Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-wzw2p Total loading time: 0 Render date: 2024-05-07T11:28:13.118Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  06 October 2022

D. E. Edmunds
Affiliation:
University of Sussex
W. D. Evans
Affiliation:
Cardiff University
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abramovich, Y. A. and Aliprantis, C. D., An invitation to operator theory, Graduate Studies in Mathematics, Amer. Math. Soc. 50, Providence, RI, 2002.Google Scholar
Adams, R. A., Sobolev Spaces, Academic Press, New York, 1975.Google Scholar
Adimurti, A. and Tintarev, K., Hardy inequalities for weighted Dirac operators, Ann. Mat. Pura Appl. 189 (2010), 241251.Google Scholar
Avkhadiev, F. G., Hardy type inequalities in higher dimensions with explicit estimate of constants, Lobachesvskii J. Math. 21 (2006), 331.Google Scholar
Avkhadiev, F. G. and Laptev, A., Hardy inequalities for non-convex domains. In Around the Research of Vladimir Maz’ya, I (Laptev, F., ed.), International Mathematical Series 11, pp. 112, Springer, New York (2010).CrossRefGoogle Scholar
Avkhadiev, F. G. and Wirths, K.-J., Sharp Hardy type inequalities with Lamb’s constants, Bull. Belg. Math. Soc., Stevin, Simon 18 (2011), 723736.Google Scholar
Avkhadiev, F. G., Families of domains with best possible Hardy constants, Russian (Iz VUZ) 57 (2013), 4952.Google Scholar
Avkhadiev, F. G. and Makarov, R. V., Hardy type inequalities on domains with complex complement and uncertainty principle of Heisenberg, Lobachevskii J. Math. 40(9) (2019), 12501259.CrossRefGoogle Scholar
Almgren, F. J. and Lieb, E.H., Symmetric decreasing rearrangement is sometimes continuous, J. Amer. Math. Soc. 2(2) (1989), 683773.CrossRefGoogle Scholar
Alvino, A., Sulla diseguaglianza di Sobolev in spazi di Lorentz, Boll. Un. Mat. Ital. A 14 (1977), 148156.Google Scholar
Alvino, A., Lions, P.-L. and Trombetti, G., On optimization problems with prescribed rearrangements, Nonlinear Anal. 13 (1989), 185220.Google Scholar
Ancona, A., On strong barriers and an inequality of Hardy for domains in R2, J. Lond. Math. Soc. 33 (1986), 274290.Google Scholar
Aronszajn, N., Boundary values of functions with finite Dirichlet integral, Tech. Report 14, Univ. of Kansas, 1955, 7794.Google Scholar
Balinsky, A., Evans, W. D., Hundertmark, D. and Lewis, R. T., On inequalities of Hardy-Sobolev type, Banach J. Math. Anal. 2(2) (2008), 94106.Google Scholar
Balinsky, A., Evans, W. D. and Lewis, R. T., The Analysis and Geometry of Hardy’s Inequality, Springer, 2015.CrossRefGoogle Scholar
Ban¯uelos, R. and Wang, G., Sharp inequalities for martingales with applications to the Beurling-Ahlfors and Riesz transformations, Duke Math. J. 80 (1995), 575600.Google Scholar
Barbatis, G., Filippas, S. and Tertikas, A., A unified approach to improved Lp Hardy inequalities with best constants, Trans. Amer. Math. Soc. 356(6) (2004), 21692196.CrossRefGoogle Scholar
Barbatis, G. and Tertikas, A., On the Hardy constant of non-convex planar domains: the case of a quadrilateral, J. Funct. Anal. 266 (2014), 37013725.CrossRefGoogle Scholar
Barbatis, G. and Tertikas, A., On the Hardy constant of some non-convex planar domains, in Geometric Methods in PDEs. Springer INdAM, vol. 13 (2015), 1541.Google Scholar
Benguria, R. D., Frank, R. L. and Loss, M., The sharp constant in the Hardy– Sobolev–Maz’ya inequality in three dimensional upper half-space, Math. Res. Lett. 15(4) (2008), 613622.Google Scholar
Bennett, C. and Sharpley, R., Interpolation of Operators, Academic Press, 1988.Google Scholar
Bogdan, D. and Dyda, B., The best constant in a fractional Hardy inequality, Math. Nachr. 284(5–6) (2011), 629638.CrossRefGoogle Scholar
Bourgain, J., Brezis, H. and Mironescu, P., Another look at Sobolev spaces. In Optimal Control and Partial Differential Equations (In Honor of Professor Alain Bensoussan’s 60th Birthday) (Menaldi, J. L. et al., eds.), pp. 439455, IOS Press, Amsterdam (2001).Google Scholar
Bourgain, J., Brezis, H. and Mironescu, P., Limiting embedding theorems for Ws,p when s 1 and applications, J. d’Analyse Math. 87 (2002), 77101.Google Scholar
Brasco, L. and Cinti, E., On fractional Hardy inequalities in convex sets, Discr. Contin. Dyn. Syst. Ser. A 18 (2018), 40194040.CrossRefGoogle Scholar
Brasco, L. and Franzina, G., On the Hong-Krahn-Szegö inequality for the p- Laplace operator, Manuscripta Math. 142 (2013), 537557.Google Scholar
Brasco, L. and Franzina, G., Convexity properties of Dirichlet integrals and Picone-type inequalities, Kodai Math. J. 37 (2014), 769799.CrossRefGoogle Scholar
Brasco, L., Lindgren, E. and Parini, E., The fractional Cheeger problem, Interfaces and Free Boundaries 16 (2014), 419458.CrossRefGoogle Scholar
Brasco, L. and Parini, E., The second eigenvalue of the fractional p-Laplacian, Adv. Calc. Var. 9 (2016), 323355.CrossRefGoogle Scholar
Brasco, L., Parini, E. and Squassina, M., Stability of variational eigenvalues for the fractonal p-Laplacian, Discr. Cont. Dyn. Syst. 36 (2016), 18131845.Google Scholar
Brasco, L. and Salort, A., A note on homogeneous Sobolev spaces of fractional order, Annali di Math. Pura ed Appl. 198 (2019), 12951330.Google Scholar
Brezis, H., Functional Analysis, Sobolev Spaces and Partial Differential Equations, Springer, New York, 2011.Google Scholar
Brezis, H., How to recognise constant functions, Russ. Math. Surv. 57 (2002), 693708.Google Scholar
Brezis, H. and Marcus, M., Hardy’s inequalities revisited, Ann. Scuola Norm. Sup. Pisa Cl. Sci. 25(4) (1997), 217237.Google Scholar
Brezis, H., Schaftingen, J. V. and Yung, Po-Lam, Going to Lorentz when fractional Sobolev, Gagliardo and Nirenberg estimates fail, Calc. Var. 60(129) (2021), 112.Google Scholar
Brezis, H., Schaftingen, J. V. and Yung, Po-Lam, A surprising formula for Sobolev norms, Proc. Natl. Acad. Sci. USA 118(8), e2025254118(2021), https://doi.org/10.1073/pnas.202524118.Google Scholar
Browder, F. E., Nonlinear elliptic boundary value problems and the generalised topological degree, Bull. Amer. Math. Soc. 76 (1970), 9991005.Google Scholar
Buncur, C. and Valdinoci, E., Nonlocal Diffusion and Applications, Lecture Notes of the Unione Matematica Italiana, 20, Springer, Cham: Unione Matematica Italiana, Bologna, 2016.Google Scholar
Bunt, L. H. N., Bijdrage tot de Theorie der convexe Puntverzamelingen. Thesis, University of Groningen, Amsterdam (1934).Google Scholar
Carbotti, A., Dipierro, S., and Valdinoci, E. Local Density of Solutions to Fractional Equations, De Gruyter Studies in Mathematics, 74, De Gruyter, Berlin, 2019.Google Scholar
Cassani, D., Ruf, B. and Tarsi, C., Equivalent and attained version of Hardy’s inequality in Rn, J. Funct. Anal. 275 (2018), 33013324.Google Scholar
Chowdhury, I., Csaló, G., Roy, P. and Sk, F., Study of fractional Poincaré inequalities on unbounded domains, Discr. Contin. Dyn. Syst. 41(6) (2021), 29933020.Google Scholar
Chen, B.-Y., Hardy-type inequalities and principal frequency of the p-Laplacian, arXiv: 2007.06782v1.Google Scholar
Chen, Z.-Q. and Song, R., Hardy inequality for censored stable processes, Tohoku Math. J. 55 (2003), 439450.Google Scholar
Cianchi, A., Quantitative Sobolev and Hardy inequalities, and related symmetrization principles. In Sobolev Spaces in Mathematics I (Maz’ya, V., ed.), International Mathematical Series, pp. 87116, Springer, New York (2009).Google Scholar
Cuesta, M., Minimax theorems on C1 manifolds via Ekeland variational principle, Abstr. Appl. Anal. 13 (2003), 757768.CrossRefGoogle Scholar
Davies, E. B., Some norm bounds and quadratic form inequalities for Schrödinger operators (II), J. Operator Theory 12 (1984), 177196.Google Scholar
Davies, E. B., The Hardy constant, Quart. J. Math. Oxford (2) 46 (1994), 417431.CrossRefGoogle Scholar
Davies, E. B. and Hinz, A., Explicit constants for Rellich inequalities in Lp(▲), Math. Zeit. 227(3) (1998), 511523.Google Scholar
Di Castro, A., Kuusi, T. and Palatucci, G., Local behavior of fractional p minimisers, Ann. Inst. H. Poincaré Anal. Non Linéaire 33(5) (2015), 12791299.Google Scholar
Drábek, P. and Milota, J., Methods of Nonlinear Analysis: Applications to Differential Equations, Birkhäuser, Basel, 2007.Google Scholar
Drelichman, I. and Durán, R. G., Improved Poincaré inequalities in fractional Sobolev spaces, Ann. Acad. Sci. Fennicae Math. 43 (2018), 885903.Google Scholar
Dubinskii, Yu. A., A Hardy-type inequality and its applications, Proc. Steklov Inst. Math. 269 (2010), 106126.Google Scholar
Dunford, N. and Schwartz, J. T., Linear Operators I, Interscience, New York and London, 1958.Google Scholar
Dyda, B., A fractional order Hardy inequality, Illinois J. Math. 48 (2004), 575588.Google Scholar
Dyda, B., Fractional Hardy inequality with remainder term, Coll. Math. 122 (1) (2011), 5967.Google Scholar
Dyda, B. and Frank, R. L., Fractional Hardy–Sobolev–Maz’ya inequality for domains, Studia Math. 208 (2012), 151166.Google Scholar
Dyda, B., Ihnatsyeva, L. and Vähäkangas, A. V., On improved fractional SobolevPoincaré inequality, Ark. Mat. 54 (2016), 437454.Google Scholar
Dyda, B., Lehrbäck, J. and Vähäkangas, A. V., Fractional Hardy-Sobolev type inequalities for half spaces and John domains, Proc. Amer. Math. Soc. 140(8) (2018), 33933402.Google Scholar
Edmunds, D. E. and Evans, W. D., Hardy Operators, Function Spaces and Embeddings, Springer Monographs in Mathematics, Springer, Berlin/Heidelberg/New York, 2004.Google Scholar
Edmunds, D. E. and Evans, W. D., Representations of Linear Operators between Banach Spaces, Birkhäuser, Basel, 2013.Google Scholar
Edmunds, D. E., Hurri-Syrjänen, R. and Vähäkangas, A. V., Fractional Hardytype inequalities in domains with uniformly fat complement, Proc. Amer. Math. Soc. 142(3) (2014), 897907.Google Scholar
Edmunds, D. E. and Evans, W. D., The Rellich inequality, Rev. Mat. Complut. 29(3) (2016), 511530.Google Scholar
Edmunds, D. E. and Evans, W. D., Spectral Theory and Differential Operators, 2nd edition, Oxford University Press, Oxford, 2018.Google Scholar
Edmunds, D. E. and Evans, W. D., Elliptic Differential Operators and Spectral Analysis, Springer Nature, Switzerland AG, 2018.Google Scholar
Edmunds, D. E., Evans, W. D. and Lewis, R. T., Fractional inequalities of Rellich type, Pure Appl. Funct. Anal., to appear.Google Scholar
Edmunds, D. E., Gogatishvili, A. and Nekvinda, A., Almost compact and compact embeddings of variable exponent spaces, Studia Math., to appear.Google Scholar
Edmunds, D. E., Lang, J., Non-compact embeddings of Sobolev spaces, to appear.Google Scholar
Edmunds, D. E., Lang, J. and Mihula, Z., Measure of noncompactness of Sobolev embeddings on strip-like domains, J. Approx. Theory 269 (2021), 105608.CrossRefGoogle Scholar
Edmunds, D. E. and Triebel, H., Function Spaces, Entropy Numbers, Differential Operators, Cambridge University Press, Cambridge, 1996.CrossRefGoogle Scholar
Ekeland, I., On the variational principle, J. Math. Anal. Appl. 47 (1974), 324353.Google Scholar
Evans, W. D. and Harris, D. J., Sobolev embeddings for generalized ridged domains, Proc. Lond. Math. Soc. 54 (1987), 141175.Google Scholar
Evans, W. D. and Lewis, R. T., On the Rellich inequality with magnetic potentials, Math. Zeit. 251 (2005), 267284.Google Scholar
Evans, W. D. and Lewis, R. T., Hardy and Rellich inequalities with remainders, J. Math. Inequalities 1(4) (2007), 473490.Google Scholar
Evans, W. D. and Schmidt, K. M., A discrete Hardy–Laptev–Weidl inequality and associated Schrödinger-type operators, Rev. Mat. Complut. 22(1) (2009), 7590.Google Scholar
Fernández-Martínez, P., Manzano, A. and Pustylnik, E., Absolutely continuous embeddings of rearrangement-invariant spaces, Mediterr. J. Math. 7 (2010), 539552.Google Scholar
Filippas, S., Maz’ya, V., and Tertikas, A., Critical Hardy-Sobolev inequalities, J. Math. Pures. Appl. 87 (2007), 3756.Google Scholar
Frank, R. L., Lieb, E. and Seiringer, R., Hardy–Littlewood–Thirring inequalities for fractional Schrödinger operators, J. Amer. Math. Soc. 21(4) (2008), 925950.Google Scholar
Frank, R. L., Eigenvalue bounds for Laplacians and Schrödinger operators: a review, arXiv:1603.09736v2 4 Nov. (2017), 124.Google Scholar
Frank, R. L., and Larsen, S., Two consequences of Davies’ Hardy inequality, Funksional Anal. i Prilozhen 55 (2021), 118121.Google Scholar
Frank, R. L. and Loss, M., Hardy–Sobolev–Maz’ya inequalities for arbitrary domains, J. Math. Pures Appl. 97 (2012), 3954.Google Scholar
Frank, R. L. and Seiringer, R., Non-linear ground state representations and sharp Hardy inequalities, J. Functional Anal. 255 (2008), 34073430.Google Scholar
Frank, R. L. and Seiringer, R., Sharp fractional Hardy inequalities in half-spaces. In Around the Research of Vladimir Maz’ya, I (Laptev, F., ed.), International Mathematical Series 11, pp. 161167, Springer, New York (2010).Google Scholar
Franzina, G. and Palatucci, G., Fractional p eigenvalues, Riv. Mat. Univ. Parma 5(2) (2014), 315328.Google Scholar
Fremlin, D. H., Skeletons and central sets, Proc. Lond. Math. Soc. 74 (1997), 701720.Google Scholar
Gagliardo, E., Proprietà di alcune classi di funzioni in più variabili, Ricerche Mat. 7 (1958), 102137.Google Scholar
Gesztesy, F., Pang, M. H. and Stanfill, J., Bessel-type operators and a refinement of Hardy’s inequality, arXiv:2102.00106v36 March 2021.Google Scholar
Giaquinta, M., Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems, Annals of Mathematics Studies 105, Princeton University Press, Princeton, 1983.Google Scholar
Gilbarg, D. and Trudinger, N. S., Elliptic Partial Differential Equations of Second Order, Springer-Verlag, Berlin-Heidelberg-New York, 1977.Google Scholar
Grisvard, P., Elliptic Problems in Nonsmooth Domains, Monographs and Studies in Mathematics 24, Pitman, Boston, 1985.Google Scholar
Guzu, D., Kapitanski, L. and Laptev, A., Hardy inequalities for discrete magnetic Dirichlet forms, Pure Appl. Funct. Anal., to appear.Google Scholar
Hadwiger, H., Vorlesungen über Inhalt, Oberfläche und Isoperimetrie, Springer, Berlin/Gòttingen/Heidelberg, 1957.Google Scholar
Hajłasz, P., Pointwise Hardy inequalities, Proc. Amer. Math. Soc. 127(2) 1999, 417423.Google Scholar
Hardy, G. H., An inequality between integrals, Messinger Math. 54 (1925), 150156.Google Scholar
Haroske, D. D. and Triebel, H., Distributions, Sobolev Spaces, Elliptic Equations, European Mathematical Society, Zürich, 2008.Google Scholar
Herbst, I., Spectral theory of the operator p2 m2 1/2 ze2/r, Comm. Math. Phys. 53(3) (1977), 285294.Google Scholar
Hewitt, E. and Stromberg, K., Real and Abstract Analysis, Springer, New York, 1965.Google Scholar
Hoffmann-Ostenhof, M., Hoffmann-Ostenhof, T. and Laptev, T., A geometrical version of Hardy’s inequality, J. Funct. Anal. 189 (2002), 539548.Google Scholar
Hurri-Syränen, R. and Vähäkangas, A. V., On fractional Poincaré inequalities, J. Anal. Math. 120 (2013), 85104.Google Scholar
Hurri-Syränen, R. and Vähäkangas, A. V., Fractional Sobolev-Poincaré and fractional Hardy inequalities in unbounded John domains, Mathematika 61(2) (2015), 385401.Google Scholar
Hurri-Syränen, R., Weighted fractional Poincaré type inequalities, Colloq. Math. 157 (2019).Google Scholar
Iannizzotto, A., Mosconi, S. and Squassina, M., Global Hölder regularity for the fractional p-Laplacian, Rev. Mat. Iberoam. 32 (2016), 13531392.Google Scholar
Iannizzotto, A. and Squassina, M., Weyl-type laws for fractional p eigenvalue problems, Asymptotic analysis 88 (2014), 233245.Google Scholar
Itoh, J.-I. and Tanaka, M., The Lipschitz continuity of the Lipschitz function to the cut locus, Trans. Amer. Math. Soc. 353(1) (2001), 2140.Google Scholar
Iwaniec, T. and Martin, G., Riesz transforms and related singular integrals, J. Reine Angew. Math. 473 (1996), 2557.Google Scholar
Janson, S., Taibleson, M. and Weiss, G., Elementary characterizations of the Morrey-Campanato spaces. In: Harmonic Analysis (Cortona 1092), Lecture Notes in Math., vol 1992, pp. 101114, Springer, Berlin (1983).Google Scholar
Karadzhov, G. E., Milman, M. and Xiao, J., Limits of higher-order Besov spaces and sharp reiteration theorems, J. Functional Anal. 221 (2005), 323339.Google Scholar
Kinnunen, J., Lehrbäck, J. and Vähäkangas, A. V., Limits of Maximal Function Methods for Sobolev Spaces, AMS Math. Surveys, American Math. Soc., Providence, RI, 2021.Google Scholar
Kolyada, V. and Lerner, A., On limiting embeddings of Besov spaces, Studia Math. 171(1) (2005), 113.Google Scholar
Kufner, Maligranda, L. and Persson, L.-E., The Hardy Inequality: About its History and Some Related Results, Vydavatelský servis, Pilsen, 2007.Google Scholar
Kuusi, T., Mingione, G. and Sire, Y., Nonlocal equations with measure data, Comm. Math. Phys. 337(3) (2015), 13171368.Google Scholar
Kwas´nicki, M., Ten equivalent definitions of the fractional Laplace operator, Fract. Calc. Appl. Anal. 20 (2017), 5157.Google Scholar
Lamberti, P. D. and Pinchover, Y., Lp Hardy inequality on C1 domains, Annali Scuola Normale Superiore Pisa 19 (2019), 11351159.Google Scholar
Landau, E., A note on a theorem concerning positive terms, J. Lond. Math. Soc. 1 (1926), 3839.Google Scholar
Laptev, A. and Sobolev, A. V., Hardy inequalities for simply connected planar domains, Amer. Math. Soc. Transl. Ser. 2 225 (2008), 133140.Google Scholar
Laptev, A. and Weidl, T., Hardy inequalities for magnetic Dirichlet forms, Oper. Theory: Adv. Appl. 108 (1999), 299305.Google Scholar
Lang, J. and Musil, V., Strict s numbers of non-compact Sobolev embeddings into continuous functions, Constr. Approx. 50(2) (2019), 271291.Google Scholar
Lang, J. and Nekvinda, A., Embeddings between Lorentz sequence spaces are strictly singular, arXiv:2104.00471v1 (April 2021).Google Scholar
Lefèvre, P. and Rodríguez-Piazza, L., Finitely strictly singular operators in harmonic analysis and function theory, Adv. Math 255 (2014), 119152.Google Scholar
Lehrbäck, J., Pointwise Hardy inequalities and uniformly fat sets, Proc. Amer. Math. Soc. 1.36(6) (2008), 21932200.Google Scholar
Lehrbäck, J., Weighted Hardy inequalities and the size of the boundary, Manuscripta Math. 127 (2008), 249273.Google Scholar
Lewis, J. L., Uniformly fat sets, Trans. Amer. Math. Soc. 308 (1988), 177196.Google Scholar
Lewis, R. T., Singular elliptic operators of second order with purely discrete spectra, Trans. Amer. Math. Soc. 271 (1982), 653666.Google Scholar
Lewis, R. T., Li, J. and Li, Y., A geometric characterization of a sharp Hardy inequality, J. Funct. Anal. 262(7) (2012), 31593185.Google Scholar
Lieb, E. H., On the lowest eigenvalue of the Laplacian for the intersection of two domains, Invent. Math. 74(3) (1983), 441448.Google Scholar
Lieb, E. H. and Loss, M., Analysis, 2nd edition, Amer. Math. Soc. Graduate Studies in Math. 14, 2001.Google Scholar
Lindgren, E. and Lindqvist, P., Fractional eigenvalues, Calc. Var. Partial Differential Equations 49 (2014), 795826.Google Scholar
Lindqvist, P., Notes on the p-Laplace equation, Report. University of Jyväskyla Department of Mathematics and Statistics, 2006.Google Scholar
Li, Y., and Nirenberg, L., The distance to the boundary, Finsler geometry and the singular set of viscosity solutions of some Hamilton-Jacobi equations, Comm. Pure Appl. Math. 18(1) (2005), 85146.Google Scholar
Loss, M. and Sloane, C., Hardy inequalities for fractional inequalities on general domains, J. Functional Anal. 259 (2010), 13691379.Google Scholar
Mantegazza, C. and Mennici, A. C., Hamilton-Jacobi equations and distance functions on Riemannian manifilds, Appl. Math. Optim. 47 (2003), 125.Google Scholar
Marcus, M., Mizel, V., and Pinchover, Y., On the best constant in Hardy’s inequality in Rn, Trans. Amer. Math. Soc. 350(8) (1998), 32373255.Google Scholar
Matskewitch, T. and Sobolevskii, P., The best possible constant in generalized Hardy’s inequality for convex domains in Rn, Nonlinear Anal. Theory Methods Appl. 28(9) (1997), 16011610.Google Scholar
Maz’ya, V. and Shaposhnikova, T., On the Bourgain, Brezis and Mironescu theorem concerning limiting embeddings of fractional Sobolev spaces, J. Functional Anal. 195 (2002), 230238; corrig. ibid. 201 (2003), 298–300.CrossRefGoogle Scholar
Maz’ya, V., Sobolev Spaces, Springer, Berlin, Heidelberg, 1985.Google Scholar
Milman, M., Notes on limits of Sobolev spaces and the continuity of interpolation scales, Trans. Amer. Math. Soc. 357(9) (2005), 34253442.Google Scholar
Mosconi, S. and Squassina, M., Recent progresses in the theory of nonlinear nonlocal problems, Bruno Pini Math. Analysis Sem. 7 (2016), 147164.Google Scholar
Moser, J., On Harnak’s theorem for elliptic differential equations, Comm. Pure Appl. Math. 16 (1961), 577591.Google Scholar
Motzkin, T. S., Sur quelques propriétés charactéristiques des ensembles convex, Atti Real. Accad. Naz. Lindcei Rend. Cl. Sci. Fis. Mat. Natur. Serie VI 21 (1935), 562567.Google Scholar
Naibullin, R., Hardy and Rellich type inequalities with remainders, to appear.Google Scholar
Nec˘as, J., Les méthodes directes en théorie des équations elliptiques, Masson, Paris, 1967.Google Scholar
Nezza, E. di, Palatucci, G. and Valdinoci, E., Hitchhiker’s guide to the fractional Sobolev spaces, Bull. Sci. Math. 136(5) (2012), 521573.CrossRefGoogle Scholar
Owen, M. P., The Hardy–Rellich inequality for polyharmonic operators, Proc. Roy. Soc. Edin. 129 A (1999), 825839.Google Scholar
Perera, K., Agarwal, R. P. and O’Regan, D., Morse theoretic aspects of p- Laplacian type operators, Mathematical surveys and monographs, Amer. Math. Soc., Providence, RI, 2010.Google Scholar
Peetre, J., Espaces d’interpolation et théorème de Soboleff, Ann. Inst. Fourier 16 (1966), 279317.Google Scholar
Pick, L., Kufner, A., John, O. and Fuc˘ík, S., Function Spaces, Vol. 1 (2nd revised and extended edition), De Gruyter, Berlin/Boston, 2013.Google Scholar
Pietsch, A., History of Banach Spaces and Linear Operators, Birkhäuser, Boston, 2007.Google Scholar
Pinchover, Y. and Goel, D., On weighted Lp-Hardy inequalities on domains in Rn, arXiv: 2012.12860v2.Google Scholar
Prats, M. and Saksman, E., A T(1) theorem for fractional Sobolev spaces on domains, J. Geom. Anal. 27(3) (2017), 24902518.Google Scholar
Ponce, A., A new approach to Sobolev spaces and connections to Г-convergence, Calc. Var. Partial Diff. Eqs. 19 (2004), 229255.Google Scholar
Qui, H. and Xiang, M., Existence of solutions for fractional p-Laplacian problems via Leray-Schauder nonlinear alternative, Boundary value problems (2016), doi 10.1186/s13661-016-0593-8.Google Scholar
Rafeiro, H., Samko, N. and Samko, S., Morrey-Campanato spaces: an overview, Operator Theory, Advances and Applications 228 (2013), 293323.Google Scholar
Rellich, F., Halbeschränkte Differential operatoren höherer Ordnung. In Proceedings of the International Congress of Mathematicians 1954, vol.III, pp. 243250, Noordhoff, Groningen (1956).Google Scholar
Robinson, D. W., Hardy and Rellich inequalities on the complement of convex sets, J. Austr. Math. Soc. 108(1) (2020), 98119.Google Scholar
Robinson, D. W., The weighted Hardy constant, arXiv:2103.07.848v1 14 Mar. 2021.Google Scholar
Samko, S., Best constant in the weighted Hardy inequality: the spacial and spherical version, Fractional Calculus and Applied Analysis 8(1) (2005), 3952.Google Scholar
Schilling, R. L., Measure, Integrals and Martingales, Cambridge University Press, Cambridge, 2005.Google Scholar
Schilling, R. and Kühn, F., Counterexamples in Measure and Integration, Cambridge University Press, Cambridge, 2021.Google Scholar
Slavíková, L., Almost compact embeddings, Math. Nachr. 285 (2012), 15001516.Google Scholar
Sloane, C. A., A fractional Hardy–Sobolev–Maz’ya inequality in the half-space, Proc. Amer. Math. Soc. 139 (2011), 40034016.Google Scholar
Slobodeckij, L. N., Generalised Sobolev spaces and their applications to boundary value problems of partial differential equations (Russian), Leningrad Gos. Ped. Inst. Uc˘ep. Zap. 197 (1958), 54112.Google Scholar
Sobolevskii, P. E., Hardy’s inequality for the Stokes problem, Nonlinear Analysis, Methods & Applications 30(1) (1997), 129145.Google Scholar
Solomyak, M. Z., A remark on the Hardy inequalities, Integr. Equ. Oper. Theory 19 (1994), 120124.Google Scholar
Stromberg, K. R., An Introduction to Classical Real Analysis, Wadsworth, Belmont, 1981.Google Scholar
Talenti, G., An inequality between u and u , Inst. Series Num. Math., 103 (1992), 175182.Google Scholar
Thomas, J. C., Some problems associated with sum and integral inequalities, Ph.D. thesis, Cardiff University, Wales (2007).Google Scholar
Tidblom, J., A geometrical version of Hardy’s inequality for W1,p(▲), Proc. Amer. Math. Soc. 132(8) (2004), 22652271.Google Scholar
Tidblom, J., A Hardy inequality in the half-space, Research report in mathematics 3, Department of Mathematics, University of Stockholm, 2004.Google Scholar
Triebel, H., Theory of Function Spaces, Birkhäuser, Basel, 1983.Google Scholar
Triebel, H., Interpolation Theory, Function Spaces, Differential Operators (2nd edition), Barth, Heidelberg, 1995.Google Scholar
Triebel, H., The Structure of Functions, Birkhäuser, Basel, 2001.Google Scholar
Yafaev, D., Sharp constants in the Hardy–Rellich inequalities, J. Functional Anal. 168(1) (1999), 121144.Google Scholar
Zhou, Y., Fractional Sobolev extension and imbedding, Trans. Amer. Math. Soc. 367(2) (2015), 959979.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • D. E. Edmunds, University of Sussex, W. D. Evans, Cardiff University
  • Book: Fractional Sobolev Spaces and Inequalities
  • Online publication: 06 October 2022
  • Chapter DOI: https://doi.org/10.1017/9781009254625.010
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • D. E. Edmunds, University of Sussex, W. D. Evans, Cardiff University
  • Book: Fractional Sobolev Spaces and Inequalities
  • Online publication: 06 October 2022
  • Chapter DOI: https://doi.org/10.1017/9781009254625.010
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • D. E. Edmunds, University of Sussex, W. D. Evans, Cardiff University
  • Book: Fractional Sobolev Spaces and Inequalities
  • Online publication: 06 October 2022
  • Chapter DOI: https://doi.org/10.1017/9781009254625.010
Available formats
×