Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-vpsfw Total loading time: 0 Render date: 2024-07-18T13:27:08.019Z Has data issue: false hasContentIssue false

19 - Applications of discrete transforms

Published online by Cambridge University Press:  05 June 2012

R. J. Beerends
Affiliation:
Ministry of Defence, The Hague
H. G. ter Morsche
Affiliation:
Technische Universiteit Eindhoven, The Netherlands
J. C. van den Berg
Affiliation:
Agricultural University, Wageningen, The Netherlands
E. M. van de Vrie
Affiliation:
Open Universiteit
Get access

Summary

INTRODUCTION

Applications of discrete transforms can mainly be found in the processing of discrete signals in discrete-time systems. In chapter 1 we have already discussed such systems in general terms. Since we now have certain discrete transforms available, we are able to get a better understanding of the discrete systems. Hence, in the present chapter we we will focus on a further analysis of the discrete-time systems.

In systems theory we distinguish inputs and the corresponding outputs or responses of the system. For discrete-time systems these signals are discrete-time signals. A system can be described by giving the relation that exists between the inputs and the outputs. This can be done in several ways. For example, by describing the relation in the n-domain, or in the z-domain, or, just as important, by describing it in the frequency or ω-domain. In the latter case we have the relationship between the spectra of the input and outputs in mind.

Discrete transforms play a special role in linear time-invariant discrete systems, similar to the role played by the Fourier integral in continuous-time systems (see chapter 10). Linear time-invariant systems have already been introduced in chapter 1 (see section 1.3.2). Discrete-time systems that are linear and time-invariant will henceforth be called LTD-systems for short. In section 19.1 we will see that for an LTD-system the relationship between an input and the corresponding output can be described in the n-domain by means of a convolution product.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×