Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-skm99 Total loading time: 0 Render date: 2024-04-25T20:48:28.767Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  06 December 2010

Tian Yu Cao
Affiliation:
Boston University
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
From Current Algebra to Quantum Chromodynamics
A Case for Structural Realism
, pp. 275 - 295
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adler, S. (1964) “Tests of the conserved vector current and partially conserved axial-vector current hypotheses in high energy neutrino reactions”PR, 135: B963–966.CrossRefGoogle Scholar
Adler, S. (1965a) “Consistency conditions on the strong interactions implied by a partially conserved axial vector current, I and II”PR, 137: B1022–B1033; PR, 139: B1638–1643.CrossRefGoogle Scholar
Adler, S. (1965b) “Calculation of the axial-vector coupling constant renormalization in beta decay”PRL, 14: 1051–1055.CrossRefGoogle Scholar
Adler, S. (1965c) “Sum rules for the axial-vector coupling constant renormalization in beta decay”PR, 140: B736–B747.CrossRefGoogle Scholar
Adler, S. (1966) “Sum rules giving tests of local current commutation relations in high energy neutrino reactions”PR, 143: 1144–1155.CrossRefGoogle Scholar
Adler, S. (1967) “Current algebra” in Proceedings of International School of Physics, “Enrico Fermi” Course 41, Selected Topics in Particle Physics (July 17–29, 1967) (ed. Steinberger, J.; Academic Press) 1–54.Google Scholar
Adler, S. (1969) “Axial-vector vertex in spinor electrodynamics”PR, 177: 2426–2438.CrossRefGoogle Scholar
Adler, S. (1970): “π0 decay” in High-Energy Physics and Nuclear Structure (ed. Devors, S.; Plenum Press) 647–655.CrossRefGoogle Scholar
Adler, S. (2006) “Commentaries” in Adventures in Theoretical Physics (World Scientific) 19.CrossRefGoogle Scholar
Adler, S. and Bardeen, W. A. (1969) “Absence of higher-order corrections in the anomalous axial-vector divergence equation”PR, 182: 1517–1536.CrossRefGoogle Scholar
Adler, S. and Gilman, F. J. (1967) “Neutrino or electron energy needed for testing current commutation relations”PR, 156: 1598–1602.CrossRefGoogle Scholar
Adler, S. and Tung, W. K. (1969) “Breakdown of asymptotic sum rules in perturbation theory”PRL, 22: 978–981.CrossRefGoogle Scholar
Adler, S. and Tung, W. K. (1970) “Bjorken limit in perturbation theory”PR, D1: 2846–2859.Google Scholar
Affleck, I., Dine, M., and Seiberg, S. (1983) “Supersymmetry breaking by instantons”PRL, 51: 1026–1029.CrossRefGoogle Scholar
Affleck, I., Dine, M., and Seiberg, S. (1984) “Calculable nonperturbative supersymmetry breaking”PRL, 52: 1677–1680.CrossRefGoogle Scholar
Aharonov, Y. and Bohm, D. (1959) “Significance of electromagnetic potentials in the quantum theory”PR, 115: 485–491.CrossRefGoogle Scholar
Anderson, P. (1963) “Plasmons, gauge invariance, and mass”PR, 130: 439–442.CrossRefGoogle Scholar
Appelquist, T. and Politzer, D. (1975) “Heavy quarks and long-lived hadrons”PR, D12: 1404–1414.Google Scholar
Appelquist, T., Barnett, R., and Lane, K. (1978) “Charm and beyond”Annu. Rev. Nucl. and Particle Sci., 28: 387.CrossRefGoogle Scholar
Augustin, J.-E.et al. (1974) “Discovery of a narrow resonance in e+e− annihilation”PRL, 33: 1406–1408.CrossRefGoogle Scholar
Bardeen, W., Fritzsch, H., and Gell-Mann, M. (1972) “Light cone current algebra, π0 decay and e+e− annihilation” (first circulated as a CERN Preprint, Ref.TH.1538-CERN; 21 July 1972), in Scale and Conformal Symmetry in Hadron Physics (ed. Gatto, R.; Wiley) 139–153.Google Scholar
Bartoli, B.et al. (1970) “Multiple particle production from e+e− interactions at C.M. energies between 1.6 and 2 Gev”NC, 70A: 615–631.Google Scholar
Belavin, A., Polyakov, A., Schwarz, A., and Tyupkin, Y. (1975) “Pseudoparticle solutions of the Yang-Mills equations”PL, 59B: 85–87.Google Scholar
Bell, J. (1967) “Current algebra and gauge invariance”NC, 50A: 129–134.Google Scholar
Bell, J. and Jackiw, R. (1969) “A PCAC puzzle: π0 → γγ in the σ-model”NC, 60A: 47–61.Google Scholar
Bethe, H. A. (1947) “The electromagnetic shift of energy levels”PR, 72: 339–341.CrossRefGoogle Scholar
Bjorken, J. (1966a) “Inequality for electron and muon scattering from nucleons”PRL, 16: 408.CrossRefGoogle Scholar
Bjorken, J. (1966b) “Applications of the chiral U(6)⊗U(6) algebra of current densities”PR, 148: 1467–1478.CrossRefGoogle Scholar
Bjorken, J. (1967a [2003]) “Inelastic lepton scattering and nucleon structure.”An incomplete unpublished manuscript written in March 1967, later published in In Conclusion (World Scientific), 27–39.Google Scholar
Bjorken, J. (1967b) “Current algebra in small distances” in Proceedings of International School of Physics, “Enrico Fermi” Course 41, “Selected Topics in Particle Physics” (July 17–19, 1967), (ed. Steinberger, J.;Academic Press) 55–81.Google Scholar
Bjorken, J. (1967c) “Theoretical ideas on inelastic electron and muon scattering” in Proceedings of the 1967 International Symposium on Electron and Photon Interactions at High Energies (Stanford, September 5–9, 1967) (International Union of Pure and Applied Physics, US Atomic Energy Commission with a Foreword by Berman, S. M.) 109–127.Google Scholar
Bjorken, J. (1968) “Asymptotic sum rules at infinite momentum”SLAC preprint: SLAC-PUB-510.Google Scholar
Bjorken, J. (1969) “Asymptotic sum rules at infinite momentum”PR, 179: 1547–1553.CrossRefGoogle Scholar
Bjorken, J. (1973a) “A theorist's view of e+e− annihilation” in Proceedings of the 6th International Symposium on Electron and Photon Interaction at High Energies, 1973, Boun (eds. Rollnik, H. and Pteil, W.; North-Holland), reprinted in Bjorken, 2003, 199–224.Google Scholar
Bjorken, J. (1973b) “High transverse momentum processes”Le Journal de Physique, Colloques, Supplement, 34 (C1): 385–400.Google Scholar
Bjorken, J. (1979) “The new orthodoxy: How can it fail?”A talk presented at Neutrino 79 – International Conference on Neutrinos, Weak Interactions and Cosmology (Bergen, Norway, June 18–22, 1979), printed in Bjorken, 2003, 291–303.Google Scholar
Bjorken, J. (1997) “Deep-inelastic scattering: from current algebra to partons” in The Rise of The Standard Model (eds. Hoddeson, L., Brown, L., Riordan, M., and Dressden, M.; Cambridge University Press) 589–599.CrossRefGoogle Scholar
Bjorken, J. (2003) In Conclusion (World Scientific).CrossRefGoogle Scholar
Bjorken, J. and Glashow, S. (1964) “Elementary particles and SU (4)”PL, 11: 255–257.Google Scholar
Bjorken, J. and Paschos, E. (1969) “Inelastic electron-proton and γ-proton scattering and the structure of the nucleon”PR, 185: 1975–1982.CrossRefGoogle Scholar
Bjorken, J. and Tuan, S. F. (1972) “Is the Adler sum rule for inelastic lepton-hadron processes correct?”Comm. of Nucl. Part Phys. 5: 71–78.Google Scholar
Bjorken, J. and Walecka, J. (1966) “Electroproduction of nucleon resonances”AP, 38: 35–62.Google Scholar
Blankenbecler, R., Cook, L. F., and Goldberger, M. L. (1962) “Is the photon an elementary particle?”PRL, 8: 463–465.CrossRefGoogle Scholar
Bloom, E., and Gilman, F. (1970) “Scaling, duality, and the behavior of resonances in inelastic electron-proton scattering”PRL, 25: 1140–1143.CrossRefGoogle Scholar
Bloom, E. D. and Taylor, R. E. (1968) “To: Program Coordinator” (May 10, 1968) Supplement No. 1 to SLAC Proposal 4–b.
Bloom, E. D.et al. (1969) “High energy inelastic e-p scattering at 60 and 100”PRL, 23: 930–934.CrossRefGoogle Scholar
Bloom, E. D.et al. (1970) MIT-SLAC Report No. SLAC-PUB-796 (unpublished report presented to the 15th International Conference on High Energy Physics, Kiev, USSR, 1970.Google Scholar
Bludman, S. A. (1958) “On the universal Fermi interaction”NC, 9: 433–444.CrossRefGoogle Scholar
Bodek, A. (1973) “Comment on the extraction of nucleon cross sections from deuterium data”PR, D8: 2331–2334.Google Scholar
Bogoliubov, N. (1958) “A new method in the theory of superconductivity”JETP, 34 (7): 41–46, 51–55.Google Scholar
Bollini, D.Buhler-Broglin, A., Dalpiaz, P.et al. (1968) “An evidence for a new decay mode of the X°-meson: X°→2γ”NC, 58A: 289–296.Google Scholar
Bohr, N. (1925) “Atomic theory and mechanics”Nature, 116: 845–853.CrossRefGoogle Scholar
Brandt, R. A. (1967) “Derivation of renormalized relativistic perturbation theory from finite local fiend equations”AP, 44: 221–265.Google Scholar
Brown, L. M. (1978) “The idea of the neutrino”Physics Today, 31(9): 23–27.CrossRefGoogle Scholar
Buchholz, D. (1994) “On the manifestation of particles” in Mathematical Physics Toward the 21st Century (eds. Sen, R. N and Gersten, A.; Ben Gurion University Press).Google Scholar
Buchholz, D. (1996) “Quarks, gluons, color: facts or fiction?”NP, 469: 333–353.Google Scholar
Cabibbo, N. (1963) “Unitary symmetry and leptonic decays”PRL, 10: 531–533.CrossRefGoogle Scholar
Cabibbo, N., Parisi, G., and Testa, M. (1970) “Hadron production in e+e− collisions”Lettere NC, 4: 35–39.Google Scholar
Callan, C. (1970) “Bjorken scale invariance in scalar field theory”PR, D2: 1541–1547.Google Scholar
Callan, C. and Gross, D. (1968) “Crucial test of a theory of currents”PRL, 21: 311–313.CrossRefGoogle Scholar
Callan, C. and Gross, D. (1969) “High-energy electroproduction and the constitution of the electric current”PRL, 22: 156–159.CrossRefGoogle Scholar
Callan, C. and Gross, D. (1973) “Bjorken scaling in quantum field theory”PR, D8: 4383–4394.Google Scholar
Callan, C. and Treiman, S. (1966) “Equal-time commutators and K-meson decays”PRL, 16: 153–157.CrossRefGoogle Scholar
Callan, C., Coleman, S., and Jackiw, R. (1970) “A new improved energy-momentum tensor”AP, 59: 42–73.Google Scholar
Callan, C., Dashen, R., and Gross, D. (1976) “The structure of the vacuum”PL, 63B: 334–340.Google Scholar
Callan, C., Dashen, R., and Gross, D. (1978) “Toward a theory of the strong interactions”PR, D17: 2717–2763.Google Scholar
Cao, T. Y. (1997) Conceptual Developments of 20th Century Field Theories (Cambridge University Press).CrossRefGoogle Scholar
Cao, T. Y. (2001) “Prerequisites for a consistent framework of quantum gravity,”Stud. Hist. Philos Mod. Phys., 32(2): 181–204.CrossRefGoogle Scholar
Cao, T. Y. (2003a) “Structural realism and the interpretation of quantum field theory”Synthese, 136(1): 3–24.CrossRefGoogle Scholar
Cao, T. Y. (2003b) “Can we dissolve physical entities into mathematical structures?”Synthese, 136(1): 57–71.CrossRefGoogle Scholar
Cao, T. Y. (2003c) “What is ontological synthesis? A reply to Simon Saunders”Synthese, 136(1): 107–126.CrossRefGoogle Scholar
Cao, T. Y. (2006) “Structural realism and quantum gravity” in Structural Foundation of Quantum Gravity (eds. Rickles, D., French, S., and Saatsi, J.; Oxford University Press) 42–55.Google Scholar
Cao, T. Y. (forthcoming) The Making of QCD (Cambridge University Press).
Capra, F. (1979) “Quark physics without quarks: a review of recent developments in S-matrix theory,”AJP, 47: 11–23.Google Scholar
Capra, F. (1985) “Bootstrap physics: a conversation with Geoffrey Chew” in A Passion for Physics: Essays in Honour of Geoffrey Chew (eds. Tar, C., Finkelstein, J. and Tan, C. I.; Taylor and Francis) 247–286.Google Scholar
Carmeli, M. (1976) “Modified gravitational Lagrangian”PR, D14: 1727.Google Scholar
Carmeli, M. (1977) “SL2c conservation laws of general relativity”NC, 18: 17–20.Google Scholar
Carnap, R. (1928) Der Logische Aufbau der Welt. (Felix Meiner Verlag; English translation by George, Rolf A., 1967, The Logical Structure of the World. Pseudoproblems in Philosophy. University of California Press).Google Scholar
Carnap, R. (1934) Logische Syntax der Sprache. (English translation 1937, The Logical Syntax of Language. Kegan Paul).Google Scholar
Carnap, R. (1950) “Empiricism, semantics and ontology”Revue Internationale de Philosophie 4: 20–40; also in Carnap (1956), 205–221.Google Scholar
Carnap, R. (1956) Meaning and Necessity (University of Chicago Press).Google Scholar
Casher, A., Kogut, J., and Susskind, L. (1973) “Vacuum polarization and the quark-parton puzzle”PRL, 31: 792.CrossRefGoogle Scholar
Cassirer, E. (1936) Determinism and Indeterminism in Modern Physics (Yale University Press).Google Scholar
Cassirer, E. (1944) “Group concept and perception theory,”Philos. Phenom. Res., 5: 1–35.CrossRefGoogle Scholar
Chakravartty, A. (2004) “Structuralism as a form of scientific realism”Int. Stud. Philos. of Sci., 18: 151–171.CrossRefGoogle Scholar
Chandler, C. (1968) “Causality in S-matrix theory”PR, 174: 1749–1758.CrossRefGoogle Scholar
Chandler, C. and Stapp, H. P. (1969) “Macroscopic causality and properties of scattering amplitudes”JMP, 10: 826–859.CrossRefGoogle Scholar
Chang, C.et al. (1975) “Observed deviations from scale invariance in high-energy muon scattering”PRL, 35: 901–904.CrossRefGoogle Scholar
Charap, J. M. and Fubini, S. (1959) “The field theoretic definition of the nuclear potential-I,”NC, 14: 540–559.CrossRefGoogle Scholar
Chew, G. F. (1953a) “Pion-nucleon scattering when the coupling is weak and extended”PR, 89: 591–593.CrossRefGoogle Scholar
Chew, G. F. (1953b) “A new theoretical approach to the pion-nucleon interaction”PR, 89: 904.Google Scholar
Chew, G. F. (1961) S-Matrix Theory of Strong Interactions (W. A. Benjamin).Google Scholar
Chew, G. F. (1962) “S-matrix theory of strong interactions without elementary particles”RMP, 34: 394–401.CrossRefGoogle Scholar
Chew, G. F. (1967) “Closure, locality, and the bootstrap”PRL, 19: 1492–1495.CrossRefGoogle Scholar
Chew, G. F. (1989) “Particles as S-matrix poles: hadron democracy” in Pions to Quarks: Particle Physics in the 1950s (eds. Brown, L. M., Dresden, M. and Hoddeson, L.; Cambridge University Press) 600–607.CrossRefGoogle Scholar
Chew, G. F. and Frautschi, S. C. (1960) “Unified approach to high- and low-energy strong interactions on the basis of the Mandelstam representation”PRL, 5: 580–583.CrossRefGoogle Scholar
Chew, G. F. and Frautschi, S. C. (1961a) “Potential scattering as opposed to scattering associated with independent particles in the S-matrix theory of strong interactions”PR, 124: 264–268.CrossRefGoogle Scholar
Chew, G. F. and Frautschi, S. C. (1961b) “Principle of equivalence for all strongly interacting particles within the S-matrix framework”PRL, 8: 41–44.CrossRefGoogle Scholar
Chew, G. F. and Frautschi, S. C. (1961c) “Principle of equivalence for all strongly interacting particles within the S-matrix framework”PRL, 7: 394–397.CrossRefGoogle Scholar
Chew, G. F. and Low, F. E. (1956) “Effective-range approach to the low-energy p-wave pion-nucleon interaction”PR, 101: 1570–1579.CrossRefGoogle Scholar
Chew, G. F. and Mandelstam, S. (1960) “Theory of low energy pion-pion interaction”PR, 119: 467–477.CrossRefGoogle Scholar
Chew, G. F., Goldberger, M. L., Low, F. E., and Nambu, Y. (1957a) “Application of dispersion relations to low-energy meson-nucleon scattering”PR, 106: 1337–1344.CrossRefGoogle Scholar
Chew, G. F., Goldberger, M. L., Low, F. E., and Nambu, Y. (1957b) “Relativistic dispersion relation approach to photomeson production”PR, 106: 1345–1355.CrossRefGoogle Scholar
Chew, G., Karplus, R., Gasiorowicz, S., and Zachariasen, F. (1958) “Electromagnetic structure of the nucleon in local field theory”PR, 110: 265–276.CrossRefGoogle Scholar
Cho, Y. M. (1975) “Higher-dimensional unifications of gravitation and gauge Theories”JMP, 16: 2029–2035.CrossRefGoogle Scholar
Cho, Y. M. (1976) “Einstein Lagrangian as the translational Yang-Mills Lagrangian”PR, D14: 2521–2525.Google Scholar
Coleman, S. and Jackiw, R. (1971) “Why dilatation generators do not generate dilatations”AP, 67: 552–598.Google Scholar
Coleman, S. and Gross, D. (1973) “Price of asymptotic freedom”PRL, 31: 851–854.CrossRefGoogle Scholar
Coleman, S. and Weinberg, E. (1973) “Radiative corrections as the origin of spontaneous symmetry breaking”PR, D7: 1888–1910.Google Scholar
Cornwall, J. M. and Jackiw, R. (1971) “Canonical light-cone commutators”PR, D4: 367–378.Google Scholar
Coster, J. and Stapp, H. P. (1969) “Physical-region discontinuity equations for many-particle scattering amplitudes. I”JMP, 10: 371–396.CrossRefGoogle Scholar
Coster, J. and Stapp, H. P. (1970a) “Physical-region discontinuity equations for many-particle scattering amplitudes. II”JMP, 11: 1441–1463.CrossRefGoogle Scholar
Coster, J. and Stapp, H. P. (1970b) “Physical-region discontinuity equations”JMP, 11: 2743–2763.CrossRefGoogle Scholar
Creutz, M., Jacobs, L., and Rebbi, C. (1979) “Monte Carlo study of Abelian lattice gauge theories”PR, D20: 1915–1922.Google Scholar
Crewther, R. (1972) “Nonperturbative evaluation of the anomalies in low-energy theorems”PRL, 28: 1421–1424.CrossRefGoogle Scholar
Cushing, J. T. (1990) Theory Construction and Selection in Modern Physics: The S-Matrix Theory (Cambridge University Press).CrossRefGoogle Scholar
Cutkosky, R. E. (1960) “Singularities and discontinuities of Feynman amplitudes”JMP, 1: 429–433.CrossRefGoogle Scholar
Dalitz, (1966) “Quark models for the ‘elementary particles’” in High Energy Physics (eds. DeWitt, C. and Jacob, M.; Gordon and Breach) 251–324.Google Scholar
Dalitz, (1967) “Symmetries and the strong interactions” in Proceedings of the 13th International Conference on High Energy Physics (University of California Press) 215–234.Google Scholar
Forest, T., and Walecka, J. D. (1966) “Electron scattering and nuclear structure”Adv. Phys., 15: 1–109.CrossRefGoogle Scholar
Rujula, A. (1976) “Plenary report on theoretical basis of new particles” in Proceedings of the 18th International Conference on High Energy Physics (Tbilisi, USSR) II: N111–127.Google Scholar
Rujula, (1979) “Quantum Chromo Dynamite”Proceedings of the International Conference on High Energy Physics (European Physical Society, Geneva, June 27–July 4, 1979), 418–441.Google Scholar
Deutsch, M. (1951) “Evidence for the formation of positronium in gases”PR, 82: 455–456.CrossRefGoogle Scholar
DeWitt, B. S. (1964) “Theory of radiative corrections for non-Abelian gauge Fields”PRL, 12: 742–746.CrossRefGoogle Scholar
DeWitt, B. S. (1967a) “Quantum theory of gravity I. The canonical theory”PR, 160: 1113–1148.CrossRefGoogle Scholar
DeWitt, B. S. (1967b) “Quantum theory of gravity II. The manifestly covariant theory”PR, 162: 1195–1239.CrossRefGoogle Scholar
DeWitt, B. S. (1967c) “Quantum theory of gravity III. Applications of the covariant theory”PR, 162: 1239–1256.CrossRefGoogle Scholar
Dolen, R., Horn, O., and Schmid, C. (1967) “Prediction of Regge parameters of ρ poles from low-energy πN data”PRL, 19: 402–407.CrossRefGoogle Scholar
Dolen, R., Horn, O., and Schmid, C. (1968) “Finite-energy sum rules and their applications to πN charge exchange”PR, 166: 1768–1781.CrossRefGoogle Scholar
Doncel, M. G., Hermann, A., Michel, L, Pais, A. (eds.) (1987) Symmetries in Physics (1600–1980) (Servei de Publicacions, UAB, Barcelona).Google Scholar
Drell, S. and Lee, T. D. (1972) “Scaling properties and the bound-state nature of the physical nucleon”PR, D5: 1738–1763.Google Scholar
Drell, S. and Schwartz, C. L. (1958) “Sum rules for inelastic electron scattering”PR, 112: 568–579.CrossRefGoogle Scholar
Drell, S. and Walecka, J. D. (1964) “Electrodynamic processes with nuclear targets”AP, 28: 18–33.Google Scholar
Drell, S., Levy, D., and Yan, T. M. (1969) “Theory of deep-inelastic lepton-nucleon scattering and lepton-pair annihilation processes. I”PR, 187: 2159–2171.CrossRefGoogle Scholar
Duhem, P. (1906) The Aim and Structure of Physical Theory (Trans. Wiener, Philip P.; Princeton University Press, 1954).Google Scholar
Dyson, F. J. (1951) “The renormalization method in quantum electrodynamics”PRS, A207: 395–401.CrossRefGoogle Scholar
Dyson, F. (2004) “A meeting with Enrico Fermi”Nature, 427: 297.CrossRefGoogle Scholar
Eichten, E., Gottfried, K., Kinoshita, T.et al. (1975): “Spectrum of charmed quark-antiquark bound states”PRL, 34: 369–372.CrossRefGoogle Scholar
Ellis, J. (1974) “Theoretical ideas about e+e− → hadrons at high energies” in Proceedings of the 17th International Conference on High Energy Physics, London, July 1974 (ed. Smith, J. R.; Rutherford Laboratory, Science Research Council), IV: 20–35.Google Scholar
Ellis, J., Gaillard, M. K., and Ross, G. (1976) “Search for gluons in e+e− annihilation”NP, B111: 253–271.Google Scholar
Faddeev, L. D. and Popov, V. N. (1967) “Feynman diagrams for the Yang-Mills field”PL, 25B: 29–30.Google Scholar
Federbush, P., Goldberger, M. L., and Treiman, S. (1958) “Electromagnetic structure of the nucleon”PR, 112: 642–665.CrossRefGoogle Scholar
Feigl, H. (1974) “Empiricism at bay?” in Boston Studies in the Philosophy of Science (eds. Cohen, R. and Wartofsky, D.; Reidel) XIV: 8.Google Scholar
Fermi, E. and Yang, C. N. (1949) “Are mesons elementary particles?”PR, 76: 1739–1743.CrossRefGoogle Scholar
Feynman, R. P. (1963) “Quantum theory of gravity”Acta Phys. Polonica, 24: 697–722.Google Scholar
Feynman, R. P. (1969a) “Very high-energy collisions of hadrons”PRL, 23: 1415–1417.CrossRefGoogle Scholar
Feynman, R. P. (1969b) “The behavior of hadron collisions at extreme energies” in High Energy Collisions (eds. Yang, C. N., Cole, J. A., Good, M., Hwa, R., Lee-Franziui, J.; Gordon and Breach) 237–258.Google Scholar
Feynman, R. P. and Gell-Mann, M. (1958) “Theory of the Fermi interaction”PR, 109: 193–198.CrossRefGoogle Scholar
Feynman, R. P., Gell-Mann, M., and Zweig, G. (1964) “Group U(6) ⊗ U(6) Generated by Current Components”PRL, 13: 678–680.CrossRefGoogle Scholar
Field, R. D. (1979) “Dynamics of high energy reactions” in Proceedings of the 19th International Conference on High Energy Physics (August 23–30, 1978, Tokyo; eds. Homma, S., Kawaguchi, M., and Miyazawa, H.; Physical Society of Japan) 743–773.Google Scholar
Fine, A. (1998) “The viewpoint of no-one in particular” in Proceedings and Addresses of The American Philosophical Association, 72: 9–20.CrossRefGoogle Scholar
Fisher, M. E. (1964) “Correlation functions and the critical region of simple fluids”JMP, 5: 944–962.CrossRefGoogle Scholar
Frazer, W. R and Fulco, J. R. (1959) “Effect of a pion-pion scattering resonance on nucleon structure”PRL, 2: 365–368.CrossRefGoogle Scholar
Frazer, W. R and Fulco, J. R. (1960) “Effect of a pion-pion scattering resonance on nucleon structure. II”PR, 117: 1609–1615.CrossRefGoogle Scholar
Fregeau, R. and Hofstadter, R. (1955) “High-energy electron scattering and nuclear structure determination. III. Carbon-12 nucleus”PR, 99: 1503–1509.CrossRefGoogle Scholar
French, S. (1998) “On the withering away of physical objects” in Interpreting Bodies: Classical and Quantum Objects in Modern Physics (ed. Castellani, E.; Princeton University Press) 93–113.Google Scholar
French, S. and Krause, D. (2006) Identity in Physics: A Historical, Philosophical, and Formal Analysis (Oxford University Press).CrossRefGoogle Scholar
French, S. and Ladyman, J. (1999) “Reinflating the semantic approach”Int. Stud. Philos. Sci., 13: 103–121.CrossRefGoogle Scholar
French, S. and Ladyman, J. (2003a) “Remodelling structural realism: Quantum physics and the metaphysics of structure”Synthese, 136: 31–56.CrossRefGoogle Scholar
French, S. and Ladyman, J. (2003b) “Between platonism and phenomenalism: Reply to Cao”Synthese, 136: 73–78.CrossRefGoogle Scholar
Friedman, J. (1968) “Preliminary data from a SLAC–MIT inelastic electron–proton scattering experiment,” presented at the conference, not published, but listed as paper 563 on page 456 in the Proceedings of 14th International Conference on High Energy Physics (Geneva, CERN, 1968), with the truncated title “Inelastic scattering from protons.”Google Scholar
Friedman, J. (1991) “Deep inelastic scattering: Comparison with the quark model”RMP, 63: 615–627.CrossRefGoogle Scholar
Friedman, J. (1997) “Deep inelastic scattering and the discovery of quarks” in The Rise of the Standard Model (eds. Hoddeson, L., Brown, L., Riordan, M., and Dresden, M.; CambridgeUniversity Press) 566–588.CrossRefGoogle Scholar
Friedman, J. and Kendall, H. (1972) “Deep inelastic electron scattering”Annu. Rev. of Nucl., 22: 203–254.CrossRefGoogle Scholar
Friedman, M. (1992) Kant and the Exact Sciences (Harvard University Press).Google Scholar
Friedman, M. (1999) Reconsidering Logical Positivism (Cambridge University Press).CrossRefGoogle Scholar
Frishman, Y. (1970) “Scale invariance and current commutators near the light cone”PRL, 25: 966–969.CrossRefGoogle Scholar
Fritzsch, H. and Gell-Mann, M. (1971a) “Scale invariance and the light cone” in Proceedings of the 1971 Coral Gables Conference on Fundamental Interactions at High Energy (eds. Dal Cin, M., et al.; Gorfon and Breach) 1–53.Google Scholar
Fritzsch, H. and Gell-Mann, M. (1971b) “Light cone current algebra” in Proceedings of the International Conference on Duality and Symmetry in Hadron Physics” (ed. Gotsman, E.; Weizmann Science Press) 317–374.Google Scholar
Fritzsch, H. and Gell-Mann, M. (1972) “Current algebra, quarks and what else?” in Proceedings of the XVI International Conference on High Energy Physics, September 6–13, 1972 (eds. Jackson, J. D. and Roberts, A.; National Accelerator Laboratory, Batavia), vol. 2: 135–165.Google Scholar
Fritzsch, H., Gell-Mann, M., and Leutwyler, H. (1973) “Advantages of the color octet gluon picture”PL, 47B: 267–271.Google Scholar
Fubini, S. and Furlan, G. (1965) “Renormalization effects for partially conserved currents”Physics, 1: 229–247.CrossRefGoogle Scholar
Gaillard, M. (1979) “QCD phenomenology” in Proceedings of the 19th International Conference on High Energy Physics (23–30 August, 1978, Tokyo; eds. Homma, S., Kawaguchi, M., and Miyazawa, H.; Physical Society of Japan) 390–417.Google Scholar
Gaillard, M., Lee, B. and Rosner, J. (1975) “Search for charm”RMP, 47: 277–310.CrossRefGoogle Scholar
Galison, P. (1987) How Experiments End (University of Chicago Press).Google Scholar
Garwin, R. L., Lederman, L. M., and Weinrich, M. (1957) “Observations of the failure of conservation of parity and charge conjugation in meson decays: the magnetic moment of the free muon”PR, 105: 1415–1417.CrossRefGoogle Scholar
Gell-Mann, M. (1953) “Isotopic spin and new unstable particles”PR, 92: 833–834.CrossRefGoogle Scholar
Gell-Mann, M. (1956a) “The interpretation of the new particles as displaced charged multiplets,”NC Suppl., 4: 848–866.Google Scholar
Gell-Mann, M. (1956b) “Dispersion relations in pion-pion and photon-nucleon scattering” in High Energy Nuclear Physics, Proceedings of the Sixth Annual Rochester Conference (Interscience), sec. III: 30–36.Google Scholar
Gell-Mann, M. (1957) “Model of the strong couplings”PR, 106: 1296–1300.CrossRefGoogle Scholar
Gell-Mann, M. (1958) “Test of the nature of the vector interaction in b-decay”PR, 111: 362–365.CrossRefGoogle Scholar
Gell-Mann, M. (1961) “The eightfold way: a theory of strong interaction symmetry”California Institute of Technology Synchrotron Laboratory Report No. CTSL-20; reprinted in Gell-Mann and Ne'eman (1964), 11–57.Google Scholar
Gell-Mann, M. (1962) “Symmetries of baryons and mesons”PR, 125: 1067–1084.CrossRefGoogle Scholar
Gell-Mann, M. (1964a) “A schematic model of baryons and mesons”PL, 8: 214–215.Google Scholar
Gell-Mann, M. (1964b) “The symmetry group of vector and axial vector currents”Physics, 1: 63–75.CrossRefGoogle Scholar
Gell-Mann, M. (1969) “Symmetry violation in hadron physics”University of Hawaii Summer School lectures, later published in Hawaii Topical Conference in Particle Physics, 1: 168–188.Google Scholar
Gell-Mann, M. (1972) “Quarks: developments in the quark theory of hadrons”Acta Phys. Austriaca, 9: 733–761.Google Scholar
Gell-Mann, M. (1987) “Particle theory from S-matrix to quarks” in Symmetries in Physics (1600–1980), Proceedings of the First International Meeting on the History of Scientific Ideas (Catalonia, Spain, 1983; eds. Doncel, M. G., Hermann, A., Michel, L. and Pais, A.; Bella Terra) 474–497.Google Scholar
Gell-Mann, M. (1997) “Quarks, color, and QCD”The Rise of the Standard Model (eds. Hoddeson, L., Brown, L., Riordan, M., and Dresden, M.; Cambridge University Press) 625–633.CrossRefGoogle Scholar
Gell-Mann, M. and Goldberger, M. L. (1954) “The scattering of low energy photons by particles of spin ½”PR, 96: 1433–1438.CrossRefGoogle Scholar
Gell-Mann, M. and Levy, M. (1960) “The axial vector current in beta decay”NC, 16: 705.CrossRefGoogle Scholar
Gell-Mann, M. and Low, F. E. (1954) “Quantum electrodynamics at small distances”PR, 95: 1300–1312.CrossRefGoogle Scholar
Gell-Mann, M. and Ne'eman, Y. (eds.) (1964) The Eightfold Way (W. Benjamin).Google Scholar
Gell-Mann, M. and Pais, A. (1954) “Theoretical views on the new particles” in Proceedings of the Glasgow International Conference on Nuclear Physics (eds. Bellamy, E. H. and Moorhouse, R. G.; Pergamon) 342–350.Google Scholar
Gell-Mann, M., Goldberger, M. L., and Thirring, W. (1954) “Use of causality conditions in quantum theory”PR, 95: 1612–1627.CrossRefGoogle Scholar
Gershstein, S. and Zeldovich, J. (1955) “On corrections from mesons to the theory of β-decay”, Zh. Eksp. Teor. Fiz., 29: 698–699. (English trans. JETP, 2: 576).Google Scholar
Glashow, S. L. (1959) “The renormalizability of vector meson interactions”NP, 10: 107–117.Google Scholar
Glashow, S. L. (1961) “Partial symmetries of weak interactions”NP, 22: 579–588.Google Scholar
Glashow, S. L., Iliopoulos, J., and Maiani, L. (1970) “Weak interactions with lepton-hadron symmetry”PR, D2: 1285–1292.Google Scholar
Goldberger, M. L. (1955a) “Use of causality conditions in quantum theory”PR, 97: 508–510.CrossRefGoogle Scholar
Goldberger, M. L. (1955b) “Causality conditions and dispersion relations I. Boson fields,”PR, 99: 979–985.CrossRefGoogle Scholar
Goldberger, M. L. and Treiman, S. B. (1958) “Decay of the pi meson”PR, 110: 1178–1184.CrossRefGoogle Scholar
Goldhaber, M. (1956) “Compound hypothesis for the heavy unstable particles. II”PR, 101: 433–438.CrossRefGoogle Scholar
Goldhaber, G.et al. (1976): “Observation in e+e− annihilation of a narrow state at 1865 Mev/c2 decaying to Kπ and Kπππ”PRL, 37: 255–259.CrossRefGoogle Scholar
Goldstone, J. (1961) “Field theories with ‘superconductor’ solutions”NC, 19: 154–164.CrossRefGoogle Scholar
Goto, T. and Imamura, T. (1955) “Note on the non-perturbation-approach to quantum field theory”PTP, 14: 396–397.Google Scholar
Goto, T (1971): “Relativistic quantum mechanics of one-dimensional mechanical continuum and subsidiary condition of dual resonance model”PTP, 46: 1560–1569.Google Scholar
Greenberg, O. (1964) “Spin and unitary-spin independence in a paraquark model of baryons and mesons”PRL, 13: 598–602.CrossRefGoogle Scholar
Greenberg, O. and Zwanziger, D. (1966) “Saturation in triplet models of hadrons”PR, 150: 1177–1180.CrossRefGoogle Scholar
Gross, D. (1997) “Asymptotic freedom and the emergence of QCD” in The Rise of the Standard Model (eds. Hoddeson, L., Brown, L., Riordan, M., and Dresden, M.; CambridgeUniversity Press) 199–232.CrossRefGoogle Scholar
Gross, D. and Treiman, S. (1971) “Light cone structure of current commutators in the gluon-quark model”PR, D4: 1059–1072.Google Scholar
Gross, D. and Wilczek, F. (1973a) Ultraviolet behavior of non-abelian gauge theories”PRL, 30: 1343–1346.CrossRefGoogle Scholar
Gross, D. and Wilczek, F. (1973b) “Asymptotic free gauge theories: I”PR, D8: 3633–3652.Google Scholar
Gross, D. and Wilczek, F. (1973c) “Asymptotic free gauge theories: II”PR, D9: 980–983.Google Scholar
Gulmanelli, P. (1954) Su una Teoria dello Spin Isotropico (Pubblicazioni della Sezione di Milano dell'istituto Nazionale di Fisica Nucleare, Casa Editrice Pleion, Milano).Google Scholar
Gürsey, F. and Radicati, L. A. (1964) “Spin and unitary spin independence”PRL, 13: 173–175.CrossRefGoogle Scholar
Haag, R. (1958) “Quantum field theories with composite particles and asymptotic conditions”PR, 112: 669–673.CrossRefGoogle Scholar
Haag, R. (1992) Local Quantum Physics (Springer).CrossRefGoogle Scholar
Han, M. Y. and Nambu, Y. (1965) “Three-triplet model with double SU(3) symmetry”PR, 139B: 1006–1010.CrossRefGoogle Scholar
Hand, L. (1963) “Experimental investigation of pion electroproduction”PR, 129: 1834–1846.CrossRefGoogle Scholar
Hara, Y. (1964) “Unitary triplets and the eightfold way”PR, B134: 701–704.CrossRefGoogle Scholar
Harrington, B. J., Park, S. Y., and Yildiz, A. (1975) “Scalar-meson dominance model in the decay ψ′→J+2π”PR, D12: 2765–2767.Google Scholar
Hehl, F. W.et al. (1976) “General relativity with spin and torsion: foundations and prospects”RMP, 48: 393–416.CrossRefGoogle Scholar
Heisenberg, W. (1925) “Über quantentheoretische Umdeutung kinematischer und mechanischer Beziehung”ZP, 33: 879–883.CrossRefGoogle Scholar
Heisenberg, W. (1943a) “Die ‘beobachtbaren Grössen’ in der Theorie der Elementarteilchen”ZP, 120: 513–538.CrossRefGoogle Scholar
Heisenberg, W. (1943b) “Die ‘beobachtbaren Grössen’ in der Theorie der Elementarteilchen. II”ZP, 120: 673–702.CrossRefGoogle Scholar
Heisenberg, W. (1944) “Die ‘beobachtbaren Grössen’ in der Theorie der Elementarteilchen. III”ZP, 123: 93–112.Google Scholar
Heisenberg, W. (1958) “Research on the non-linear spinor theory with indefinite metric in Hilbert Space” in 1958 Annual International Conference on High Energy Physics at CERN (CERN, Geneva), 119–126.Google Scholar
Heisenberg, W. (1960) “Recent research on the nonlinear spinor theory of elementary particles”Proceedings of the 1960 Annual International Conference on High Energy Physics at Rochester (Interscience), 851–857.Google Scholar
Hesse, M. B. (1980) Revolutions and Reconstructions in the Philosophy of Science (Harvester).Google Scholar
Higgs, P. W. (1964a) “Broken symmetries, massless particles and gauge fields”PL, 12: 132–133.Google Scholar
Higgs, P. W. (1964b) “Broken symmetries and the masses of gauge bosons”PRL, 13: 508–509.CrossRefGoogle Scholar
Hill, C. (2005) “Conjecture on the physical implications of the scale anomaly” Fermilab-Conf-05/482-T.
Hofstadter, R. (1956) “Electron scattering and nuclear structure”RMP, 28: 214–254.CrossRefGoogle Scholar
Hofstadter, R. and McAllister, R. W. (1955) “Electron scattering from the proton”PR, 98: 217–218.CrossRefGoogle Scholar
Hofstadter, R., Fechter, H. R., and McIntyre, J. A. (1953) “Scattering of high-energy electrons and the method of nuclear recoil”PR, a2: 978–987.CrossRefGoogle Scholar
Houard, J. C. and Jouvet, B. (1960) “Etude d'un modèle de champ à constante de renormalisation nulle”NC, 18: 466–481.CrossRefGoogle Scholar
Iagolnitzer, D. and Starpp, H. P. (1969) “Macroscopic causality and physical region analyticity in the S-matrix theory”CMP, 14: 15–55.Google Scholar
Ikeda, M., Ogawa, S. and Ohnuki, Y. (1959) “A possible symmetry in Sakata's model for bosons-baryons system. II”PTP, 22: 715–724.Google Scholar
Jackiw, R. and Preparata, G. (1969) “Probe for the constituents of the electromagnetic current and anomalous commutators”PRL, 22: 975–981.CrossRefGoogle Scholar
Jackiw, R. and Rebbi, C. (1976) “Vacuum periodicity in a Yang-Mills quantum theory”PRL, 37: 172–175.CrossRefGoogle Scholar
Jackiw, R., Royen, R. V., and West, G. B (1970) “Measuring light-cone singularities”PR, D12: 2765–2767.Google Scholar
Johnson, K. (1961) “Solution of the equations for the Green's functions of a two dimensional relativistic field theory”NC, 20: 773–790.CrossRefGoogle Scholar
Johnson, K. and Low, F. (1966) “Current algebra in a simple model”PTP, 37–38: 74–93.Google Scholar
Jost, R. (1947) “Über die falschen Nullstellen der Eigenwerte der S-matrix”Helv. Phys. Acta., 20: 256–266.Google Scholar
Kadanoff, L. P. (1966) “Scaling laws for Ising models near Tc”Physics, 2: 263–272.CrossRefGoogle Scholar
Kamefuchi, S. (1960) “On Salam's equivalence theorem in vector meson theory”NC, 18: 691–696.Google Scholar
Kant, I. (1783). Prolegomena zu einer jeden künftigen Metaphysik die als Wissenschaft wird auftreten können (Hartknoch, J. F., Riga, ; English translation: Hackett, 1977).Google Scholar
Kendall, H. (1991) “Deep inelastic scattering: experiment on the proton and the observation of scaling”RMP, 63: 597–614.CrossRefGoogle Scholar
Kibble, T. W. B. (1961) “Lorentz invariance and the gravitational field”JMP, 2: 212–221.CrossRefGoogle Scholar
Klein, O. (1959) “On the systematics of elementary particles”Ark. Fys. Swedish Academy of Sciences, 16: 191–196.Google Scholar
Kogut, J. and Susskind, L. (1974) “Vacuum polarization and the absence of free quarks in four dimensions”PR, D9: 3501–3512.Google Scholar
Kogut, J. and Susskind, L. (1975) “Hamiltonian formulation of Wilson's lattice gauge theories”PR, D11: 395–408.Google Scholar
Komar, A. and Salam, A. (1960) “Renormalization problem for vector meson theories”NP, 21: 624–630.Google Scholar
Kramers, H. A. (1944) “Fundamental difficulties of a theory of particles”Ned. Tijdschrift Voor Natuurkunde, 11: 134–147.Google Scholar
Kronig, R. (1946) “A supplementary condition in Heisenberg's theory of elementary particles”Physica, 12: 543–544.CrossRefGoogle Scholar
Kuhn, T. S. (1970) The Structure of Scientific Revolutions (Second enlarged edition, University of Chicago Press).Google Scholar
Kuhn, T. S. (2000) The Road Since Structure (University of Chicago Press).Google Scholar
Ladyman, J. (1998) What is structural realism?Stud. Hist. Philos. Sci., 29: 409–424.CrossRefGoogle Scholar
Lakatos, I. (1970) “Falsification and the methodology of scientific research programmes” in Criticism and the Growth of Knowledge (eds. Lakatos, I. and Musgrave, A.; Cambridge University Press) 91–195.CrossRefGoogle Scholar
Lakatos, I. (1971) “History of science and its rational reconstructions” in Boston Studies in the Philosophy of Science (eds. Cohen, R. and Wartofsky, D.; Reidel) VIII: 91–136.Google Scholar
Landau, L. D. (1955) “On the quantum theory of fields” in Niels Bohr and the Development of Physics (ed. Pauli, W.; Pergamon) 52–69.Google Scholar
Landau, L. D. (1959) “On analytic properties of vertex parts in quantum fined theory”NP, 13: 181–192.Google Scholar
Landau, L. D. and Pomeranchuck, I. (1955) “On point interactions in quantum electrodynamics”DAN, 102: 489–491.Google Scholar
Landau, L. D., Abrikosov, A. A., and Khalatnikov, I. M. (1954a) “The removal of infinities in quantum electrodynamics”DAN, 95: 497–499.Google Scholar
Landau, L. D., Abrikosov, A. A., and Khalatnikov, I. M. (1954b) “An asymptotic expression for the electron Green function in quantum electrodynamics”DAN, 95: 773–776.Google Scholar
Landau, L. D., Abrikosov, A. A. and Khalatnikov, I. M. (1954c) “An asymptotic expression for the photon Green function in quantum electrodynamics”DAN, 95: 1117–1120.Google Scholar
Landau, L. D., Abrikosov, A. A., and Khalatnikov, I. M. (1954d) “The electron mass in quantum electrodynamics”DAN, 96: 261–263.Google Scholar
Landau, L. D., Abrikosov, A. A., and Kalatnikov, I. M. (1956) “On the quantum theory of fields”NC (Suppl.), 3: 80–104.Google Scholar
Lattes, C. M. G., Muirhead, H., Occhialini, G. P. S., and Powell, C. F. (1947) “Processes involving charged mesons”Nature, 159: 694–697.CrossRefGoogle Scholar
Lattes, C. M. G., Occhialini, G. P. S., and Powell, C. F. (1947) “Observations on the tracks of slow Mesons in photographic emulsions, part I, II,”Nature, 160: 453–456; 486–492.CrossRefGoogle Scholar
Lee, B. W. (1972) “Perspectives on theory of weak interactions” in Proceedings of the XVI International Conference on High Energy Physics, September 6–13, 1972 (eds. Jackson, J. D. and Roberts, A.; National Accelerator Laboratory, Batavia) vol. 4: 249–305.Google Scholar
Lee, T. D. (1954) “Some special examples in renormalizable field theory”PR, 95: 1329–1334.CrossRefGoogle Scholar
Lee, T. D. and Yang, C. N. (1956) “Question of parity conservation in weak interactions”PR, 104: 254–258.CrossRefGoogle Scholar
Lee, T. D. and Yang, C. N. (1962) “Theory of charge vector mesons interacting with the electromagnetic field”PR, 128: 885–898.CrossRefGoogle Scholar
Lee, T. D., Weinberg, S., and Zumino, B. (1967) “Algebra of fields”PRL, 18: 1029–1032.CrossRefGoogle Scholar
Lee, Y. K., Mo, L. W., and Wu, C. S. (1963) “Experimental test of the conserved vector current theory on the beta spectra of B12 and N12”PRL, 10: 253–258.CrossRefGoogle Scholar
Lehmann, H., Symanzik, K., and Zimmerman, W. (1955) “Zur Formalierung quantisierter Feldtheorie,”NC, 10(1): 205–225.CrossRefGoogle Scholar
Leutwyler, H. (1968) “Is the group SU(3)l an exact symmetry of one-particle-states?” Preprint (University of Bern).Google Scholar
Leutwyler, H. and Stern, J. (1970) “Singularities of current commutators on the light cone”NP, B20: 77–101.Google Scholar
Levin, E. M. and Frankfurt, L. L. (1965) “The quark hypothesis and relations between cross sections at high energies”JETP Letters, 2(3): 65–67.Google Scholar
Lewontin, R. (1998) An exchange on higher superstition with Paul R. Gross and Norman Levitt, New York Review of Books, 45(19): 59–60.Google Scholar
Lipkin, H. (1997) “Quark models and quark phenomenology” in The Rise of the Standard Model (eds. Hoddeson, L., Brown, L., Riordan, M., and Dresden, M.; Cambridge University Press) 542–560.CrossRefGoogle Scholar
Llewellyn-Smith, C. H. (1971) “Inelastic lepton scattering in gluon models”PR, D4: 2392–2397.Google Scholar
Low, F. E. (1954) “Scattering of light of very low frequency by system of spin ½”PR, 96: 1428–1432.CrossRefGoogle Scholar
Low, F. E. (1962) “Bound states and elementary particles”NC, 25: 678–684.CrossRefGoogle Scholar
Mack, G. (1968) “Partially conserved dilatation current”NP, B5: 499–507.Google Scholar
Maglic, B. C., Alvarez, L. W., Rosenfeld, A. H., and Stevenson, M. L. (1961) “Evidence for a T=0 three-pion resonance”PRL, 7(1): 78–182.CrossRefGoogle Scholar
Maki, Z., Ohnuki, Y., and Sakata, S. (1965) “Remarks on a new concept of elementary particles and the method of the composite model” PTP (Supplement: A Commemoration Issue for the 30th Anniversary of the Meson Theory by Dr. H. Yukawa) 406–415.
Mandelstam, S. (1958) “Determination of the pion-nucleon scattering amplitude from dispersion relations and unitarity. General theory”PR, 112: 1344–1360.CrossRefGoogle Scholar
Mandelstam, S. (1968a) “Feynman rules for electromagnetic and Yang-Mills fields from the gauge-independent field-theoretic formalism”PR, 175: 1580–1603.CrossRefGoogle Scholar
Mandelstam, S. (1968b) “Feynman rules for the gravitational field from the coordinate-independent field-theoretic formalism”PR, 175: 1604–1623.CrossRefGoogle Scholar
Maxwell, G. (1970a) “Structural realism and the meaning of theoretical terms” in Analyses of Theories and Methods of Physics and Psychology, Minnesota Studies in the Philosophy of Science, IV (eds. Winokur, S. and Radner, M.; University of Minnesota Press) 181–192.Google Scholar
Maxwell, G. (1970b) “Theories, perception and structural realism” in Nature and Function of Scientific Theories, University of Pittsburgh Series in the Philosophy of Science, IV (ed. Colodny, R., University of Pittsburgh Press) 3–34.Google Scholar
Muta, T. (1979a) “Deep inelastic scattering beyond the leading order in asymptotically free gauge theories” in Proceedings of the 19th International Conference on High Energy Physics (August 23–30, 1978, Tokyo; eds. Homma, S., Kawaguchi, M., and Miyazawa, H.; Physical Society of Japan) 234–236.Google Scholar
Muta, T. (1979b) “Note on the renormalization-prescription dependence of the quantum-chromodynamic calculation of structure-function moments”PR, D20: 1232–1234.Google Scholar
Nakano, T. and Nishijima, K. (1953) “Charge independence for V-particles”PTP, 10: 581–582.Google Scholar
Nambu, Y. (1956) “Structure of Green's functions in quantum field theory. II”PR, 101: 459–467.CrossRefGoogle Scholar
Nambu, Y. (1957) “Possible existence of a heavy neutral meson”PR, 106: 1366–1367.CrossRefGoogle Scholar
Nambu, Y. (1965a) “Dynamical symmetries and fundamental fields” in Symmetry Principles at High Energies (eds. Kursunoglu, B., Perlmutter, A. and Sakmar, A.; Freeman) 274–285.Google Scholar
Nambu, Y. (1965b) “A systematics of hadrons in subnuclear physics” in Preludes in Theoretical Physicse (eds. Shalit, A., Feshbach, H., and Hove, L.; North-Holland) 133–142.Google Scholar
Nambu, Y. (1969) “Quark model and the factorization of the Veneziano amplitude” in Proceedings of International Conference on Symmetries and Quark Models, Wayne State University June 1969 (ed. Chaud, R.; Gordon and Breach) 269–278.Google Scholar
Nambu, Y. (1970) “Duality and hadrodynamics” (notes prepared for the Copenhagen high energy symposium, August 1970, unpublished. Texts now available from Broken Symmetry, eds. Eguchi, T. and Nishijima, K.; World Scientific, 1995) 280–301.Google Scholar
Nambu, Y. and Jona-Lasinio, G. (1961a) “A dynamical model of elementary particles based on an analogy with superconductivity. I”PR, 122: 345–358.CrossRefGoogle Scholar
Nambu, Y. and Jona-Lasinio, G. (1961b) “A dynamical model of elementary particles based on an analogy with superconductivity. II”PR, 124: 246–254.CrossRefGoogle Scholar
Ne'eman, Y. (1961) “Derivation of strong interactions from a gauge invariance”NP, 26: 222–229.Google Scholar
Newman, M. H. A. (1928) “Mr Russell's causal theory of perception”Mind, 37: 137–148.CrossRefGoogle Scholar
Nielsen, H. and Olesen, P. (1973) “Vortex-line models for dual strings”NP, B61: 45–61.Google Scholar
Nielsen, H. and Susskind, L. (1970) TH 1230-CERN (Preprint, September 1970).
Nielsen, H. (1971) “Connection between the Regge trajectory universal slope α′ and the transverse momentum distribution of partons in planar Feynman diagram model”PL, 35B: 515–518.Google Scholar
Nishijima, K. (1955) “Charge independence theory of V particles”PTP, 13: 285–304.Google Scholar
Nishijima, K. (1957) “On the asymptotic conditions in quantum field theory”PTP, 17: 765–802.Google Scholar
Nishijima, K. (1958) “Formulation of field theories of composite particles”PR, 111: 995–1011.CrossRefGoogle Scholar
Nissani, N. (1984) “SL (2, C) gauge theory of gravitation: conservation laws”PR, 109: 95–130.Google Scholar
Ogawa, S. (1959) “A possible symmetry in Sakata's composite model”PTP, 21: 209–211.Google Scholar
Ohnuki, Y. (1960) “Composite model of elementary particles” in Proceedings of the 1960 Annual International Conference on High Energy Physics at Rochester (eds. Sudarshan, E. C. G., Tinlot, J. H., and Melissinos, A. C.; University of Rochester) 843–850.Google Scholar
Olive, D. I. (1964) “Exploration of S-matrix theory,”PR, 135B: 745–760.CrossRefGoogle Scholar
Pais, A. (1953) “Isotopic spin and mass quantization”Physica, 19: 869–887.CrossRefGoogle Scholar
Pais, A. (1962) “Theorem on local action on lepton currents”PRL, 9: 117–120.CrossRefGoogle Scholar
Pais, A. (1964) “Implications of spin-unitary spin independence”PRL, 13: 175–177.CrossRefGoogle Scholar
Pais, A. (1965) “Comments” in Recent Developments in Particle Symmetries (ed. Zichichi, A.; Academic Press) 406.Google Scholar
Pais, A. (1986) Inward Bound (Oxford University Press).Google Scholar
Panofsky, W. (1968) “Low electrodynamics, elastic and inelastic electron (and muon) scattering” in Proceedings of the 14th International Conference on High Energy Physics, Vienna, August 28–September 5, 1968 (eds. Prentki, J. and Steinberger, J.; Geneva, CERN) 23–39.Google Scholar
Panofsky, W. and Allton, E. A. (1968) “Form factor of the photopion matrix element at resonance”PR, 110: 1155–1165.CrossRefGoogle Scholar
Parisi, G. (1973) “Deep inelastic scattering in a field theory with computable large-momenta behavior”NC, 7: 84–87.Google Scholar
Pauli, W. (1953) Two letters to Abraham Pais, see Pauli (1999); two seminar lectures, reported in Paolo Gulmanelli (1954).
Pauli, W. (1999) Wissenschaftlicher Briefwechsel, Vol. IV, Part II (Springer-Verlag, edited by Meyenn, K. V.). Letter [1614]: to A. Pais (July 25, 1953); letter [1682]: to A. Pais (December 6, 1953); letter [1727]: to C. N. Yang (February 1954).Google Scholar
Pecceei, R. D. and Quinn, H. R. (1977) “CP conservation in the presence of pseudoparticles”PRL, 38: 1440–1443.CrossRefGoogle Scholar
Perkins, D. H. (1972) “Neutrino interactions” in Proceedings of the XVI International Conference on High Energy Physics, September 6–13, 1972 (eds. Jackson, J. D. and Roberts, A.; National Accelerator Laboratory, Batavia), vol. 4: 189–247.Google Scholar
Peruzzi, I.et al. (1976) “Observation of a narrow charged state at 1876 MeV/c2 decaying to an exotic combination of Kππ”PRL, 37: 569–571.CrossRefGoogle Scholar
Peterman, A. and Stueckelberg, E. C. G. (1951) “Restriction of possible interactions in quantum electrodynamics”PR, 82: 548–549.CrossRefGoogle Scholar
Pevsner, A.et al. (1961) “Evidence for a three-pion resonance near 550 Mev,”PRL, 7: 421–423.CrossRefGoogle Scholar
Pickering, A. (1984) Constructing Quarks (Edinburgh University Press).Google Scholar
Poincaré, H. (1902) La science et l'hypothese (Flammarion).Google Scholar
Politzer, H. D. (1973) “Reliable perturbative results for strong interactions?”PRL, 30: 1346–1349.CrossRefGoogle Scholar
Politzer, H. D. (1974) “Asymptotic freedom: An approach to strong interactions”Phys. Rept., 14: 129–180.CrossRefGoogle Scholar
Politzer, D. (2004) “The dilemma of attribution” Nobel lecture delivered in December 2004; for the text, see RMP, 77(3): 851–856.CrossRefGoogle Scholar
Polyakov, A. M. (1974) “Particle spectrum in quantum field theory”JETPL, 20: 194–195.Google Scholar
Putnam, H. (1978) Meaning and the Moral Sciences (Routledge and Kegan Paul).Google Scholar
Quigg, , and Rosner, J. (1979) “Quantum mechanics with applications to quarkonium”PR, 56: 167–235.Google Scholar
Quine, W. V. O. (1951) “Two Dogmas of Empiricism”Philoso. Rev., 60: 20–43.CrossRefGoogle Scholar
Redhead, M. (2001) “The intelligibility of the universe” in Philosophy at the New Millennium (ed. O'Hear, A.; Cambridge University Press) 73–90.Google Scholar
Reeh, H. and Schlieder, S. (1961) “Bemerkungen zur unitaraquivalenz von Lorentzinvaranten Feldern”NC, 22: 1051–1068.CrossRefGoogle Scholar
Regge, T. (1958a) “Analytic properties of the scattering matrix”NC, 8: 671–679.CrossRefGoogle Scholar
Regge, T. (1958b) “On the analytic behavior of the eigenvalue of the S-matrix in the complex plane of the energy”NC, 9: 295–302.CrossRefGoogle Scholar
Regge, T. (1959) “Introduction to complex orbital momenta”NC, 14: 951–976.CrossRefGoogle Scholar
Regge, T. (1960) “Bound states, shadow states and Mandelstam representation,”NC, 18: 947–956.CrossRefGoogle Scholar
Reichenbach, H. (1951) The Rise of Scientific Philosophy (University of California Press).Google Scholar
Rosenbluth, M. (1950) “High energy elastic scattering of electrons on protons”PR, 79: 615–619.CrossRefGoogle Scholar
Rosner, J. (1969) “Graphical Form of duality”PRL, 22: 689–692.CrossRefGoogle Scholar
Russell, B. (1927) The Analysis of Matter (Kegan Paul).Google Scholar
Sakata, S. (1956) “On the composite model for the new particles”PTP, 16: 686–688.Google Scholar
Sakata, S. (1963) “Concluding remarks at the meeting on Models and Structures of Elementary Particles, Hiroshima University, March 1963” Soryushiron Kenkyu (mimeographed circular in Japanese), 28, 110; English translation, PTP(Supplement) 50 (1971): 208–209.Google Scholar
Sakita, B. (1964) “Supermultiplets of elementary particles”PR, B136: 1756–1760.CrossRefGoogle Scholar
Sakurai, J. J. (1960) “Theory of strong interactions”AP, 11: 1–48.Google Scholar
Sakurai, J. (1969) “Vector-meson dominance and high-energy electron-proton inelastic scattering”PRL, 22: 981–984.CrossRefGoogle Scholar
Salam, A. (1960) “An equivalence theorem for partially gauge-invariant vector meson interactions,”NP, 18: 681–690.Google Scholar
Salam, A. (1962) “Lagrangian theory of composite particles”NC, 25: 224–227.CrossRefGoogle Scholar
Salam, A. (1968) “Weak and electromagnetic interactions”in Elementary Particle Theory: Relativistic Group and Analyticity, Proceedings of Nobel Conference 8 (ed. Svartholm, N.; Almqvist & Wiksell) 367–377.Google Scholar
Salam, A. and Ward, J. C. (1959) “Weak and electromagnetic interactions”NC, 11: 568–577.CrossRefGoogle Scholar
Schiff, L. I. (1949) “Microwave Laboratory technical report no. 102”Stanford University, November 1949.Google Scholar
Schlick, M. (1918) General Theory of Knowledge (trans. by Blumberg, A. E. and Feigl, H.; Springer-Verlag).Google Scholar
Schroer, B (1997) “Motivations and physical aims of algebraic QFT”www.esi.ac.at/preprints/esi371.pdf
Schweber, S. (1997) “A historical perspective on the rise of the standard model” in The Rise of the Standard Model (eds. Hoddeson, L., Brown, L., Riordan, M., and Dresden, M.; Cambridge University Press) 645–684.CrossRefGoogle Scholar
Schwinger, J. (1957) “A theory of the fundamental interactions”AP, 2: 407–434.Google Scholar
Schwinger, J. (1959) “Field theory commutators”PRL, 3: 296–297.CrossRefGoogle Scholar
Schwinger, J. (1962a) “Gauge invariance and mass”PR, 125: 397–398.CrossRefGoogle Scholar
Schwinger, J. (1962b) “Gauge invariance and mass. II”PR, 128: 2425–2429.CrossRefGoogle Scholar
Schwinger, J. (1965) “The future of fundamental physics” in Nature of Matter: Purposes of High Energy Physics (ed. Yuan, L. C. L.; Brookhaven National Laboratory) 23.Google Scholar
Silvestrini, V. (1972) “Electron-positron interactions” in Proceedings of the XVI International Conference on High Energy Physics, September 6–13, 1972 (eds. Jackson, J. D. and Roberts, A.; National Accelerator Laboratory, Batavia), vol. 4: 1–40.Google Scholar
Simons, P. (1994) “Particulars in particular clothing: three trope theories of substance”Philos. Phenom. Res., 54: 553–574.CrossRefGoogle Scholar
Slavnov, A. (1972) “Ward identities in gauge theories”Theor. Math. Phys., 19: 99–104.CrossRefGoogle Scholar
Stapp, H. P. (1962a) “Derivation of the CPT theorem and the connection between spin and statistics from postulates of the S-matrix theory,”PR, 125: 2139–2162.CrossRefGoogle Scholar
Stapp, H. P. (1962b) “Axiomatic S-matrix theory,”RMP, 34: 390–394.CrossRefGoogle Scholar
Stapp, H. P. (1965) “Space and time in S-matrix theory,”PR, B139: 257–270.CrossRefGoogle Scholar
Stapp, H. P. (1968) “Crossing, hermitian analyticity, and the connection between spin and statistics,”JMP, 9: 1548–1592.CrossRefGoogle Scholar
Stein, H. (1989) “Yes, but some skeptical remarks on realism and anti-realism”Dialectica, 43: 47–65.CrossRefGoogle Scholar
Straumann, N. (2000) “On Pauli's invention of non-abelian Kaluza-Klein theory in 1953” in The Ninth Marcel Grossmann Meeting. Proceedings of the MGIXMM Meeting held at The University of Rome “La Sapienza”, July 2–8 2000 (eds.: Gurzadyan, V. G., Jantzen, R. T. and Remo Ruffini, R.; World Scientific) Part B: 1063–1066.Google Scholar
Strawson, (1959) Individuals (Anchor Books, Doubleday & Company).CrossRefGoogle Scholar
Stueckelberg, E. C. G. and Peterman, A. (1953) “La normalisation des constances dans la théorie des quanta”Helv. Phys. Acta., 26: 499–520.Google Scholar
Sudarshan, E. C. G. and Marshak, R. E. (1958) “Chirality invariance and the universal Fermi interaction”PR, 109: 1860–1862.CrossRefGoogle Scholar
Susskind, L. (1968) “Models of self-induced strong interactions”PR, 165: 1535–1546.CrossRefGoogle Scholar
Susskind, L. (1969) “Harmonic-oscillator analogy for the Veneziano model”PRL, 23: 545–547.CrossRefGoogle Scholar
Susskind, L. (1970) “Structure of hadrons implied by duality”PR, D1: 1182–1186.Google Scholar
Susskind, L. (1997) “Quark confinement” in The Rise of the Standard Model (eds. Hoddeson, L., Brown, L., Riordan, M., and Dresden, M.; Cambridge University Press) 233–242.CrossRefGoogle Scholar
Sutherland, D. G. (1967) “Current algebra and some non-strong mesonic decays”NP, B2: 433–440.Google Scholar
Symanzik, K. (1970) “Small distance behavior in field theory and power counting”CMP, 18: 227–246.Google Scholar
Symanzik, K. (1971) “Small-distance behavior analysis and Wilson Expansions”CMP, 23: 49–86.Google Scholar
Symanzik, K. (1972) “On theories with massless particles” in Renormalization of Yang-Mills Fields and Applications to Particle Physics, Proceedings of Marseille Conference (June 19–23 1972, ed. Korthals-Altes, C. P.; Centre de Physique Theorique).Google Scholar
Symanzik, K. (1973) “Infrared singularities and small-distance-behavior analysis”CMP, 34: 7–36.Google Scholar
Taylor, J. C. (1958) “Beta decay of the pion”PR, 110: 1216.CrossRefGoogle Scholar
Taylor, J. C. (1971) “Ward identities and the Yang-Mills field”NP, B33: 436–444.Google Scholar
Taylor, R. E (1967) “Nucleon form factors above 6 GeV” in Proceedings of the 1967 International Symposium on Electron and Photon Interactions at High Energies (Stanford, September 5–9, 1967) (Printed by International Union of Pure and Applied Physics, US Atomic Energy Commission with a Foreword by Berman, S. M.) 78–101.Google Scholar
Taylor, R. E. (1968) “To: Program Coordinator” (July 26, 1968) Supplement No. 2 to SLAC Proposal 4-b.
Taylor, R. E (1975) “Inelastic electron-nucleon scattering” in Proceedings of the International Symposium on Lepton and Photon Interactions at High Energies, Stanford, 21–27 August 1975 (ed. Kirk, W. T.; SLAC) 679–708.Google Scholar
Taylor, R. (1991) “Deep inelastic scattering: the early years”RMP, 63: 573–595.CrossRefGoogle Scholar
‘t Hooft, G. (1971a) “Renormalization of massless Yang-Mills fields”NP, B33: 173–199.Google Scholar
‘t Hooft, G. (1971b) “Renormalizable Lagrangians for massive Yang-Mills fields”NP, B35: 167–188.Google Scholar
‘t Hooft, M. (1972) “Remarks after Symansik's presentation” in Renormalization of Yang-Mills Fields and Applications to Particle Physics, Proceedings of Marseille Conference (19–23 June 1972, ed. Korthals-Altes, C. P.; Marseille, Centre de Physique Theorique), CERN preprint Th. 1666, May, 1973.Google Scholar
‘t Hooft, G. (1974) “Magnetic monopoles in unified gauge theories”NP, B79: 276–284.Google Scholar
‘t Hooft, G. (1975) “Gauge theories with unified weak electromagnetic and strong interactions” in E. P. S. International Conference on High Energy Physics, Palermo, 23–28 June, 1975 (ed. Zichichi, A.; Editrice Compositori).Google Scholar
‘t Hooft, G. (1976a) “Symmetry breaking through Bell-Jackiw anomalies”PRL, 37: 8–11.CrossRefGoogle Scholar
‘t Hooft, G. (1976b) “Computation of the quantum effects due to a four-dimensional pseudoparticle”PR, D14: 3432–3450.Google Scholar
‘t Hooft, G. (1998) “The creation of quantum chromodynamics” in The Creation of Quantum Chromodynamics and the Effective Energy (ed. Lipatov, L. N.; World Scientific) 11–50.Google Scholar
‘t Hooft, and Veltman, M. (1972a) “Renormalization and regularization of gauge fields”NP, B44: 189–213.Google Scholar
‘t Hooft, and Veltman, M. (1972b) “Combinatorics of gauge fields”NP, B50: 318–353.Google Scholar
Toll, J. (1952) The dispersion relation for light and its application to problem involving electron pairs. Unpublished Ph. D. dissertation, Princeton University.Google Scholar
Toll, J. (1956) “Causality and the dispersion relation: logical foundations,”PR, 104: 1760–1770.CrossRefGoogle Scholar
Tomozawa, Y. (1966) “Axial-vector coupling constant renormalization and the meson-baryon scattering lengths”NC, A46: 707–717.Google Scholar
Tryon, E. P. (1972) “Dynamical parton model for hadrons”PRL, 28: 1605–1608.CrossRefGoogle Scholar
Umezawa, H. and Kamefuchi, S. (1961) “Equivalence theorems and renormalization problem in vector field theory (the Yang-Mills field with non-vanishing masses)”NP, 23: 399–429.Google Scholar
Utiyama, R. (1956) “Invariant theoretical interpretation of interaction”PR, 101: 1597–1607.CrossRefGoogle Scholar
Vainshtein, A. I. and Ioffe, B. L. (1967) “Test of Bjorken's asymptotic formula in perturbation theory”JETP Letter, 6: 341–343.Google Scholar
Valatin, J. G. (1954a) “Singularities of electron kernel functions in an external electromagnetic field”PRS, A222: 93–108.CrossRefGoogle Scholar
Valatin, J. G. (1954b) “On the Dirac-Heisenberg theory of vacuum polarization”PRS, A222: 228–239.CrossRefGoogle Scholar
Valatin, J. G. (1954c) “On the propagation functions of quantum electrodynamics”PRS, A225: 535–548.CrossRefGoogle Scholar
Valatin, J. G. (1954d) “On the definition of finite operator quantities in quantum electrodynamics”PRS, A226: 254–265.CrossRefGoogle Scholar
Fraassen, B. (1997) “Structure and perspective: philosophical perplexity and paradox” in Logic and Scientific Methods (eds. Dalla Chiara, M. L.et al.; Kluwer) 511–530.CrossRefGoogle Scholar
Vaughn, M. T., Aaron, R., and Amado, R. D. (1961) “Elementary and composite particles,”PR, 124: 1258–1268.CrossRefGoogle Scholar
Veltman, M. (1966) “Divergence conditions and sum rules”PRL, 17: 553–556.CrossRefGoogle Scholar
Veltman, M. (1967) “Theoretical aspects of high energy neutrino interactions”PRS, A301: 107–112.CrossRefGoogle Scholar
Veltman, M. (1968) “Perturbation theory of massive Yang-Mills fields”NP, B7: 637–650.Google Scholar
Veltman, M. (1970) “Generalized Ward identities and Yang-Mills fields”NP, B21: 288–302.Google Scholar
Veneziano, G. (1968) “Construction of a crossing-symmetric, Regge-behaved amplitude for linearly rising trajectories”NC, 57A: 190–197.Google Scholar
Veneziano, G. (1979) “U(1) without instantons”NP, B159: 213–224.Google Scholar
Veneziano, G. and Yankielowicz, S. (1982) “An effective Lagrangian for the pure N = 1 supersymmetric Yang-Mills theory”PL, 113B: 231.Google Scholar
Watkins, J. (1958) “Confirmable and influential metaphysics”Mind, 67: 345–365.Google Scholar
Watkins, J. (1975) “Metaphysics and the advancement of science”Brit. J. Philos. of Sci., 26: 91–121.CrossRefGoogle Scholar
Weinberg, S. (1966a) “Current commutator theory of multiple pion production”PRL, 16: 879–883.CrossRefGoogle Scholar
Weinberg, S. (1966b) “Current commutator calculation of the Kl4 form factors”PRL, 17: 336–340.CrossRefGoogle Scholar
Weinberg, S. (1966c) “Pion scattering lengths”PRL, 17: 616–621.CrossRefGoogle Scholar
Weinberg, S. (1967) “A model of leptons”PRL, 19: 1264–1266.CrossRefGoogle Scholar
Weinberg, S. (1978) “A new light boson?”PRL, 40: 223–226.CrossRefGoogle Scholar
Weisberger, W. (1965) “Renormalization of the weak axial-vector coupling Constant”PRL, 14: 1047–1055.CrossRefGoogle Scholar
Wess, J. (1960) “The conformal invariance in quantum field theory”NC, 13: 1086–1107.CrossRefGoogle Scholar
Widom, B. (1965a) “Surface tension and molecular correlations near the critical point”, J. Chem. Phys., 43: 3892–3897.CrossRefGoogle Scholar
Widom, B. (1965b) “Equation of state in the neighborhood of the critical point”J. Chem. Phys., 43: 3898–3905.CrossRefGoogle Scholar
Wiik, B. (1976) “Plenary report on new particle production in e+e− colliding beams” in Proceedings of the 18th International Conference on High Energy Physics, Tbilisi, USSR, July 1976 (eds. Bogoliubov, et al. USSR) II: N75–86.Google Scholar
Wiik, B. (1979) “First results from PETRA” in Proceedings of Neutrino 79 (Bergen, June 18–22, 1979; eds. Haatuft, A. and Jarlskog, C.) I: 113–154.Google Scholar
Wilczek, F. (1978) “Problem of strong P and T invariance in the presence of instantons”PRL, 40: 279–282.CrossRefGoogle Scholar
Wilson, K. G. (1969) “Non-Lagrangian models of current algebra”PR, 179: 1499–1512.CrossRefGoogle Scholar
Wilson, K. G. (1970a) “Model of coupling-constant renormalization”PR, D2: 1438–1472.Google Scholar
Wilson, K. G. (1970b) “Operator-product expansions and anomalous dimensions in the Thirring model”PR, D2: 1473–1477.Google Scholar
Wilson, K. G. (1970c) “Anomalous dimensions and the breakdown of scale invariance in perturbation theory”PR, D2: 1478–1493.Google Scholar
Wilson, K. G. (1971a) “The renormalization group and strong interactions”PR, D3: 1818–1846.Google Scholar
Wilson, K. G. (1971b) “Renormalization group and critical phenomena. I. Renormalization group and the Kadanof scaling picture”PR, B4: 3174–3183.Google Scholar
Wilson, K. G. (1971c) “Renormalization group and critical phenomena. II. Phase-space cell analysis of critical behavior”PR, B4: 3184–3205.Google Scholar
Wilson, K. G. (1972) “Renormalization of a scalar field in strong coupling”PR, D6: 419–426.Google Scholar
Wilson, K. G. (1974) “Confinement of quarks”PR, D10: 2445–2459.Google Scholar
Wilson, K. (2004) “The origins of lattice gauge theory”arXiv:hep-lat/0412043v2 NP, Proceedings Supplements B140: 3–19.Google Scholar
Witten, E (1979a) “Theta vacua in two-dimensional quantum chromodynamics”NC, A51: 325.Google Scholar
Witten, E (1979b) “Current algebra theorems for the U(1) ‘Goldstone boson’”NP, B156: 269.Google Scholar
Witten, E (1979c) “Dyons of charge e theta/2 pi”PL, B86: 283–287.Google Scholar
Worrall, J. (1989) “Structural realism: the best of both worlds?”Dialectica, 43: 99–124.CrossRefGoogle Scholar
Worral, J. (2007) Reason in Revolution: a Study of Theory-Change in Science (Oxford University Press).Google Scholar
Wu, C. S., Ambler, E., Hayward, R. W., Hoppes, D. D., and Hudson, R. P. (1957) “Experimental test of parity conservation in beta decay”PR, 105: 1413–1415.CrossRefGoogle Scholar
Wu, S. L. (1997) “Hadron jets and the discovery of the gluon” in The Rise of the Standard Model (eds. Hoddeson, L., Brown, L., Riordan, M., and Dresden, M.; Cambridge University Press) 600–621.CrossRefGoogle Scholar
Wu, S. L. and Zobernig, G. (1979) “A three-jet candidate (run 447, event 13177)”TASSO Note No. 84 (June 26, 1979).Google Scholar
Yang, C. N. (1983) Selected Papers, 1945–1980, with Commentary (Freeman).Google Scholar
Yang, C. N. and Mills, R. L. (1954a) “Isotopic spin conservation and a generalized gauge invariance”PR, 95: 631.Google Scholar
Yang, C. N. and Mills, R. L. (1954b) “Conservation of isotopic spin and isotopic gauge invariance”PR, 96: 191–195.CrossRefGoogle Scholar
Yoh, J. (1997) “The discovery of the b quark at Fermilab in 1977: The experiment Coordinator's story” Fermilab preprint: Fermilab-Conf. 97/432-E (E288).
Yukawa, H. (1935) “On the interaction of elementary particles, I.”Proc. Phys.-Math. Soc. (Japan), 17: 48–57.Google Scholar
Zachariasen, F. and Zemech, C. (1962): “Pion resonances”PR, 128: 849–858.CrossRefGoogle Scholar
Zahar, E. (1996) “'Poincaré's structural Realism and his logic of Discovery” in Henri Poincaré: Science and Philosophy (eds. Greffe, J., Heinzmann, G., and Lorenz, K.; Academie Verlag) 45–68.Google Scholar
Zahar, E. (2001) Poincare's Philosophy: From Conventionalism to Phenomenology (Open Court).Google Scholar
Zee, A. (1973) “Study of renormalization group for small coupling constants”PR, D7: 3630–3636.Google Scholar
Zichichi, A.et al. (1977) “Search for fractionally charged particles produced in proton-proton collisions at the highest ISR energy”NC, 40A: 41.Google Scholar
Zichichi, A.et al. (1978) “Search for quarks in proton-proton interactions at √s = 52.5 Gev”NC, 45A: 171.Google Scholar
Zimmermann, W. (1958) “On the bound state problem in quantum field theory,”NC, 10: 597–614.CrossRefGoogle Scholar
Zimmermann, W. (1967) “Local field equation for A4-coupling in renormalized perturbation theory”CMP, 6: 161–188.Google Scholar
Zumino, B. (1973) “Relativistic strings and supergauges” CERN Preprint TH-1779.
Zweig, G. (1964a) “An SU3 model for strong interaction symmtry and its breaking: I and II”, CERN preprint TH-401 (January 17 1964) and TH-412 (February 21, 1964).
Zweig, G. (1964b) “Fractionally charged particles and SU(6)” in Symmetries in Elementary Particle Physics (ed. Zichichi, A.; Academic Press) 192–243.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Tian Yu Cao, Boston University
  • Book: From Current Algebra to Quantum Chromodynamics
  • Online publication: 06 December 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511781759.012
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Tian Yu Cao, Boston University
  • Book: From Current Algebra to Quantum Chromodynamics
  • Online publication: 06 December 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511781759.012
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Tian Yu Cao, Boston University
  • Book: From Current Algebra to Quantum Chromodynamics
  • Online publication: 06 December 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511781759.012
Available formats
×