Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-r6qrq Total loading time: 0 Render date: 2024-04-26T06:52:32.530Z Has data issue: false hasContentIssue false

6 - The Variational Principle

Published online by Cambridge University Press:  06 November 2019

P. C. Deshmukh
Affiliation:
Indian institute of Technology, Tirupati, India
Get access

Summary

When I was in high school, my Physics teacher—whose name was Mr Bader—called me down one day after physics class and said, ‘You look bored; I want to tell you something interesting’. Then he told me something which I found absolutely fascinating, and have since then, always found fascinating. Every time the subject comes up, I work on it… The subject is this—the principle of least action.

—Richard P. Feynman

THE VARIATIONAL PRINCIPLE AND EULER–LAGRANGE'S EQUATION OF MOTION

In the previous chapters, we have worked with the Newtonian formulation of classical mechanics. Its central theme relies on the use of ‘force’ as the very cause of change in momentum. The cornerstone of Newtonian mechanics is this principle of causality. It is expressed in Newton's second law as a linear relation between the acceleration and the force. It is the result of the equality between the force and the rate of change of momentum. The relation between force and momentum is at the very heart of Newtonian formulation of classical mechanics. It turns out that classical mechanics has an alternative but equivalent formulation, based on what is known as the ‘variational principle’, or ‘Hamilton's principle of variation’. In many universities, the principle of variation [1, 2] is introduced after a few years of college education in physics, and after a few courses on mechanics, including electrodynamics. However, there have been a few proposals [3, 4, 5] which recommend an early exposure in college curriculum to this fascinating approach. In fact, Richard Feynman was introduced to the principle of variation by his high school teacher, Mr Bader. Feynman went on to develop the path integral approach to the quantum theory based on the principle of variation. The path integral approach to quantum mechanics provides an alternative formulation of the quantum theory; it is equivalent to Heisenberg's uncertainty principle, and the Schrödinger equation. It has the capacity to describe a mechanical system and to account for how it evolves with time. The variational principle can be adapted to provide a backward integration of classical mechanics as an approximation toward the development of quantum theory. Newtonian formulation is not suitable for this purpose.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×