Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-xfwgj Total loading time: 0 Render date: 2024-06-22T19:05:48.424Z Has data issue: false hasContentIssue false

Chapter 1 - Language as a Physical Tool

from Part I - Language and Its Power

Published online by Cambridge University Press:  20 July 2023

Anna M. Borghi
Affiliation:
University of Rome
Get access

Summary

This chapter shows that language works as a physical tool by impacting how we perceive our body (interoception) and how we perceive and interact with the external world (perception and action). First, I contend that language might help us detect bodily inner signals and states . Then, I show that language recruits object affordances, the opportunities to act objects offer us, but that it does so in its own distinctive way. Language exploits previously originated structures and mechanisms, those of the motor system, but uses them flexibly. Consistent with this, I show that language shapes perception and object manipulation, extends the space we perceive as near, and modulates our perception of objects in space. Finally, using an example of the concept of color, I suggest that not only the faculty of language but also the different languages we use, through spoken words or signs, shape our world differently.

Type
Chapter
Information
The Freedom of Words
Abstractness and the Power of Language
, pp. 15 - 51
Publisher: Cambridge University Press
Print publication year: 2023

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agrillo, C., & Roberson, D. (2009). Colour language and colour cognition: Brown and Lenneberg revisited. Visual Cognition, 17(3), 412430. https://doi.org/10.1080/13506280802049247Google Scholar
Ambrosini, E., Scorolli, C., Borghi, A. M., & Costantini, M. (2012). Which body for embodied cognition? Affordance and language within actual and perceived reaching space. Consciousness and Cognition, 21(3), 15511557. https://doi.org/10.1016/j.concog.2012.06.010CrossRefGoogle ScholarPubMed
Anderson, M. L. (2010). Neural reuse: A fundamental organizational principle of the brain. The Behavioral and Brain Sciences, 33(4), 245266; discussion 266–313. https://doi.org/10.1017/S0140525X10000853Google Scholar
Anderson, M. L. (2014). After phrenology: Neural reuse and the interactive brain. MIT Press.CrossRefGoogle Scholar
Ardizzi, M., Ambrosecchia, M., Buratta, L., Ferri, F., Peciccia, M., Donnari, S., ... Gallese, V. (2016). Interoception and positive symptoms in schizophrenia. Frontiers in Human Neuroscience, 10, 379.CrossRefGoogle ScholarPubMed
Athanasopoulos, P., & Bylund, E. (2021). Whorf in the wild: Naturalistic evidence from human interaction. Applied Linguistics, 41(6), 947970. https://doi.org/10.1093/APPLIN/AMZ050CrossRefGoogle Scholar
Athanasopoulos, P., Bylund, E., & Casasanto, D. (2016). Introduction to the Special Issue: New and interdisciplinary approaches to linguistic relativity. Language Learning, 66(3), 482486. https://doi.org/10.1111/lang.12196Google Scholar
Barrett, L. F., Wilson-Mendenhall, C. D., & Barsalou, L. W. (2015). The conceptual act theory: A roadmap. Barrett, In L. F. & Russell, J. A., eds., The psychological construction of emotion. The Guilford Press, pp. 83110.Google Scholar
Batisti, F. (2021). An argument for languages in languaging. Rivista Italiana di Filosofia del Linguaggio, 15(2), 159175.Google Scholar
Berlin, B., & Kay, P. (1969). Basic color terms: Their universality and evolution. University of California Press.Google Scholar
Binkofski, F., & Buxbaum, L. J. (2013). Two action systems in the human brain. Brain and Language, 127(2), 222229.Google Scholar
Blasi, D. E., Henrich, J., Adamou, E., Kemmerer, D., & Majid, A. (2022). Over-reliance on English hinders cognitive science. Trends in Cognitive Sciences. https://doi.org/10.1016/j.tics.2022.09.015Google Scholar
Bonfiglioli, C., Finocchiaro, C., Gesierich, B., Rositani, F., & Vescovi, M. (2009). A kinematic approach to the conceptual representations of this and that. Cognition, 111(2), 270274. https://doi.org/10.1016/j.cognition.2009.01.006Google Scholar
Bonnardel, V. (2006). Color naming and categorization in inherited color vision deficiencies. Visual Neuroscience, 23(3–4), 637643. https://doi.org/10.1017/S0952523806233558Google Scholar
Borghi, A. M. (2012). Language comprehension: Action, affordances and goals. In Coello, Y., & Bartolo, A., eds., Language and action in cognitive neuroscience. Psychology Press, pp. 143162.Google Scholar
Borghi, A. M. (2016). Commentary: Weighty data: Importance information influences estimated weight of digital information storage devices. Frontiers in Psychology, 7, 709. https://doi.org/10.3389/fpsyg.2016.00709Google Scholar
Borghi, A. M. (2018). Affordances, context and sociality. Synthese. https://doi.org/10.1007/s11229–018-02044-1CrossRefGoogle Scholar
Borghi, A. M., & Cimatti, F. (2010). Embodied cognition and beyond: Acting and sensing the body. Neuropsychologia, 48(3), 763773.Google Scholar
Borghi, A. M., Flumini, A., Natraj, N., & Wheaton, L. A. (2012). One hand, two objects: Emergence of affordance in contexts. Brain and Cognition, 80(1), 6473. https://doi.org/10.1016/j.bandc.2012.04.007Google Scholar
Borghi, A. M., & Riggio, L. (2009). Sentence comprehension and simulation of object temporary, canonical and stable affordances. Brain Research, 1253, 117128. https://doi.org/10.1016/j.brainres.2008.11.064Google Scholar
Borghi, A. M., & Riggio, L. (2015). Stable and variable affordances are both automatic and flexible. Frontiers in Human Neuroscience, 9, 351. https://doi.org/10.3389/fnhum.2015.00351CrossRefGoogle ScholarPubMed
Borghi, A. M., Scorolli, C., Caligiore, D., Baldassarre, G., & Tummolini, L. (2013). The embodied mind extended: Using words as social tools. Frontiers in Psychology, 4, 214. https://doi.org/10.3389/fpsyg.2013.00214Google Scholar
Brewer, R., Cook, R., & Bird, G. (2016). Alexithymia: A general deficit of interoception. Royal Society Open Science, 3(10), 150664.Google Scholar
Brouwer, A.-M., Georgiou, I., Glover, S., & Castiello, U. (2006). Adjusting reach to lift movements to sudden visible changes in target’s weight. Experimental Brain Research, 173(4), 629636.CrossRefGoogle ScholarPubMed
Bub, D. N., Masson, M. E., & Cree, G. S. (2008). Evocation of functional and volumetric gestural knowledge by objects and words. Cognition, 106(1), 2758.Google Scholar
Bub, D. N., Masson, M. E., & Kumar, R. (2018). Time course of motor affordances evoked by pictured objects and words. Journal of Experimental Psychology: Human Perception and Performance, 44(1), 53.Google Scholar
Caldano, M., & Coventry, K. R. (2019). Spatial demonstratives and perceptual space: To reach or not to reach? Cognition, 191, 103989.Google Scholar
Calvino, I. (2012). Lezioni americane. Edizioni Mondadori.Google Scholar
Cardinali, L., Frassinetti, F., Brozzoli, C., Urquizar, C., Roy, A. C., & Farnè, A. (2009). Tool-use induces morphological updating of the body schema. Current Biology, 19(12), R478R479. https://doi.org/10.1016/j.cub.2009.05.009Google Scholar
Carlson, L. E., & van der Zee, E. E. (2005). Functional features in language and space: Insights from perception, categorization, and development. Oxford University Press.Google Scholar
Cattaneo, L. (2010). Tuning of ventral premotor cortex neurons to distinct observed grasp types: A TMS-priming study. Experimental Brain Research, 207(3), 165172.Google Scholar
Chemero, A. (2003). An outline of a theory of affordances. Ecological Psychology, 15(2), 181195.Google Scholar
Chemero, A. (2011). Radical embodied cognitive science. MIT Press.Google Scholar
Cisek, P. (2007). Cortical mechanisms of action selection: The affordance competition hypothesis. Philosophical Transactions of the Royal Society B: Biological Sciences, 362(1485), 15851599.CrossRefGoogle ScholarPubMed
Clark, A. (2013). Are we predictive engines? Perils, prospects, and the puzzle of the porous perceiver. The Behavioral and Brain Sciences, 36(3), 233253.Google Scholar
Clark, A., & Toribio, J. (2012). Magic words: How language augments human computation. In Clark, A., & Toribio, J., eds., Language and Meaning in Cognitive Science. Routledge, pp. 3351.Google Scholar
Clore, G. L., & Proffitt, D. R. (2016). The myth of pure perception. Behavioral and Brain Sciences, 39(1), e235.Google Scholar
Costantini, M., Ambrosini, E., Scorolli, C., & Borghi, A. M. (2011). When objects are close to me: Affordances in the peripersonal space. Psychonomic Bulletin & Review, 18(2), 302308. https://doi.org/10.3758/s13423–011-0054-4Google Scholar
Coventry, K. R., & Garrod, S. C. (2004). Saying, seeing and acting: The psychological semantics of spatial prepositions. Psychology Press.Google Scholar
Cowley, S. J. (2019). Languaging evolved: Chinese Semiotic Studies, 15(4), 461482.Google Scholar
Davidoff, J., Davies, I., & Roberson, D. (1999). Colour categories in a stone-age tribe. Nature, 398(6724), 203204.Google Scholar
Di Paolo, E. A., Cuffari, E. C., & De Jaegher, H. (2018). Linguistic bodies: The continuity between life and language. MIT Press.Google Scholar
Diessel, H., & Coventry, K. R. (2020). Demonstratives in spatial language and social interaction: An interdisciplinary review. Frontiers in Psychology, 11. https://www.frontiersin.org/article/10.3389/fpsyg.2020.555265Google Scholar
Dils, A. T., & Boroditsky, L. (2010). Processing unrelated language can change what you see. Psychonomic Bulletin & Review, 17(6), 882888. https://doi.org/10.3758/PBR.17.6.882Google Scholar
Dove, G. (2020). More than a scaffold: Language is a neuroenhancement. Cognitive neuropsychology, 37(5–6), 288311.Google Scholar
Ehrsson, H. H., Fagergren, A., Jonsson, T., Westling, G., Johansson, R. S., & Forssberg, H. (2000). Cortical activity in precision-versus power-grip tasks: An fMRI study. Journal of Neurophysiology, 83(1), 528536.Google Scholar
Ellis, R. (2018). Bodies and other objects: The sensorimotor foundations of cognition. Cambridge University Press.Google Scholar
Farnè, A., Iriki, A., & Làdavas, E. (2005). Shaping multisensory action–space with tools: Evidence from patients with cross-modal extinction. Neuropsychologia, 43(2), 238248.Google Scholar
Ferretti, G. (2021). Visual phenomenology versus visuomotor imagery: How can we be aware of action properties? Synthese, 198(4), 33093338.Google Scholar
Flumini, A., Barca, L., Borghi, A. M., & Pezzulo, G. (2015). How do you hold your mouse? Tracking the compatibility effect between hand posture and stimulus size. Psychological Research, 79(6), 928938. https://doi.org/10.1007/s00426–014-0622-0Google Scholar
Foerster, F. R., Borghi, A. M., & Goslin, J. (2020). Labels strengthen motor learning of new tools. Cortex, 129, 110.Google Scholar
Forder, L., & Lupyan, G. (2019). Hearing words changes color perception: Facilitation of color discrimination by verbal and visual cues. Journal of Experimental Psychology: General, 148(7), 11051123. https://doi.org/10.1037/xge0000560Google Scholar
Franklin, A., Drivonikou, G. V., Bevis, L., Davies, I. R., Kay, P., & Regier, T. (2008). Categorical perception of color is lateralized to the right hemisphere in infants, but to the left hemisphere in adults. Proceedings of the National Academy of Sciences, 105(9), 32213225.CrossRefGoogle Scholar
Fugate, J. M., & Wilson-Mendenhall, C. D. (2022 ). Embodied emotion, emotional granularity, and mindfulness: Improved learning in the classroom. In Macrine, S. L., and Fugate, J. M. B. (eds.). Movement Matters: How Embodied Cognition Informs Teaching and Learning. MIT Press, ch. 18. https://doi.org/10.7551/mitpress/13593.003.0027Google Scholar
Gallese, V. (2008). Mirror neurons and the social nature of language: The neural exploitation hypothesis. Social Neuroscience, 3(3–4), 317333. https://doi.org/10.1080/17470910701563608CrossRefGoogle ScholarPubMed
Garfinkel, S. N., Seth, A. K., Barrett, A. B., Suzuki, K., & Critchley, H. D. (2015). Knowing your own heart: Distinguishing interoceptive accuracy from interoceptive awareness. Biological Psychology, 104, 6574.Google Scholar
Garofalo, G., Marino, B. F., Bellelli, S., & Riggio, L. (2021). Adjectives modulate sensorimotor activation driven by nouns. Cognitive Science, 45(3), e12953.Google Scholar
Garofalo, G., & Riggio, L. (2022). Influence of colour on object motor representation. Neuropsychologia, 164, 108103.Google Scholar
Gentilucci, M., Benuzzi, F., Bertolani, L., Daprati, E., & Gangitano, M. (2000). Language and motor control. Experimental Brain Research, 133(4), 468490. https://doi.org/10.1007/s002210000431Google Scholar
Gerlach, C., Law, I., & Paulson, O. B. (2002). When action turns into words. Activation of motor-based knowledge during categorization of manipulable objects. Journal of Cognitive Neuroscience, 14(8), 12301239.Google Scholar
Geurts, K. (2003). Culture and the senses. University of California Press.Google Scholar
Gibson, J. J. (1966). The senses considered as perceptual systems. Houghton Mifflin.Google Scholar
Gibson, J. J. (1979). The ecological approach to visual perception. Psychology Press.Google Scholar
Gilbert, A. L., Regier, T., Kay, P., & Ivry, R. B. (2006). Whorf hypothesis is supported in the right visual field but not the left. Proceedings of the National Academy of Sciences, 103(2), 489494.Google Scholar
Glenberg, A. M. (1997). What memory is for. Behavioral and brain sciences, 20(1), 119.Google Scholar
Glenberg, A. M., & Robertson, D. A. (2000). Symbol grounding and meaning: A comparison of high-dimensional and embodied theories of meaning. Journal of Memory and Language, 43(3), 379401.Google Scholar
Glover, S., & Dixon, P. (2002). Semantics affect the planning but not control of grasping. Experimental Brain Research, 146(3), 383387.Google Scholar
Glover, S., Rosenbaum, D. A., Graham, J., & Dixon, P. (2004). Grasping the meaning of words. Experimental Brain Research, 154(1), 103108. https://doi.org/10.1007/s00221–003-1659-2Google Scholar
Goldstone, R. L., & Hendrickson, A. T. (2010). Categorical perception. WIREs Cognitive Science, 1(1), 6978. https://doi.org/10.1002/wcs.26Google Scholar
González-Peña, P., Coventry, K. R., Bayliss, A. P., & Doherty, M. J. (2022). The extended development of mapping spatial demonstratives onto space. Journal of Experimental Child Psychology, 215, 105336. https://doi.org/10.1016/j.jecp.2021.105336Google Scholar
Gough, P. M., Riggio, L., Chersi, F., Sato, M., Fogassi, L., & Buccino, G. (2012). Nouns referring to tools and natural objects differentially modulate the motor system. Neuropsychologia, 50(1), 1925. https://doi.org/10.1016/j.neuropsychologia.2011.10.017CrossRefGoogle ScholarPubMed
Gudde, H. B., Coventry, K. R., & Engelhardt, P. E. (2016). Language and memory for object location. Cognition, 153, 99107.CrossRefGoogle ScholarPubMed
Hatfield, T. R., Brown, R. F., Giummarra, M. J., & Lenggenhager, B. (2019). Autism spectrum disorder and interoception: Abnormalities in global integration? Autism, 23(1), 212222. https://doi.org/10.1177/1362361317738392Google Scholar
Heider, E. R. (1972). Universals in color naming and memory. Journal of Experimental Psychology, 93(1), 1020. https://doi.org/10.1037/h0032606Google Scholar
Hobson, H., Hogeveen, J., Brewer, R., Catmur, C., Gordon, B., Krueger, F., ... Grafman, J. (2018). Language and alexithymia: Evidence for the role of the inferior frontal gyrus in acquired alexithymia. Neuropsychologia, 111, 229240.CrossRefGoogle ScholarPubMed
Hurley, S. L. (1998). Consciousness in action. Harvard University Press.Google Scholar
Jax, S. A., & Buxbaum, L. J. (2010). Response interference between functional and structural actions linked to the same familiar object. Cognition, 115(2), 350355.Google Scholar
Jenmalm, P., Schmitz, C., Forssberg, H., & Ehrsson, H. H. (2006). Lighter or heavier than predicted: Neural correlates of corrective mechanisms during erroneously programmed lifts. Journal of Neuroscience, 26(35), 90159021.Google Scholar
Jonauskaite, D., Camenzind, L., Parraga, C. A., Diouf, C. N., Ducommun, M. M., Müller, , … Mohr, C. (2021). Colour-emotion associations in individuals with red-green colour blindness. PeerJ, 9, e11180.Google Scholar
Kalénine, S., Shapiro, A. D., Flumini, A., Borghi, A. M., & Buxbaum, L. J. (2014). Visual context modulates potentiation of grasp types during semantic object categorization. Psychonomic Bulletin & Review, 21(3), 645651. https://doi.org/10.3758/s13423–013-0536-7Google Scholar
Kay, P., & Regier, T. (2007). Color naming universals: The case of Berinmo. Cognition, 102(2), 289298. https://doi.org/10.1016/j.cognition.2005.12.008Google Scholar
Kemmerer, D. (2019). Concepts in the brain: The view from cross-linguistic diversity. Oxford University Press.Google Scholar
Kidd, D. C., & Castano, E. (2013). Reading literary fiction improves theory of mind. Science, 342(6156), 377380. https://doi.org/10.1126/science.1239918Google Scholar
Kidd, D., & Castano, E. (2019). Reading literary fiction and theory of mind: Three preregistered replications and extensions of Kidd and Castano (2013). Social Psychological and Personality Science, 10(4), 522531.Google Scholar
Kiverstein, J., & Rietveld, E. (2021). Scaling-up skilled intentionality to linguistic thought. Synthese, 198(1), 175194.Google Scholar
Kiverstein, J., Van Dijk, L., & Rietveld, E. (2021). The field and landscape of affordances: Koffka’s two environments revisited. Synthese, 198(9), 22792296.Google Scholar
Kundera, M. (2020). The unbearable lightness of being. Faber & Faber.Google Scholar
Lalumera, E. (2014). Whorfian effects in color perception: Deep or shallow? The Baltic International Yearbook of Cognition, Logic and Communication, 9(1), 113.Google Scholar
Liberman, A. M., Harris, K. S., Hoffman, H. S., & Griffith, B. C. (1957). The discrimination of speech sounds within and across phoneme boundaries. Journal of Experimental Psychology, 54(5), 358.Google Scholar
Lindsey, D. T., & Brown, A. M. (2006). Universality of color names. Proceedings of the National Academy of Sciences, 103(44), 1660816613. https://doi.org/10.1073/pnas.0607708103Google Scholar
Lindsey, D. T., Brown, A. M., Brainard, D. H., & Apicella, C. L. (2015). Hunter-gatherer color naming provides new insight into the evolution of color terms. Current Biology, 25(18), 24412446.Google Scholar
Lupyan, G. (2015). Cognitive penetrability of perception in the age of prediction: Predictive systems are penetrable systems. Review of Philosophy and Psychology, 6(4), 547569.Google Scholar
Lupyan, G., & Bergen, B. (2016). How language programs the mind. Topics in Cognitive Science, 8(2), 408424. https://doi.org/10.1111/tops.12155Google Scholar
Lupyan, G., & Clark, A. (2015). Words and the world: Predictive coding and the language-perception-cognition interface. Current Directions in Psychological Science, 24(4), 279284.Google Scholar
Lupyan, G., Rahman, R. A., Boroditsky, L., & Clark, A. (2020). Effects of language on visual perception. Trends In Cognitive Sciences, 24(11), 930944.Google Scholar
Mahon, B. Z., & Kemmerer, D. (2020). Interactions between language, thought, and perception: Cognitive and neural perspectives. Cognitive Neuropsychology, 37(5–6), 235240.Google Scholar
Ma-Kellams, C. (2014). Cross-cultural differences in somatic awareness and interoceptive accuracy: A review of the literature and directions for future research. Frontiers in Psychology, 5, 1379.Google Scholar
Maravita, A., & Iriki, A. (2004). Tools for the body (schema). Trends in Cognitive Sciences, 8(2), 7986.Google Scholar
Marino, B. F., Sirianni, M., Volta, R. D., Magliocco, F., Silipo, F., Quattrone, A., & Buccino, G. (2014). Viewing photos and reading nouns of natural graspable objects similarly modulate motor responses. Frontiers in Human Neuroscience, 8, 968.Google Scholar
Mehling, W. E., Acree, M., Stewart, A., Silas, J., & Jones, A. (2018). The multidimensional assessment of interoceptive awareness, version 2 (MAIA-2). PLoS ONE, 13(12), e0208034.Google Scholar
Mirolli, M., & Parisi, D. (2011). Towards a Vygotskyan cognitive robotics: The role of language as a cognitive tool. New Ideas in Psychology, 29(3), 298311. https://doi.org/10.1016/j.newideapsych.2009.07.001Google Scholar
Mohr, C., Jonauskaite, D., Dan-Glauser, E. S., Uusküla, M., & Dael, N. (2018). Unifying research on colour and emotion. Progress in Colour Studies: Cognition, Language and Beyond, 209.Google Scholar
Moreira, H., Lillo, J., & Álvaro, L. (2021). “Red-green” or “brown-green” dichromats? The accuracy of dichromat basic color terms metacognition supports denomination change. Frontiers in Psychology, 12. https://www.frontiersin.org/article/10.3389/fpsyg.2021.624792Google Scholar
Morlino, G., Gianelli, C., Borghi, A. M., & Nolfi, S. (2015). Learning to manipulate and categorize in human and artificial agents. Cognitive Science, 39(1), 3964. https://doi.org/10.1111/cogs.12130Google Scholar
Myung, J., Blumstein, S. E., & Sedivy, J. C. (2006). Playing on the typewriter, typing on the piano: Manipulation knowledge of objects. Cognition, 98(3), 223243.Google Scholar
Peeters, D., Hagoort, P., & Özyürek, A. (2015). Electrophysiological evidence for the role of shared space in online comprehension of spatial demonstratives. Cognition, 136, 6484. https://doi.org/10.1016/j.cognition.2014.10.010Google Scholar
Proctor, R. W., & Miles, J. D. (2014). Does the concept of affordance add anything to explanations of stimulus–response compatibility effects? In Ross, B. H., ed., Psychology of learning and motivation, vol. 60. Elsevier, pp. 227266.Google Scholar
Pylyshyn, Z. (1999). Is vision continuous with cognition?: The case for cognitive impenetrability of visual perception. Behavioral and Brain Sciences, 22(3), 341365.Google Scholar
Regier, T., & Kay, P. (2009). Language, thought, and color: Whorf was half right. Trends in Cognitive Sciences, 13(10), 439446. https://doi.org/10.1016/j.tics.2009.07.001Google Scholar
Regier, T., Kay, P., & Cook, R. S. (2005). Focal colors are universal after all. Proceedings of the National Academy of Sciences, 102(23), 83868391.Google Scholar
Rietveld, E., & Kiverstein, J. (2014). A rich landscape of affordances. Ecological Psychology, 26(4), 325352.Google Scholar
Roberson, D., Davidoff, J., Davies, I. R., & Shapiro, L. R. (2005). Color categories: Evidence for the cultural relativity hypothesis. Cognitive Psychology, 50(4), 378411.Google Scholar
Roberson, D., Davies, I., & Davidoff, J. (2000). Color categories are not universal: Replications and new evidence from a stone-age culture. Journal of Experimental Psychology: General, 129(3), 369398. https://doi.org/10.1037/0096-3445.129.3.369Google Scholar
Roberson, D., & Hanley, J. R. (2009). Only half right: Comment on Regier and Kay. Trends in Cognitive Sciences, 13(12), 500501. https://doi.org/10.1016/j.tics.2009.10.004Google Scholar
Rocca, R., Tylén, K., & Wallentin, M. (2019). This shoe, that tiger: Semantic properties reflecting manual affordances of the referent modulate demonstrative use. PLoS ONE, 14(1), e0210333.Google Scholar
Rueschemeyer, S.-A., van Rooij, D., Lindemann, O., Willems, R. M., & Bekkering, H. (2010). The function of words: Distinct neural correlates for words denoting differently manipulable objects. Journal of Cognitive Neuroscience, 22(8), 18441851.Google Scholar
Saccuman, M. C., Cappa, S. F., Bates, E. A., Arevalo, A., Della Rosa, P., Danna, M., & Perani, D. (2006). The impact of semantic reference on word class: An fMRI study of action and object naming. NeuroImage, 32(4), 18651878. https://doi.org/10.1016/j.neuroimage.2006.04.179Google Scholar
Sakreida, K., Effnert, I., Thill, S., Menz, M. M., Jirak, D., Eickhoff, C. R., Ziemke, T., Eickhoff, S. B., Borghi, A. M., & Binkofski, F. (2016). Affordance processing in segregated parieto-frontal dorsal stream sub-pathways. Neuroscience and Biobehavioral Reviews, 69, 89112. https://doi.org/10.1016/j.neubiorev.2016.07.032Google Scholar
Samaha, J., Boutonnet, B., Postle, B. R., & Lupyan, G. (2018). Effects of meaningfulness on perception: Alpha-band oscillations carry perceptual expectations and influence early visual responses. Scientific Reports, 8(1), 6606. https://doi.org/10.1038/s41598–018-25093-5Google Scholar
Saysani, A., Corballis, M. C., & Corballis, P. M. (2021). Seeing colour through language: Colour knowledge in the blind and sighted. Visual Cognition, 29(1), 6371. https://doi.org/10.1080/13506285.2020.1866726Google Scholar
Schnall, S. (2017). Social and contextual constraints on embodied perception. Perspectives on Psychological Science, 12(2), 325340. https://doi.org/10.1177/1745691616660199Google Scholar
Schneider, I. K., Parzuchowski, M., Wojciszke, B., Schwarz, N., & Koole, S. L. (2015). Weighty data: Importance information influences estimated weight of digital information storage devices. Frontiers in Psychology, 5, 1536.Google Scholar
Scorolli, C., & Borghi, A. M. (2015). Square bananas, blue horses: The relative weight of shape and color in concept recognition and representation. Frontiers in Psychology, 6, 1542. https://doi.org/10.3389/fpsyg.2015.01542Google Scholar
Scorolli, C., Borghi, A. M., & Glenberg, A. (2009). Language-induced motor activity in bi-manual object lifting. Experimental Brain Research, 193(1), 4353. https://doi.org/10.1007/s00221–008-1593-4Google Scholar
Scorolli, C., Borghi, A. M., & Tummolini, L. (2018). Cues of control modulate the ascription of object ownership. Psychological Research, 82(5), 929954. https://doi.org/10.1007/s00426–017-0871-9Google Scholar
Scorolli, C., Daprati, E., Nico, D., & Borghi, A. M. (2016). Reaching for objects or asking for them: Distance estimation in 7- to 15-year-old children. Journal of Motor Behavior, 48(2), 183191. https://doi.org/10.1080/00222895.2015.1070787Google Scholar
Shah, P., Hall, R., Catmur, C., & Bird, G. (2016). Alexithymia, not autism, is associated with impaired interoception. Cortex, 81, 215220.Google Scholar
Stokes, D. (2013). Cognitive Penetrability of Perception. Philosophy Compass, 8(7), 646663. https://doi.org/10.1111/phc3.12043Google Scholar
Trevisan, D. A., Altschuler, M. R., Bagdasarov, A., Carlos, C., Duan, S., Hamo, E., … McPartland, J. C. (2019). A meta-analysis on the relationship between interoceptive awareness and alexithymia: Distinguishing interoceptive accuracy and sensibility. Journal of Abnormal Psychology, 128(8), 765776. https://doi.org/10.1037/abn0000454CrossRefGoogle ScholarPubMed
Tsakiris, M., & Critchley, H. (2016). Interoception beyond homeostasis: Affect, cognition and mental health. In Philosophical Transactions of the Royal Society B: Biological Sciences (vol. 371, 1708, p. 20160002). The Royal Society.Google Scholar
Tucker, M., & Ellis, R. (1998). On the relations between seen objects and components of potential actions. Journal of Experimental Psychology: Human Perception and Performance, 24(3), 830.Google Scholar
Tucker, M., & Ellis, R. (2004). Action priming by briefly presented objects. Acta Psychologica, 116(2), 185203.Google Scholar
Tversky, B. (2019). Mind in motion: How action shapes thought. Hachette UK.Google Scholar
Tylén, K., Weed, E., Wallentin, M., Roepstorff, A., & Frith, C. D. (2010). Language as a tool for interacting minds. Mind & Language, 25(1), 329. https://doi.org/10.1111/j.1468-0017.2009.01379.xCrossRefGoogle Scholar
van Elk, M., van Schie, H., & Bekkering, H. (2014). Action semantics: A unifying conceptual framework for the selective use of multimodal and modality-specific object knowledge. Physics of Life Reviews, 11(2), 220250.Google Scholar
Vicario, C. M., Nitsche, M. A., Salehinejad, M. A., Avanzino, L., & Martino, G. (2020). Time processing, interoception, and insula activation: A mini-review on clinical disorders. Frontiers in Psychology, 11, 1893.Google Scholar
Vygotsky, L. S. ([1934] 1986). Thought and language, rev. ed. MIT Press.Google Scholar
Wilson-Mendenhall, C. D., Henriques, A., Barsalou, L. W., & Barrett, L. F. (2019). Primary interoceptive cortex activity during simulated experiences of the body. Journal of Cognitive Neuroscience, 31(2), 221235.Google Scholar
Winawer, J., Witthoft, N., Frank, M. C., Wu, L., Wade, A. R., & Boroditsky, L. (2007). Russian blues reveal effects of language on color discrimination. Proceedings of the National Academy of Sciences, 104(19), 77807785.Google Scholar
Wittgenstein, L. (1953/2009). Philosophical investigations. (Trans. Anscombe, G. E. M., Hacker, P. M. S., & Schulte, J.. Wiley Blackwell.Google Scholar
Zaslavsky, N., Kemp, C., Tishby, N., & Regier, T. (2020). Communicative need in colour naming. Cognitive Neuropsychology, 37(5–6), 312324. https://doi.org/10.1080/02643294.2019.1604502Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×