Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-25wd4 Total loading time: 0 Render date: 2024-04-26T05:12:26.731Z Has data issue: false hasContentIssue false

2 - Quantum mechanics, classical, and special relativity

from Part I - Galilean and special relativity

Published online by Cambridge University Press:  05 July 2013

James Lindesay
Affiliation:
Howard University, Washington DC
Get access

Summary

Fundamentals of quantum mechanics

Quantum mechanics remains one of the most successful, yet enigmatic, formulations of physics. Uncertainty and measurement constraints are incorporated at the core of this fundamental description of micro-physical dynamics. Quantum mechanics successfully describes the observed structures in chemistry and materials science. In particular, the impenetrability of matter due to Pauli exclusion is a consequence of incorporating special relativity into quantum mechanics. Microscopic causality, or the requirement that communications cannot propagate at greater than the speed of light, relates a particle's spin to its quantum statistics but does not exclude the space-like correlations associated with a coherent quantum state.

This section will examine some of the foundations of quantum physics. An emphasis will be placed upon how the microscopic fundamentals of quantum mechanics relate to the geometric fundamentals of gravitational mechanics.

Quantum formalism

There are several interpretations of quantum mechanics offering models of the underlying (often hidden) dynamics that generate the observed quantum phenomenology (for example, the Copenhagen interpretation, or the many-worlds interpretation). Since any interpretation consistent with quantum physics cannot be proved or disproved by experiment, only those aspects of quantum formalism directly connected to experimental observables will be developed, with minimal interpretation imposed. To establish the conventions utilized in what follows, a brief overview of the formalism that describes those calculable observables modeled by quantum physics will be given.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×