References[1] Artymowski, M., Lalak, Z. and Szulc, L. 2009. Loop quantum cosmology corrections to inflationary models. JCAP, 0901, 004.
[2] Ashtekar, A. 1987. New Hamiltonian formulation of general relativity. Phys. Rev. D, 36(6), 1587–602.
[3] Ashtekar, A. and Lewandowski, J. 1997. Quantum theory of geometry I: Area operators. Class. Quantum Grav., 14, A55–A82.
[4] Ashtekar, A. and Lewandowski, J. 1998. Quantum theory of geometry II: Volume operators. Adv. Theor. Math. Phys., 1, 388–429.
[5] Ashtekar, A. and Lewandowski, J. 2004. Background independent quantum gravity: A status report. Class. Quantum Grav., 21, R53–R152.
[6] Ashtekar, A., Lewandowski, J., Marolf, D., Mourão, J. and Thiemann, T. 1995. Quantization of diffeomorphism invariant theories of connections with local degrees of freedom. J. Math. Phys., 36(11), 6456–93.
[7] Ashtekar, A., Baez, J. C., Corichi, A. and Krasnov, K. 1998. Quantum geometry and black hole entropy. Phys. Rev. Lett., 80, 904–7.
[8] Ashtekar, A., Bojowald, M. and Lewandowski, J. 2003. Mathematical structure of loop quantum cosmology. Adv. Theor. Math. Phys., 7, 233–68.
[9] Ashtekar, A., Pawlowski, T. and Singh, P. 2006. Quantum nature of the Big Bang: An analytical and numerical investigation. Phys. Rev. D, 73, 124038.
[10] Bahr, B. and Dittrich, B. 2009a. Breaking and restoring of diffeomorphism symmetry in discrete gravity.
[11] Bahr, B. and Dittrich, B. 2009b. Improved and perfect actions in discrete gravity.
[12] Banerjee, K. and Date, G. 2005. Discreteness corrections to the effective Hamiltonian of isotropic loop quantum cosmology. Class. Quant. Grav., 22, 2017–33.
[13] Barbero, J. F. 1995. Real Ashtekar variables for Lorentzian signature space-times. Phys. Rev. D, 51(10), 5507–10.
[14] Bardeen, J. M. 1980. Gauge-invariant cosmological perturbations. Phys. Rev. D, 22, 1882–905.
[15] Barrau, A. and Grain, J. 2009. Cosmological footprint of loop quantum gravity. Phys. Rev. Lett., 102, 081301.
[16] Bentivegna, E. and Pawlowski, T. 2008. Anti-deSitter universe dynamics in LQC. Phys. Rev. D, 77, 124025.
[17] Bergmann, P. G. 1961. Observables in general relativity. Rev. Mod. Phys., 33, 510–14.
[18] Bojowald, M. 2001a. Absence of a singularity in loop quantum cosmology. Phys. Rev. Lett., 86, 5227–30.
[19] Bojowald, M. 2001b. Inverse scale factor in isotropic quantum geometry. Phys. Rev. D, 64, 084018.
[20] Bojowald, M. 2001c. Loop quantum cosmology IV: Discrete time evolution. Class. Quantum Grav., 18, 1071–88.
[21] Bojowald, M. 2002a. Isotropic loop quantum cosmology. Class. Quantum Grav., 19, 2717–41.
[22] Bojowald, M. 2002b. Quantization ambiguities in isotropic quantum geometry. Class. Quantum Grav., 19, 5113–30.
[23] Bojowald, M. 2004. Spherically symmetric quantum geometry: states and basic operators. Class. Quantum Grav., 21, 3733–53.
[24] Bojowald, M. 2006. Loop quantum cosmology and inhomogeneities. Gen. Rel. Grav., 38, 1771–95.
[25] Bojowald, M. 2007a. Dynamical coherent states and physical solutions of quantum cosmological bounces. Phys. Rev. D, 75, 123512.
[26] Bojowald, M. 2007b. Large scale effective theory for cosmological bounces. Phys. Rev. D, 75, 081301(R).
[27] Bojowald, M. 2007c. What happened before the big bang?Nature Physics, 3(8), 523–5.
[28] Bojowald, M. 2008a. The dark side of a patchwork universe. Gen. Rel. Grav., 40, 639–60.
[29] Bojowald, M. 2008b. How quantum is the big bang?Phys. Rev. Lett., 100, 221301.
[30] Bojowald, M. 2008c. Loop quantum cosmology. Living Rev. Relativity, 11, 4. http://www.livingreviews.org/lrr-2008-4.
[31] Bojowald, M. 2008d. Quantum nature of cosmological bounces. Gen. Rel. Grav., 40, 2659–83.
[32] Bojowald, M. and Das, R. 2008. Fermions in loop quantum cosmology and the role of parity. Class. Quantum Grav., 25, 195006.
[33] Bojowald, M. and Hossain, G. 2007. Cosmological vector modes and quantum gravity effects. Class. Quantum Grav., 24, 4801–16.
[34] Bojowald, M. and Hossain, G. 2008. Quantum gravity corrections to gravitational wave dispersion. Phys. Rev.D, 77, 023508.
[35] Bojowald, M. and Kagan, M. 2006. Singularities in isotropic non-minimal scalar field models. Class. Quantum Grav., 23, 4983–90.
[36] Bojowald, M. and Kastrup, H. A. 2000. Symmetry reduction for quantized diffeomorphism invariant theories of connections. Class. Quantum Grav., 17, 3009–43.
[37] Bojowald, M. and Reyes, J. D. 2009. Dilaton gravity, Poisson sigma models and loop quantum gravity. Class. Quantum Grav., 26, 035018.
[38] Bojowald, M. and Skirzewski, A. 2006. Effective equations of motion for quantum systems. Rev. Math. Phys., 18, 713–45.
[39] Bojowald, M. and Skirzewski, A. 2008. Effective theory for the cosmological generation of structure. Adv. Sci. Lett., 1, 92–8.
[40] Bojowald, M. and Strobl, T. 2003. Poisson geometry in constrained systems. Rev. Math. Phys., 15, 663–703.
[41] Bojowald, M. and Tavakol, R. 2008. Recollapsing quantum cosmologies and the question of entropy. Phys. Rev.D, 78, 023515.
[42] Bojowald, M. and Tsobanjan, A. 2009. Effective constraints for relativistic quantum systems. Phys. Rev. D, to appear.
[43] Bojowald, M., Hernández, H. H. and Morales-Técotl, H. A. 2006. Perturbative degrees of freedom in loop quantum gravity: Anisotropies. Class. Quantum Grav., 23, 3491–516.
[44] Bojowald, M., Hernández, H. and Skirzewski, A. 2007a. Effective equations for isotropic quantum cosmology including matter. Phys. Rev.D, 76, 063511.
[45] Bojowald, M., Hernández, H., Kagan, M., Singh, P. and Skirzewski, A. 2007b. Formation and evolution of structure in loop cosmology. Phys. Rev. Lett., 98, 031301.
[46] Bojowald, M., Cartin, D. and Khanna, G. 2007c. Lattice refining loop quantum cosmology, anisotropic models and stability. Phys. Rev.D, 76, 064018.
[47] Bojowald, M., Hossain, G., Kagan, M. and Shankaranarayanan, S. 2008. Anomaly freedom in perturbative loop quantum gravity. Phys. Rev.D, 78, 063547.
[48] Bojowald, M., Sandhöfer, B., Skirzewski, A. and Tsobanjan, A. 2009a. Effective constraints for quantum systems. Rev. Math. Phys., 21, 111–54.
[49] Bojowald, M., Hossain, G., Kagan, M. and Shankaranarayanan, S. 2009b. Gauge invariant cosmological perturbation equations with corrections from loop quantum gravity. Phys. Rev.D, 79, 043505.
[50] Bojowald, M., Reyes, J. D. and Tibrewala, R. 2009c. Non-marginal LTB-like models with inverse triad corrections from loop quantum gravity. Phys. Rev.D, 80, 084002.
[51] Bojowald, M. 2009. Consistent loop quantum cosmology. Class. Quantum Grav., 26, 075020.
[52] Bruni, M., Dunsby, P. K. S. and Ellis, G. F. R. 1992. Cosmological perturbations and the physical meaning of gauge invariant variables. Astrophys. J., 395, 34–53.
[53] Brunnemann, J. and Fleischhack, C. 2007. On the configuration spaces of homogeneous loop quantum cosmology and loop quantum gravity.
[54] Cametti, F., Jona-Lasinio, G., Presilla, C. and Toninelli, F. 2000. Comparison between quantum and classical dynamics in the effective action formalism. Pages 431–48 of: Proceedings of the International School of Physics “Enrico Fermi”, Course CXLIII. Amsterdam: IOS Press.
[55] Campiglia, M., Di Bartolo, C., Gambini, R. and Pullin, J. 2006. Uniform discretizations: a new approach for the quantization of totally constrained systems. Phys. Rev.D, 74, 124012.
[56] Campiglia, M., Gambini, R. and Pullin, J. 2007. Loop quantization of spherically symmetric midi-superspaces. Class. Quantum Grav., 24, 3649.
[57] Copeland, E. J., Mulryne, D. J., Nunes, N. J. and Shaeri, M. 2009. The gravitational wave background from super-inflation in Loop Quantum Cosmology. Phys. Rev.D, 79, 023508.
[58] Deruelle, N., Sasaki, M., Sendouda, Y. and Yamauchi, D. 2009. Hamiltonian formulation of f(Riemann) theories of gravity.
[59] Dirac, P. A. M. 1958. The theory of gravitation in Hamiltonian form. Proc. Roy. Soc.A, 246, 333–43.
[60] Dittrich, B. 2006. Partial and complete observables for canonical general relativity. Class. Quant. Grav., 23, 6155–84.
[61] Dittrich, B. 2007. Partial and complete observables for Hamiltonian constrained systems. Gen. Rel. Grav., 39, 1891–927.
[62] Domagala, M. and Lewandowski, J. 2004. Black hole entropy from quantum geometry. Class. Quantum Grav., 21, 5233–43.
[63] Ellis, G. F. R. and Bruni, M. 1989. Covariant and gauge invariant approach to cosmological density fluctuations. Phys. Rev.D, 40, 1804–18.
[64] Ellis, G. F. R. and Maartens, R. 2004. The emergent universe: inflationary cosmology with no singularity. Class. Quant. Grav., 21, 223–32.
[65] Ellis, G. F. R., Murugan, J. and Tsagas, C. G. 2004. The emergent universe: An explicit construction. Class. Quant. Grav., 21, 233–50.
[66] Fewster, C. and Sahlmann, H. 2008. Phase space quantization and loop quantum cosmology: A Wigner function for the Bohr-compactified real line. Class. Quantum Grav., 25, 225015.
[67] Fleischhack, C. 2009. Representations of the Weyl algebra in quantum geometry. Commun. Math. Phys., 285, 67–140.
[68] Giesel, K., Hofmann, S., Thiemann, T. and Winkler, O. 2007a. Manifestly gaugeinvariant general relativistic perturbation theory: I. Foundations.
[69] Giesel, K., Hofmann, S., Thiemann, T. and Winkler, O. 2007b. Manifestly gaugeinvariant general relativistic perturbation theory: II. FRW Background and first order.
[70] Giesel, K., Tambornino, J. and Thiemann, T. 2009. LTB spacetimes in terms of Dirac observables.
[71] Grain, J., Cailleteau, T., Barrau, A. and Gorecki, A. 2009a. Fully LQC-corrected propagation of gravitational waves during slow-roll inflation.
[72] Grain, J., Barrau, A. and Gorecki, A. 2009b. Inverse volume corrections from loop quantum gravity and the primordial tensor power spectrum in slow-roll inflation. Phys. Rev.D, 79, 084015.
[73] Husain, V. and Winkler, O. 2004. On singularity resolution in quantum gravity. Phys. Rev.D, 69, 084016.
[74] Immirzi, G. 1997. Real and complex connections for canonical gravity. Class. Quantum Grav., 14, L177–L181.
[75] Jacobson, T. 2000. Trans-Planckian redshifts and the substance of the space-time river.
[76] Kaul, R. K. and Majumdar, P. 1998. Quantum black hole entropy. Phys. Lett. B, 439, 267–70.
[77] Kibble, T. W. B. 1979. Geometrization of quantum mechanics. Commun. Math. Phys., 65, 189–201.
[78] Laddha, A. 2007. Polymer quantization of CGHS model – I. Class. Quant. Grav., 24, 4969–88.
[79] Laddha, A. and Varadarajan, M. 2008. Polymer parametrised field theory. Phys. Rev.D, 78, 044008.
[80] Lewandowski, J., Okolów, A., Sahlmann, H. and Thiemann, T. 2006. Uniqueness of diffeomorphism invariant states on holonomy-flux algebras. Commun. Math. Phys., 267, 703–33.
[81] Martin-Benito, M., Garay, L. J. and Mena Marugán, G. A. 2008. Hybrid quantum Gowdy cosmology: Combining loop and Fock quantizations. Phys. Rev.D, 78, 083516.
[82] Meissner, K. A. 2004. Black hole entropy in loop quantum gravity. Class. Quantum Grav., 21, 5245–51.
[83] Mielczarek, J. 2008. Gravitational waves from the Big Bounce. JCAP, 0811, 011.
[84] Mielczarek, J. 2009. The observational implications of loop quantum cosmology.
[85] Nelson, W. and Sakellariadou, M. 2007a. Lattice refining loop quantum cosmology and inflation. Phys. Rev.D, 76, 044015.
[86] Nelson, W. and Sakellariadou, M. 2007b. Lattice refining LQC and the matter Hamiltonian. Phys. Rev.D, 76, 104003.
[87] Nelson, W. and Sakellariadou, M. 2008. Numerical techniques for solving the quantum constraint equation of generic lattice-refined models in loop quantum cosmology. Phys. Rev.D, 78, 024030.
[88] Puchta, J. 2009. Ph.D. thesis, University of Warsaw.
[89] Reyes, J. D. 2009. Spherically Symmetric Loop Quantum Gravity: Connections to 2-Dimensional Models and Applications to Gravitational Collapse. Ph.D. thesis, The Pennsylvania State University.
[90] Rovelli, C. 1991a. Quantum reference systems. Class. Quantum Grav., 8, 317–32.
[91] Rovelli, C. 1991b. What is observable in classical and quantum gravity?Class. Quantum Grav., 8, 297–316.
[92] Rovelli, C. 2004. Quantum Gravity. Cambridge, UK: Cambridge University Press.
[93] Rovelli, C. and Smolin, L. 1990. Loop space representation of quantum general relativity. Nucl. Phys. B, 331, 80–152.
[94] Rovelli, C. and Smolin, L. 1994. The physical Hamiltonian in nonperturbative quantum gravity. Phys. Rev. Lett., 72, 446–9.
[95] Rovelli, C. and Smolin, L. 1995. Discreteness of area and volume in quantum gravity. Nucl. Phys.B, 442, 593–619.
Erratum: Nucl. Phys.B 456 (1995) 753.
[96] Rovelli, C. and Vidotto, F. 2008. Stepping out of homogeneity in loop quantum cosmology. Class. Quantum Grav., 25, 225024.
[97] Sabharwal, S. and Khanna, G. 2008. Numerical solutions to lattice-refined models in loop quantum cosmology. Class. Quantum Grav., 25, 085009.
[98] Sahlmann, H. 2009. This volume.
[99] Shimano, M. and Harada, T. 2009. Observational constraints of a power spectrum from super-inflation in loop quantum cosmology.
[100] Singh, P. 2006. Loop cosmological dynamics and dualities with Randall–Sundrum braneworlds. Phys. Rev.D, 73, 063508.
[101] Singh, P. and Vandersloot, K. 2005. Semi-classical states, effective dynamics and classical emergence in loop quantum cosmology. Phys. Rev.D, 72, 084004.
[102] Taveras, V. 2008. Corrections to the Friedmann equations from LQG for a universe with a free scalar field. Phys. Rev.D, 78, 064072.
[103] Thiemann, T. 1998a. Quantum spin dynamics (QSD). Class. Quantum Grav., 15, 839–73.
[104] Thiemann, T. 1998b. QSD V: Quantum gravity as the natural regulator of matter quantum field theories. Class. Quantum Grav., 15, 1281–314.
[105] Thiemann, T. 2007. Introduction to Modern Canonical Quantum General Relativity. Cambridge, UK: Cambridge University Press.
[106] Unruh, W. 1997. Time, Gravity, and Quantum Mechanics. Cambridge, UK: Cambridge University Press, pp. 23–94.
[107] Weiss, N. 1985. Constraints on Hamiltonian lattice formulations of field theories in an expanding universe. Phys. Rev.D, 32, 3228–32.