Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-2lccl Total loading time: 0 Render date: 2024-04-26T02:56:51.418Z Has data issue: false hasContentIssue false

12 - Deep Carbon

Cycles, Reservoirs and Fluxes

Published online by Cambridge University Press:  19 December 2020

Simon Mitton
Affiliation:
University of Cambridge
Get access

Summary

This chapter completes the story of the acceptance of plate tectonics, which marks the beginning of the modern period of Earth system science. This final approval required additional contributions by several researchers, with the key papers being published in 1968. Jason Morgan’s work on crustal blocks, of which he had given an impromptu preview at the American Geophysical Union in April 1967, proposed that on Earth’s dynamic surface 20 crustal blocks move relative to each other, endlessly jostling for their place in the jigsaw. Simultaneously, Xavier Le Pichon, a young French geophysicist who worked with the Ewing brothers at Lamont Geological Observatory from 1963 to 1989, connected the kinematic ideas of Morgan, McKenzie and Parker to the vast data sets held at Lamont, particularly the magnetic profiles. Le Pichon’s computer model demonstrated that the motion of six large rigid blocks completed a jigsaw that covered most of Earth and could accurately account for the evolution of ocean basins. His model of June 1968 indicated that plates do indeed form an integrated system in which the sum of all crust generated along 50,000 kilometres of ocean ridges equals the cumulative amount destroyed in the subduction zones.1

Type
Chapter
Information
From Crust to Core
A Chronicle of Deep Carbon Science
, pp. 234 - 260
Publisher: Cambridge University Press
Print publication year: 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Le Pichon, X. Sea-floor spreading and continental drift. Journal of Geophysical Research 73, 36613697 (1968).Google Scholar
Isacks, B. L., Oliver, J. and Sykes, L. R. Seismology and the new global tectonics. Journal of Geophysical Research 73, 58555899 (1968).CrossRefGoogle Scholar
Coltice, N., Gérault, M. and Ulvrová, M. A mantle convection perspective on global tectonics. Earth Science Reviews 165, 120150 (2017).CrossRefGoogle Scholar
Perry, M. Narrative of the Expedition of an American Squadron to the China Seas and Japan 1852–1854. Hawks, F. L. (ed.) (Congress of the United States, 1856).Google Scholar
Dickinson, W. R. The coming of plate tectonics to the Pacific Rim. An essay in Oreskes, Naomi Plate Tectonics: An Insider’s History of the Modern Theory of the Earth (Westview Press, 2011), pp. 264–287.CrossRefGoogle Scholar
Galvez, M. E. and Gaillardet, J. Historical constraints on the origins of the carbon cycle concept. Comptes Rendus Geoscience 344, 549567 (2012).CrossRefGoogle Scholar
Encyclopedia.com. Spallanzani, Lazzaro. Complete Dictionary of Scientific Biography. Available at: www.encyclopedia.com/people/science-and-technology/biology-biographies/lazzaro-spallanzani (accessed April 22, 2019).Google Scholar
Spallanzani, L. Voyages dans les Deux Siciles et dans quelque parties des Appenines. 3 (H. Haller, 1796).Google Scholar
Spallanzani, L. Observations faites dans l’ile de Cythère en 1785. Journal de Physique, de Chimie, d’Histoire Naturelle et des Arts 47, 278283 (1798).Google Scholar
Wedgwood, J. XIX. An attempt to make a thermometer for measuring the higher degrees of heat, from a red heat up to the strongest that vessels made of clay can support. Philosophical Transactions of the Royal Society of London 72, 305326 (1782).Google Scholar
Davy, H. An essay on the generation of phosoxygen and on the causes of the colours of organic beings. In Contributions to Physical and Medical Knowledge, Principally from the West of England. Longman, T. N. (ed.) (Thomas Beddoes, 1799), pp. 95120.Google Scholar
De Saussure, N. T. Recherches chimiques sur la vegetation (Vanyon, 1804).Google Scholar
Boussingault, J. B. Recherches chimiques sur la nature des fluids élastiques qui se dégagent des volcans de l’équateur. Annales de chimie et de physique 52, 181189 (1832).Google Scholar
Boussingault, J. B. Recherches sur la composition de l’atmosphere. Annales de chimie et de physique 57, 148182 (1834).Google Scholar
Bischof, G. Lehrbuch der Chemischen und Physikalischen Geologie (Adolph Marcus, 1847).CrossRefGoogle Scholar
Ébelmen, J. J. Sur les produits de la décomposition des espèces minerals de la famille de silicates. Annales des Mines 7, 366 (1845).Google Scholar
Ébelmen, J. J. Sur la décomposition des roches. Annales des Mines 12, 627654 (1847).Google Scholar
Ébelmen, J. J. Recherches sur la décomposition des roches. Comptes Rendus de l’Académie des Sciences 26, 3841 (1848).Google Scholar
Hunt, T. S. On the Earth’s climate in Paleozoic times. American Journal of Science and Arts 36, 396398 (1863).CrossRefGoogle Scholar
Hunt, T. S. The chemical and geological relations of the atmosphere. American Journal of Science 19, 349363 (1880).Google Scholar
Högbom, A. G. On the probability of secular variations in atmospheric carbon dioxide. Svensk Kimisk Tidskrift 6, 169176 (1894).Google Scholar
Arrhenius, S. On the influence of carbonic acid in the air upon the temperature of the ground. Philosophical Magazine and Journal of Science 41, 237276 (1896).CrossRefGoogle Scholar
Chamberlin, T. C. An attempt to frame a working hypothesis of the cause of glacial periods on an atmospheric basis. Journal of Geology 7, 545584 (1899).CrossRefGoogle Scholar
Berner, R. A. and Högbom, A. G. Högbom and the development of the concept of the geochemical carbon cycle. American Journal of Science 295, 491495 (1995).Google Scholar
Harmon, C. The geochemistry of the stable carbon isotopes. Geochimica et Cosmochimica Acta 3, 5392 (1953).Google Scholar
Urey, H. C. On the chemical history of the earth and the origin of life. Proceedings of the National Academy of Science 38, 351363 (1952).CrossRefGoogle ScholarPubMed
Berner, R. A. and Maasch, K. A. Chemical weathering and controls on atmospheric O2 and CO2. Geochimica et Cosmochimica Acta 60, 16331637 (1996).Google Scholar
Berner, R. A. Jacques-Joseph Ébelmen, the founder of earth system science. Comptes Rendus Geoscience 344, 544548 (2012).Google Scholar
Libby, W. F. Atmospheric helium three and radiocarbon from cosmic radiation. Physical Review 69, 671 (1946).Google Scholar
Anderson, E. C. et al. Natural radiocarbon from cosmic radiation. Physical Review 72, 931 (1947).Google Scholar
Harmon, C. The natural distribution of radiocarbon and the exchange time of carbon dioxide between atmosphere and sea. Tellus 9, 117 (1957).Google Scholar
Revelle, R. and Suess, H. E. Carbon dioxide exchange between atmosphere and ocean and the question of an increase of atmospheric CO2 during the past decades. Tellus 9, 1827 (1957).CrossRefGoogle Scholar
Berner, R. A., Lasaga, A. C. and Garrels, R. M. The carbonate–silicate geochemical cycle and its effect on atmospheric carbon dioxide over the past 100 million years. American Journal of Science 283, 641685 (1983).CrossRefGoogle Scholar
Berner, R. A. and Lasaga, A. C. Modelling the geochemical carbon cycle. Scientific American 260, 7481 (1989).CrossRefGoogle Scholar
Berner, R. A. The Phanerozoic Carbon Cycle (Oxford University Press, 2004).CrossRefGoogle Scholar
Berner, R. A. Atmospheric carbon dioxide levels over Phanerozoic time. Science 249, 13821386 (1990).CrossRefGoogle ScholarPubMed
Berner, R. A. The long-term carbon cycle, fossil fuels and atmospheric composition. Nature 426, 323326 (2003).Google Scholar
Kellogg, L. H., Turcotte, D. L. and Lokavarapu, H. V. A box model for the transport of carbon between major carbon reservoirs over geologic time. In American Geophysical Union, Fall Meeting 2018 Abstracts (American Geophysical Union, 2018), Abstract DI33B-0034.Google Scholar
Manning, C. E. A piece of the deep carbon puzzle. Nature Geoscience 7, 333334 (2014).CrossRefGoogle Scholar
Kelemen, P. B. and Manning, C. E. Reevaluating carbon fluxes in subduction zones, what goes down, mostly comes up. Proceedings of the National Academy of Science 112, E3997E4006 (2015).Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Deep Carbon
  • Simon Mitton, University of Cambridge
  • Book: From Crust to Core
  • Online publication: 19 December 2020
  • Chapter DOI: https://doi.org/10.1017/9781316997475.014
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Deep Carbon
  • Simon Mitton, University of Cambridge
  • Book: From Crust to Core
  • Online publication: 19 December 2020
  • Chapter DOI: https://doi.org/10.1017/9781316997475.014
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Deep Carbon
  • Simon Mitton, University of Cambridge
  • Book: From Crust to Core
  • Online publication: 19 December 2020
  • Chapter DOI: https://doi.org/10.1017/9781316997475.014
Available formats
×