDermott, A.M., Perez, V., Huang, A.J., et al. 2005. Pathways of corneal and ocular surface inflammation: a perspective from the cullen symposium. Ocul Surf 3:S131–S138.CrossRefGoogle ScholarPubMed
24. Chang, J.H., Gabison, E.E., Kato, T., and Azar, D.T. 2001. Corneal neovascularization. Curr Opin Ophthalmol 12:242–249.CrossRefGoogle Scholar
25. Calder, V.L. 2005. Cytokine profiles in conjunctival allergy and inflammation. Ocul Surf 3:S142–S144.CrossRefGoogle ScholarPubMed
26. Nour, M., and Chodosh, J. 2005. Chemokine signaling pathways in corneal fibroblasts. Ocul Surf 3:S149–S151.CrossRefGoogle ScholarPubMed
27. Vallochi, A.L., Commodaro, A.G., Schwartzman, J.P., Belfort, R. Jr. and Rizzo, L.V. 2007. The role of cytokines in the regulation of ocular autoimmune inflammation. Cytokine Growth Factor Rev 18:135–141.CrossRefGoogle ScholarPubMed
28. Planck, S.R., Rich, L.F., Ansel, J.C., Huang, X.N., and Rosenbaum, J.T. 1997. Trauma and alkali burns induce distinct patterns of cytokine gene expression in the rat cornea. Ocul Immunol Infiamm 5:95–100.Google ScholarPubMed
29. Bito, L.Z. 1986. Prostaglandins and other eico-sanoids: their ocular transport, pharmacokinetics, and therapeutic effects. Trans Ophthalmol Soc U K 105(Pt 2):162–170.Google ScholarPubMed
30. Camras, C.B., Bito, L.Z., and Eakins, K.E. 1977. Reduction of intraocular pressure by prostaglandins applied topically to the eyes of conscious rabbits. Invest Ophthalmol Vis Sci 16:1125–1134.Google ScholarPubMed
31. Bazan, H., and Ottino, P. 2002. The role of platelet-activating factor in the corneal response to injury. Prog Retin Eye Res 21:449–464.CrossRefGoogle ScholarPubMed
32. Bazan, H.E. 2005. Cellular and molecular events in corneal wound healing: significance of lipid signalling. Exp Eye Res 80:453–463.CrossRefGoogle ScholarPubMed
33. Bazan, N.G. 2006. Cell survival matters: docosa-hexaenoic acid signaling, neuroprotection and photore-ceptors. Trends Neurosci 29:263–271.CrossRefGoogle Scholar
34. Gronert, K. 2008. Lipid autacoids in inflammation and injury responses: a matter of privilege. Mol Interv 8:28–35.CrossRefGoogle ScholarPubMed
35. Burns, A.R., Li, Z., and Smith, C.W. 2005. Neutrophil migration in the wounded cornea: the role of the keratocyte. Ocul Surf 3:S173–S176.CrossRefGoogle ScholarPubMed
36. Li, Z., Burns, A.R., and Smith, C.W. 2006. Two waves of neutrophil emigration in response to corneal epithelial abrasion: distinct adhesion molecule requirements. Invest Ophthalmol Vis Sci 47:1947–1955.CrossRefGoogle ScholarPubMed
37. Petrescu, M.S., Larry, C.L., Bowden, R.A., et al. 2007. Neutrophil interactions with keratocytes during corneal epithelial wound healing: a role for CD18 integrins. Invest Ophthalmol Vis Sci 48:5023–5029.CrossRefGoogle Scholar
38. Becker, M.D., Garman, K., Whitcup, S.M., Planck, S.R., and Rosenbaum, J.T. 2001. Inhibition of leukocyte sticking and infiltration, but not rolling, by antibodies to ICAM-1 and LFA-1 in murine endotoxin-induced uveitis. Invest Ophthalmol Vis Sci 42:2563–2566.Google Scholar
39. Planck, S.R., Han, Y.B., Park, J.M., O'Rourke, L., Gutierrez-Ramos, J.C., and Rosenbaum, J.T. 1998. The effect of genetic deficiency of adhesion molecules on the course of endotoxin-induced uveitis. Curr Eye Res 17:941–946.CrossRefGoogle ScholarPubMed
40. Smith, J.R., Subbarao, K., Franc, D.T., Haribabu, B., and Rosenbaum, J.T. 2004. Susceptibility to endotoxin induced uveitis is not reduced in mice deficient in BLT1, the high affinity leukotriene B4 receptor. Br J Ophthalmol 88:273–275.CrossRefGoogle Scholar
41. Johnson, A., and Pearlman, E. 2005. Toll-like receptors in the cornea. Ocul Surf 3:S187–S189.CrossRefGoogle ScholarPubMed
42. Yu, F.S., and Hazlett, L.D. 2006. Toll-like receptors and the eye. Invest Ophthalmol Vis Sci 47:1255–1263.CrossRefGoogle ScholarPubMed
43. Jha, P., Bora, P.S., and Bora, N.S. 2007. The role of complement system in ocular diseases including uveitis and macular degeneration. Mol Immunol 44:3901–3908.CrossRefGoogle ScholarPubMed
44. Hamrah, P., and Dana, M.R. 2007. Corneal antigen-presenting cells. Chem Immunol Allergy 92:58–70.Google ScholarPubMed
45. Cao, Z., Said, N., Amin, S., et al. 2002. Galectins-3 and -7, but not galectin-1, play a role in re-epithelialization of wounds. J Biol Chem 277:42299–42305.CrossRefGoogle Scholar
46. Carlson, E.C., Wang, I.J., Liu, C.Y., Brannan, P., Kao, C.W., and Kao, W.W. 2003. Altered KSPG expression by keratocytes following corneal injury. Mol Vis 9:615–623.Google ScholarPubMed
47. Mohan, R., Chintala, S.K., Jung, J.C., et al. 2002. Matrix metalloproteinase gelatinase B (MMP-9) coordinates and effects epithelial regeneration. J Biol Chem 277:2065–2072.CrossRefGoogle ScholarPubMed
48. Sharma, G.-D., He, J., and Bazan, H.E.P. 2003. p38 and ERK1/2 Coordinate Cellular Migration and Proliferation in Epithelial Wound Healing: evidence of cross-talk activation between map kinase cascades. J Biol Chem 278:21989–21997.CrossRefGoogle ScholarPubMed
49. Seta, F., Bellner, L., Rezzani, R., et al. 2006. Heme Oxygenase-2 Is a Critical Determinant for Execution of an Acute Inflammatory and Reparative Response. Am J Pathol 169:1612–1623.CrossRefGoogle ScholarPubMed
50. Gronert, K., Maheshwari, N., Khan, N., Hassan, I.R., Dunn, M., and Laniado Schwartzman, M. 2005. A role for the mouse 12/15-lipoxygenase pathway in promoting epithelial wound healing and host defense. J Biol Chem 280:15267–15278.CrossRefGoogle ScholarPubMed
51. Li, Z., Rumbaut, R.E., Burns, A.R., and Smith, C.W. 2006. Platelet response to corneal abrasion is necessary for acute inflammation and efficient re-epithelialization. Invest Ophthalmol Vis Sci 47:4794–4802.CrossRefGoogle ScholarPubMed
52. Biteman, B., Hassan, I.R., Walker, E., et al. 2007. Interdependence of lipoxin A4 and heme-oxygenase in counter-regulating inflammation during corneal wound healing. FASEB J 21:2257–2266.CrossRefGoogle ScholarPubMed
53. Vij, N., Roberts, L., Joyce, S., and Chakravarti, S. 2005. Lumican regulates corneal inflammatory responses by modulating Fas-Fas ligand signaling. Invest Ophthalmol Vis Sci 46:88–95.CrossRefGoogle ScholarPubMed
54. Reim, M., Kottek, A., and Schrage, N. 1997. The cornea surface and wound healing. Prog Retin Eye Res 16:183–225.CrossRefGoogle Scholar
55. Yoshida, S., Yoshida, A., Matsui, H., Takada, Y., and Ishibashi, T. 2003. Involvement of macrophage chemotactic protein-1 and interleukin-1beta during inflammatory but not basic fibroblast growth factor-dependent neovas-cularization in the mouse cornea. Lab Invest 83:927–938.CrossRefGoogle ScholarPubMed
56. Fang, Y., Choi, D., Searles, R.P., and Mathers, W.D. 2005. A time course microarray study of gene expression in the mouse lacrimal gland after acute corneal trauma. Invest Ophthalmol Vis Sci 46:461–469.CrossRefGoogle ScholarPubMed
57. Ogawa, S., Yoshida, S., Ono, M., et al. 1999. Induction of macrophage inflammatory protein-1alpha and vascular endothelial growth factor during inflammatory neovascularization in the mouse cornea. Angiogenesis 3:327–334.CrossRefGoogle ScholarPubMed
58. Ueno, M., Lyons, B.L., Burzenski, L.M., et al. 2005. Accelerated wound healing of alkali-burned corneas in MRL mice is associated with a reduced inflammatory signature. Invest Ophthalmol Vis Sci 46:4097–4106.CrossRefGoogle ScholarPubMed
59. Hazlett, L.D. 2005. Inflammatory response to Pseudomonas aeruginosa keratitis. Ocul Surf 3:S139–141.CrossRefGoogle ScholarPubMed
60. Johnson, A.C., Li, X., and Pearlman, E. 2008. MyD88 functions as a negative regulator of TLR3/TRIF-induced corneal inflammation by inhibiting activation of c-Jun N-terminal kinase. J Biol Chem 283:3988–3996.Google ScholarPubMed
61. Johnson, A.C., Heinzel, F.P., Diaconu, E., et al. 2005. Activation of toll-like receptor (TLR)2, TLR4, and TLR9 in the mammalian cornea induces MyD88-dependent corneal inflammation. Invest Ophthalmol Vis Sci 46:589–595.CrossRefGoogle ScholarPubMed
62. Fenton, R.R., Molesworth-Kenyon, S., Oakes, J.E., and Lausch, R.N. 2002. Linkage of IL-6 with neutrophil chemoattractant expression in virus-induced ocular inflammation. Invest Ophthalmol Vis Sci 43:737–743.Google ScholarPubMed
63. McClellan, S.A., Huang, X., Barrett, R.P., van Rooijen, N., and Hazlett, L.D. 2003. Macrophages restrict Pseudomonas aeruginosa growth, regulate polymorphonuclear neutrophil influx, and balance pro- and antiinflammatory cytokines in BALB/c mice. J Immunol 170:5219–5227.Google Scholar
64. Singh, N., Jani, P.D., Suthar, T., Amin, S., and Ambati, B.K. 2006. Flt-1 intraceptor induces the unfolded protein response, apoptotic factors, and regression of murine injury-induced corneal neovascularization. Invest Ophthalmol Vis Sci 47:4787–4793.CrossRefGoogle ScholarPubMed
65. Ambati, B.K., Nozaki, M., Singh, N., et al. 2006. Corneal avascularity is due to soluble VEGF receptor-1. Nature 443:993–997.CrossRefGoogle ScholarPubMed
66. Bellner, L., Vitto, M., Patil, K.A., Dunn, M.W., Regan, R., and Laniado-Schwartzman, M. 2008. Exacerbated corneal inflammation and neovascularization in the HO-2 null mice is ameliorated by biliverdin. Exp Eye Res 87(3):268–278.CrossRefGoogle ScholarPubMed
67. Chen, L., Hamrah, P., Cursiefen, C., et al. 2007. Vascular endothelial growth factor receptor-3 mediates induction of corneal alloimmunity. 2004. Ocul Immunol Inflamm 15:275–278.CrossRefGoogle ScholarPubMed
68. Cursiefen, C., Chen, L., Borges, L.P., et al. 2004. VEGF-A stimulates lymphangiogenesis and hemangiogenesis in inflammatory neovascularization via macrophage recruitment. J Clin Invest 113:1040–1050.CrossRefGoogle ScholarPubMed
69. Cursiefen, C., Chen, L., Saint-Geniez, M., et al. 2006. Nonvascular VEGF receptor 3 expression by corneal epithelium maintains avascularity and vision. Proc Natl Acad Sci USA 103:11405–11410.CrossRefGoogle ScholarPubMed
70. Cursiefen, C., Masli, S., Ng, T.F., et al. 2004. Roles of thrombospondin-1 and -2 in regulating corneal and iris angiogenesis. Invest Ophthalmol Vis Sci 45:1117–1124.CrossRefGoogle ScholarPubMed
71. Maruyama, K., Ii, M., Cursiefen, C., et al. 2005. Inflammation-induced lymphangiogenesis in the cornea arises from CD11b-positive macrophages. J Clin Invest 115:2363–2372.CrossRefGoogle ScholarPubMed
72. Streilein, J.W., Bradley, D., Sano, Y., and Sonoda, Y. 1996. Immunosuppressive properties of tissues obtained from eyes with experimentally manipulated corneas. Invest Ophthalmol Vis Sci 37:413–424.Google ScholarPubMed
73. Cursiefen, C., Maruyama, K., Jackson, D.G., Streilein, J.W., and Kruse, F.E. 2006. Time course of angiogenesis and lymphangiogenesis after brief corneal inflammation. Cornea 25:443–447.CrossRefGoogle ScholarPubMed
74. Hori, J., and Niederkorn, J.Y. 2007. Immunogenicity and immune privilege of corneal allografts. Chem Immunol Allergy 92:290–299.Google ScholarPubMed
75. Hamrah, P., Yamagami, S., Liu, Y., et al. 2007. Deletion of the chemokine receptor CCR1 prolongs corneal allograft survival. Invest Ophthalmol Vis Sci 48:1228–1236.CrossRefGoogle ScholarPubMed
76. Streilein, J.W. 2003. New thoughts on the immunology of corneal transplantation. Eye 17:943–948.CrossRefGoogle ScholarPubMed
77. Chen, L., Huq, S., Gardner, H., de Fougerolles, A.R., Barabino, S., and Dana, M.R. 2007. Very late antigen 1 blockade markedly promotes survival of corneal allografts. Arch Ophthalmol 125:783–788.CrossRefGoogle ScholarPubMed
78. Shen, L., Jin, Y., Freeman, G.J., Sharpe, A.H., and Dana, M.R. 2007. The function of donor versus recipient programmed death-ligand 1 in corneal allograft survival. J Immunol 179:3672–3679.CrossRefGoogle ScholarPubMed
79. Hargrave, S.L., Hay, C., Mellon, J., Mayhew, E., and Niederkorn, J.Y. 2004. Fate of MHC-matched corneal allografts in Th1-deficient hosts. Invest Ophthalmol Vis Sci 45:1188–1193.CrossRefGoogle ScholarPubMed
80. Yamagami, S., Dana, M.R., and Tsuru, T. 2002. Draining lymph nodes play an essential role in alloimmunity generated in response to high-risk corneal transplantation. Cornea 21:405–409.CrossRefGoogle ScholarPubMed
81. Yamagami, S., and Dana, M.R. 2001. The critical role of lymph nodes in corneal alloimmunization and graft rejection. Invest Ophthalmol Vis Sci 42:1293–1298.Google ScholarPubMed
82. Cursiefen, C., Cao, J., Chen, L., et al. 2004. Inhibition of hemangiogenesis and lymphangiogenesis after normal-risk corneal transplantation by neutralizing VEGF promotes graft survival. Invest Ophthalmol Vis Sci 45:2666–2673.CrossRefGoogle ScholarPubMed
83. Yamagami, S., Hamrah, P., Zhang, Q., Liu, Y., Huq, S., and Dana, M.R. 2005. Early ocular chemokine gene expression and leukocyte infiltration after high-risk corneal transplantation. Mol Vis 11:632–640.Google ScholarPubMed
84. Amescua, G., Collings, F., Sidani, A., et al. 2008. Effect of CXCL-1/KC production in high risk vascularized corneal allografts on T cell recruitment and graft rejection. Transplantation 85:615–625.CrossRefGoogle Scholar
85. Barabino, S., and Dana, M.R. 2007. Dry eye syndromes. Chem Immunol Allergy 92:176–184.Google ScholarPubMed
86. Barabino, S., Shen, L., Chen, L., Rashid, S., Rolando, M., and Dana, M. R.. 2005. The controlled-environment chamber: a new mouse model of dry eye. Invest Ophthalmol Vis Sci 46:2766–2771.CrossRefGoogle ScholarPubMed
87. De Paiva, C.S., Corrales, R.M., Villarreal, A.L., et al. 2006. Corticosteroid and doxycycline suppress MMP-9 and inflammatory cytokine expression, MAPK activation in the corneal epithelium in experimental dry eye. Exp Eye Res 83:526–535.CrossRefGoogle ScholarPubMed
88. Li, S., Nikulina, K., DeVoss, J., et al. 2008. Small prolinerich protein 1B (SPRR1B) is a biomarker for squamous metaplasia in dry eye disease. Invest Ophthalmol Vis Sci 49:34–41.CrossRefGoogle Scholar
89. van Blokland, S.C., and Versnel, M.A. 2002. Pathogenesis of Sjogren's syndrome: characteristics of different mouse models for autoimmune exocrinopathy. Clin Immunol 103:111–124.CrossRefGoogle ScholarPubMed
90. Rosenbaum, J.T., McDevitt, H.O., Guss, R.B., and Egbert, P.R. 1980. Endotoxin-induced uveitis in rats as a model for human disease. Nature 286:611–613.CrossRefGoogle ScholarPubMed
91. Shen, D.F., Buggage, R.R., Eng, H.C., and Chan, C.C. 2000. Cytokine gene expression in different strains of mice with endotoxin-induced uveitis (EIU). Ocul Immunol Infiamm 8:221–225.Google Scholar
92. Wacker, W.B. 1991. Proctor Lecture. Experimental allergic uveitis. Investigations of retinal autoimmunity and the immunopathologic responses evoked. Invest Ophthalmol Vis Sci 32:3119–3128.Google ScholarPubMed
93. Yoshimura, T., Sonoda, K.H., Miyazaki, Y., et al. 2008. Differential roles for IFN-gamma and IL-17 in experimental autoimmune uveoretinitis. Int Immunol 20:209–214.Google ScholarPubMed
94. Liu, X., Lee, Y.S., Yu, C.R., and Egwuagu, C.E. 2008. Loss of STAT3 in CD4+ T cells prevents development of experimental autoimmune diseases. J Immunol 180:6070–6076.CrossRefGoogle ScholarPubMed
95. Hikita, S.T., Vistica, B.P., Jones, H.R., et al. 2006. Osteopontin is proinflammatory in experimental autoimmune uveitis. Invest Ophthalmol Vis Sci 47:4435–4443.CrossRefGoogle ScholarPubMed
96. Kitamura, M., Iwabuchi, K., Kitaichi, N., et al. 2007. Osteopontin aggravates experimental autoimmune uve-oretinitis in mice. J Immunol 178:6567–6572.CrossRefGoogle ScholarPubMed
97. Su, S.B., Grajewski, R.S., Luger, D., et al. 2007. Altered chemokine profile associated with exacerbated autoimmune pathology under conditions of genetic inter-feron-gamma deficiency. Invest Ophthalmol Vis Sci 48:4616–4625.CrossRefGoogle Scholar
98. Fukushima, A., Yamaguchi, T., Ishida, W., Fukata, K., Udaka, K., and Ueno, H. 2005. Mice lacking the IFN-gamma receptor or fyn develop severe experimental autoimmune uveoretinitis characterized by different immune responses. Immunogenetics 57:337–343.CrossRefGoogle ScholarPubMed
99. Liao, T., Ke, Y., Shao, W.H., et al. 2006. Blockade of the interaction of leukotriene b4 with its receptor prevents development of autoimmune uveitis. Invest Ophthalmol Vis Sci 47:1543–1549.CrossRefGoogle ScholarPubMed
100. Taylor, A.W., Kitaichi, N., and Biros, D. 2006. Melanocortin 5 receptor and ocular immunity. Cell Mol Biol (Noisy-le-grand) 52:53–59.Google ScholarPubMed
101. Ichikawa, T., Taguchi, O., Takahashi, T., et al. 1991. Spontaneous development of autoimmune uveoretinitis in nude mice following reconstitution with embryonic rat thymus. Clin Exp Immunol 86:112–117.Google ScholarPubMed
102. Anderson, M.S., Venanzi, E.S., Klein, L., et al. 2002. Projection of an immunological self shadow within the thymus by the aire protein. Science 298:1395–1401.CrossRefGoogle ScholarPubMed
103. Szpak, Y., Vieville, J.C., Tabary, T., et al. 2001. Spontaneous retinopathy in HLA-A29 transgenic mice. Proc Natl Acad Sci USA 98:2572–2576.CrossRefGoogle ScholarPubMed
104. Rattner, A., and Nathans, J. 2006. Macular degeneration: recent advances and therapeutic opportunities. Nat Rev Neurosci 7:860–872.CrossRefGoogle ScholarPubMed
105. Zamiri, P., Sugita, S., and Streilein, J.W. 2007. Immunosuppressive properties of the pigmented epithelial cells and the subretinal space. Chem Immunol Allergy 92:86–93.Google ScholarPubMed
106. Connor, K.M., SanGiovanni, J.P., Lofqvist, C., et al. 2007. Increased dietary intake of omega-3-polyunsaturated fatty acids reduces pathological retinal angiogenesis. Nat Med 13:868–873.CrossRefGoogle ScholarPubMed
107. Noel, A., Jost, M., Lambert, V., Lecomte, J., and Rakic, J.M. 2007. Anti-angiogenic therapy of exudative age-related macular degeneration: current progress and emerging concepts. Trends Mol Med 13:345–352.CrossRefGoogle ScholarPubMed
108. Uemura, A., Kusuhara, S., Katsuta, H., and Nishikawa, S. 2006. Angiogenesis in the mouse retina: a model system for experimental manipulation. Exp Cell Res 312:676–683.CrossRefGoogle ScholarPubMed
109. Nozaki, M., Raisler, B.J., Sakurai, E., et al. 2006. Drusen complement components C3a and C5a promote choroidal neovascularization. Proc Natl Acad Sci USA 103:2328–2333.CrossRefGoogle ScholarPubMed
110. Imamura, Y., Noda, S., Hashizume, K., et al. 2006. Drusen, choroidal neovascularization, and retinal pigment epithelium dysfunction in SOD1-deficient mice: a model of age-related macular degeneration. Proc Natl Acad Sci USA 103:11282–11287.CrossRefGoogle ScholarPubMed
111. Ambati, J., Anand, A., Fernandez, S., et al. 2003. An animal model of age-related macular degeneration in senescent Ccl-2- or Ccr-2-deficient mice. Nat Med 9:1390–1397.CrossRefGoogle ScholarPubMed
112. Truman, L.A., Ford, C.A., Pasikowska, M., et al. 2008. CX3CL1/fractalkine is released from apoptotic lymphocytes to stimulate macrophage chemotaxis. Blood 112(13):5026–5036.CrossRefGoogle ScholarPubMed
113. Chen, J., and Smith, L.E. 2007. Retinopathy of prematurity. Angiogenesis 10:133–140.CrossRefGoogle ScholarPubMed
114. Smith, L.E. 2003. Pathogenesis of retinopathy of prematurity. Semin Neonatol 8:469–473.CrossRefGoogle ScholarPubMed
115. Skoura, A., Sanchez, T., Claffey, K., Mandala, S.M., Proia, R.L., and Hla, T. 2007. Essential role of sphin-gosine 1-phosphate receptor 2 in pathological angiogenesis of the mouse retina. J Clin Invest 117:2506–2516.CrossRefGoogle ScholarPubMed
116. Magone, M.T., Whitcup, S.M., Fukushima, A., Chan, C.C., Silver, P.B., and Rizzo, L.V. 2000. The role of IL-12 in the induction of late-phase cellular infiltration in a murine model of allergic conjunctivitis. J Allergy Clin Immunol 105:299–308.CrossRefGoogle Scholar
117. Miyazaki, D., Nakamura, T., Toda, M., Cheung-Chau, K.W., Richardson, R.M., and Ono, S.J. 2005. Macrophage inflammatory protein-1alpha as a costimulatory signal for mast cell-mediated immediate hypersensitivity reactions. J Clin Invest 115:434–442.CrossRefGoogle ScholarPubMed
Barabino, S., and Dana, M.R. 2004. Animal models of dry eye: a critical assessment of opportunities and limitations. Invest Ophthalmol Vis Sci 45:1641–1646.CrossRefGoogle ScholarPubMed
Bora, N.S., and Kaplan, H.J. 2007. Intraocular diseases -anterior uveitis. Chem Immunol Allergy 92:213–220.Google ScholarPubMed
Groneberg, D.A., Bielory, L., Fischer, A., Bonini, S., and Wahn, U. 2003. Animal models of allergic and inflammatory conjunctivitis. Allergy 58:1101–1113.CrossRefGoogle ScholarPubMed
McDermott, A.M., Perez, V., Huang, A.J., et al. 2005. Pathways of corneal and ocular surface inflammation: a perspective from the cullen symposium. Ocul Surf 3:S131–S138.CrossRefGoogle ScholarPubMed
Rattner, A., and Nathans, J. 2006. Macular degeneration: recent advances and therapeutic opportunities. Nat Rev Neurosci 7:860–872.CrossRefGoogle ScholarPubMed
Streilein, J.W. 2003. Ocular immune privilege: therapeutic opportunities from an experiment of nature. Nat Rev Immunol 3:879–889.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×