Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-wq2xx Total loading time: 0 Render date: 2024-04-20T12:46:46.203Z Has data issue: false hasContentIssue false

Chapter 5 - Sea-Air Interactions

from Assessment of Major Ecosystem Services from the Marine Environment (Other than Provisioning Services)

Published online by Cambridge University Press:  18 May 2017

United Nations
Affiliation:
Division for Ocean Affairs and the Law of the Sea, Office of Legal Affairs
Get access

Summary

Introduction

From the physical point of view, the interaction between these two turbulent fluids, the ocean and the atmosphere, is a complex, highly nonlinear process, fundamental to the motions of both. The winds blowing over the surface of the ocean transfer momentum and mechanical energy to the water, generating waves and currents. The ocean in turn gives off energy as heat, by the emission of electromagnetic radiation, by conduction, and, in latent form, by evaporation.

The heat flux from the ocean provides one of the main energy sources for atmospheric motions. This source of energy for the atmosphere is affected by the turbulence at the air/sea interface, and by the spatial distribution of the centres of high and low energy transfer affected by the ocean currents. This coupling takes place through processes that fundamentally occur at small scales. The strength of this coupling depends on air-sea differences in several factors and therefore has geographic and temporal scales over a broad range. At these small scales on the sea-surface interface itself, waves, winds, water temperature and salinity, bubbles, spray and variations in the amount of solar radiation that reaches the ocean surface, and other factors, affect the transfer of properties and energy.

In the long term, the convergence and divergence of oceanic heat transport provide sources and sinks of heat for the atmosphere and partly shape the mean climate of the earth. Analyzing whether these processes are changing due to anthropogenic influences and the potential impact of these changes is the subject of this chapter. Following guidance from the Ad Hoc Working Group of the Whole, much of the information presented here is based on or derives from the very thorough analysis conducted by the Intergovernmental Panel on Climate Change (IPCC) for its recent Fifth Assessment Report (AR5).

The atmosphere and the ocean form a coupled system, exchanging at the air-sea interface gases, water (and water vapour), particles, momentum and energy. These exchanges affect the biology, the chemistry and the physics of the ocean and influence its biogeochemical processes, weather and climate (exchanges affecting the water cycle are addressed in Chapter 4).

Type
Chapter
Information
The First Global Integrated Marine Assessment
World Ocean Assessment I
, pp. 105 - 118
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abraham, J.P., Baringer, M., Bindoff, N.L., Boyer, T., Cheng, L.J., Church, J.A., Conroy, J.L., Domingues, C.M., Fasullo, J.T., Gilson, J., Goni, G., Good, S.A., Gorman, J.M., Gouretski, V., Ishii, M., Johnson, G.C., Kizu, S., Lyman, J.M., Macdonald, A.M., Minkowycz, W.J., Moffitt, S.|E., Palmer, M.D., Piola, A.R., Reseghetti, F., Schuckmann, K., Trenberth, K.E., Velicogna, I., & Willis, J.K. (2013). A review of global ocean temperature observations: Implications for ocean heat content estimates and climate change, Review of Geophysics, 51, 450–483, doi:10.1002/rog.20022.CrossRefGoogle Scholar
Ashok, K., Guan, Z., Yamagata, T. (2001), Impact of the Indian Ocean dipole on the relationship between the Indian monsoon rainfall and ENSO, Geophysical Research Letters, 28, 4499–4502.Google Scholar
Behera, S.K., Luo, J.-J., Masson, S., Delecluse, P., Gualdi, S., Navarra, A., Yamagata, T. (2005), Paramount impact of the Indian Ocean dipole on the east African short rains: a CGCM study. Journal of Climate, 18, 4514–4530.CrossRefGoogle Scholar
Bresnan, E., Davidson, K., Edwards, M., Fernand, L., Gowen, R., Hall, A., Kennington, K., McKinney, A., Milligan, S., Raine, R., Silke, J. (2013). Impacts of climate change on harmful algal blooms, MCCIP Science Review, 236-243, doi:10.14465/2013. arc24.236-243.
Buchan, J., Hirschi, J.J.-M., Blaker, A.T., and Sinha, B. (2014). North Atlantic SST anomalies and the cold north European weather events of winter 2009/10 and December 2010. Monthly Weather Review, 142, 922–932, doi: 10.1175/MWRD- 13-00104.1.CrossRefGoogle Scholar
Cai, W., van Rensch, P., Cowan, T., Hendon, H.H. (2011), Teleconnection pathways of ENSO and the IOD and the mechanisms for impacts on Australian rainfall, Journal of Climate, 24, 3910–3923.Google Scholar
Capotondi, A., Alexander, M.A., Bond, N.A., Curchitser, E.N., and Scott, J.D. (2012): Enhanced upper ocean stratification with climate change in the CMIP3 models. Journal of Geophysical Research, 117, C04031, doi:10.1029/2011JC007409.CrossRefGoogle Scholar
Chen, X. and Tung, K.-K. (2014). Varying planetary heat sink led to global-warming slowdown and acceleration. Science 345, 897-903.CrossRefGoogle Scholar
Ciais, P., Sabine, C., Govindasamy, B., Bopp, L., Brovkin, V., Canadell, J., Chhabra, A., DeFries, R., Galloway, J., Heimann, M., Jones, C., Le Quere, C., Myneni, R., Piao, S., and Thornton, P.(2013). Chapter 6 Carbon and Other Biogeochemical Cycles, in:Climate Change 2013 The Physical Science Basis, edited by: Stocker, T., Qin, D., and Platner, G.-K., Cambridge University Press, Cambridge.
Cooley, S.R., and Doney, S.C. (2009). Anticipating ocean acidification's economic consequences for commercial fisheries. Environmental Research Letters 4.CrossRefGoogle Scholar
Cunningham, S.A., Kanzow, T., Rayner, D., Baringer, M.O., Johns,, w.E., Marotzke, J., Longworth, H.R., Grant, E.M., Hirschi, J.J.-M., Beal, L.M., Meinen, C.S., Bryden, H.L. (2007), Temporal variability of the Atlantic meridional overturning circulation at 26.5 °N, Science, 317, 935–938, doi: 10.1126/science.1141304.CrossRefGoogle Scholar
Cunningham, S.A., Roberts, C.D., Frajka-Williams, E., Johns, W.E., Hobbs, W., Palmer, M.D., Rayner, D., Smeed, D.A., and McCarthy, G. (2013), Atlantic Meridional Overturning Circulation slowdown cooled the subtropical ocean, GeophysicalResearch Letters, 40, 6202–6207, doi:10.1002/2013GL058464.CrossRefGoogle Scholar
Doney, S.C., Ruckelshaus, M., Duffy, J.E., Barry, J.P., Chan, F., English, C.A., Galindo, H.M., Grebmeier, J.M., Hollowed, A.B., Knowlton, N., Polovina, J., Rabalais, N.N., Sydeman, W.J., Talley, L.D. (2012). Climate change impacts on marine ecosystems. AnnualReview of Marine Science 4:11-37.Google Scholar
Doney, S.C., Mahowald, N., Lima, I., Feely, R.A., Mackenzie, F.T., Lamarque, J.-F. and Rasch, P.J. (2007). Impact of anthropogenic atmospheric nitrogen and sulfur deposition on ocean acidification and the inorganic carbon system. Proceedings ofthe National Academy of Sciences of the United States of America, 104, 14580- 14585.CrossRefGoogle Scholar
Domingues, C.M., Church, J.A., White, N.J., Gleckler, P.J., Wijffels, S.E., Barker, P.M. and Dunn, J.A. (2008). Improved estimates of upper-ocean warming and multidecadal sea-level rise. Nature, 453, 1090–1093.CrossRefGoogle Scholar
Dlugokencky, E. and Tans, P. (2014). http://www.esrl.noaa.gov/gmd/ccgg/trends, last access: 25 May 2015.
Drijfhout, S.S., Blaker, A.T., Josey, S.A., Nurser, A.J.G., Sinha, B. and Balmaseda, M.A. (2014), Surface warming hiatus caused by increased heat uptake across multiple ocean basins, Geophysical Research Letters, 41, 7868–7874.Google Scholar
England, M.H., McGregor, S., Spence, P., Meehl, G.A., Timmermann, A., Cai, W., Gupta, A.S., McPhaden, M.J., Purich, A., Santoso, A. (2014). Recent intensification of wind-driven circulation in the Pacific and the ongoing warming hiatus. NatureClimate Change, 4, 403–407.CrossRefGoogle Scholar
Fabry, V.J., McClintock, J.B., Mathis, J.T., and Grebmeier, J.M., (2009). Ocean Acidification at high latitudes: the Bellwether. Oceanography, 22(4), 160–171.CrossRefGoogle Scholar
Falkowski, P.G. and Raven, J.A. (1997). Aquatic photosynthesis. Blackwell Science, Malden, MA.
Fasullo, J.T., and Trenberth, K.E. (2008). The annual cycle of the energy budget. Part II: Meridional structures and poleward transports, Journal of Climate, 21, 2313–2325, doi:10.1175/2007JCLI1936.1.Google Scholar
Feng, M., Meyers, G. and Wijffels, S. (2001). Interannual upper ocean variability in the tropical Indian Ocean Geophysical Research Letters, 28(21), 4151-4154.
Field, C.B., Behrenfeld, M.J., Randerson, J.T. and Falkowski, P. (1998). Primary production of the biosphere: integrating terrestrial and oceanic components, Science 281, 237–240.Google Scholar
Gadgil, S., Vinayachandran, P.N., Francis, P.A., and Gadgil, S. (2004). Extremes of the Indian summer monsoon rainfall, ENSO and equatorial Indian Ocean oscillation, Geophysical Research Letters, 31, L12213, doi: 10.1029/2004GL019733.Google Scholar
Grist, J.P., Josey, S.A., Marsh, R., Good, S.A., Coward, A.C., de Cuevas, B.A., Alderson, S.G., New, A.L., and Madec, G. (2010). The roles of surface heat flux and ocean heat transport convergence in determining Atlantic Ocean temperature variability, Ocean Dynamics, 60, 771–790, doi:10.1007/s10236-010-0292-4.Google Scholar
Halpern, B.S., Walbridge, S., Selkoe, K.A., Kappel, C.V., Micheli, F., D'Agrosa, C., Bruno, J.F., Casey, K.S., Ebert, C., Fox, H.E., Fujita, R., Heinemann, D., Lenihan, H.S., Madin, E.M.P., Perry, M.T., Selig, E.R., Spalding, M., Steneck, R., and Watson, R. (2008). A global map of human impact on marine ecosystems, Science, 319, 948- 952.Google Scholar
Hartmann, D.L., Klein Tank, A.M.G., Rusticucci, M., Alexander, L.V., Bronnimann, S., Charabi, Y., Dentener, F.J., Dlugokencky, E.J., Easterling, D.R., Kaplan, A., Soden, B.J., Thorne, P.W., Wild, M. and Zhai, P.M. (2013). Observations: Atmosphere and Surface. In: Climate Change 2013: The Physical Science Basis. Contributionof Working Group I to the Fifth Assessment Report of the IntergovernmentalPanel on Climate Change [Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V. and Midgley, P.M. (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.
Harley, C.D.G., Hughes, R.A., Hultgren, K.M., Miner, B.G., Sorte, C.J., Thornber, C.S., Rodriguez, L.F., Tomanek, L., Williams, S.L. (2006). The impacts of climate change in coastal marine systems, Ecology Letters, 9, 228–241.Google Scholar
Hays, G.C., Richardson, A.J., and Robinson, C. (2005). Trends in Ecology and Evolution. 20, 337-344.
IOC-UNESCO, (2011). Methodology for the GEF Transboundary Waters AssessmentProgramme. Volume 6. Methodology for the Assessment of the Open Ocean, UNEP, vi + 71 pp.
IPCC (2013), Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P.M. (eds.). Cambridge University Press, Cambridge, UK, 1535 pp.
Ishii, M., and Kimoto, M. (2009). Reevaluation of Historical Ocean Heat Content Variations with Time-Varying XBT and MBT Depth Bias Corrections. Journal of Oceanography, Vol. 65: pp. 287-299.Google Scholar
Johns, W.E., Baringer, M.O. Beal, L.M., Cunningham, S.A., Kanzow, T., Bryden, H.L., Hirschi, J.J.M., Marotzke, J., Meinen, C.S., Shaw, B. and Curry, R. (2011). Continuous, array-based estimates of Atlantic Ocean heat transport at 26.5°N. Journal ofClimate, 24, 2429–2449, doi: 10.1175/2010JCLI3997.1.Google Scholar
Kanzow, T., Cunningham, S.A., Rayner, D., Hirschi, J.J.-M., Johns, W.E., Baringer, M.O., Bryden, H.L., Beal, L.M., Meinen, Ch.S., Marotzke, J. (2007). Observed flow compensation associated with the MOC at 26.5 °N in the Atlantic, Science, 317,938–941, doi: 10.1126/science.1141304.CrossRefGoogle Scholar
Keenlyside, N.S., Ding, H. and Latif, M. (2013). Potential of equatorial Atlantic variability to enhance El Nino prediction, Geophysical Research Letters, 40, 2278–2283.Google Scholar
Kelly, K.A., Thompson, L-A. and Lyman, J. (2014). The Coherence and Impact of Meridional Heat Transport Anomalies in the Atlantic Ocean Inferred from Observations. Journal of Climate, 27, 1469–1487.CrossRefGoogle Scholar
Kiene, R.P., Visscher, P.T., Keller, M.D. and Kirst, G.O. (eds.). (1996). Biological andenvironmental chemistry of DMSP and related sulfonium compounds. Plenum Press, New York (ISBN 0-306-45306-1).
Knutson, T.R., McBride, J.L., Chan, J., Emanuel, K., Holland, G., Landsea, C., Held, I., Sugi, M. (2010). Tropical cyclones and climate change. Nature Geoscience, 3(3), 157-163.Google Scholar
Kosaka, Y., and Xie, S.-P. (2013). Recent global-warming hiatus tied to equatorial Pacific surface cooling. Nature, 501, 403–407.Google Scholar
Kossin, J.P., Emanuel, K.A., Vecchi, G.A. (2014).The poleward migration of the location of tropical cyclone maximum intensity. Nature, 509(7500), 349-352.Google Scholar
Kumar, K.K., Rajagopalan, B., Hoerling, M., Bates, G. and Cane, M. (2006). Unraveling the mystery of Indian monsoon failure during El Nino, Science, 314, 115-119.Google Scholar
Le Quere, C., Moriarty, R. Andrew, R.M., Peters, G.P., Ciais, P., Friedlingstein, P., Jones, S.D., Sitch, S., Tans, P., Arneth, A., Boden, T.A., Bopp, L., Bozec, Y., Canadell, J.G., Chevallier, F., Cosca, C.E., Harris, I., Hoppema, M., Houghton, R.A., House, J.I., Johannessen, T., Kato, E., Jain, A.K., Keeling, R.F., Kitidis, V., Klein Goldewijk, K., Koven, C., Landa, C., Landschutzer, P., Lenton, A., Lima, I., Marland, G., Mathis, J.T., Metzl, N., Nojiri, Y., Olsen, A., Peters, W., Ono, T., Pfeil, B., Poulter, B., Raupach, M.R., Regnier, P., Rodenbeck, C., Saito, S., Salisbury, J.E., Schuster, U., Schwinger, J., Seferian, R., Segschneider, J., Steinhoff, T., Stocker, B.D., Sutton, A.J., Takahashi, T., Tilbrook, B., Viovy, N., Wang, Y.-P., Wanninkhof, R., Van der Werf, G., Wiltshire, A. and Zeng, N. (2014). Global Carbon Budget 2014. Earth System Science DataDiscuss., 7, 521-610. DOI:10.5194/essdd-7-521-2014.CrossRefGoogle Scholar
Lee, S.-K.W. Park, W., van Sebille, E., Baringer, M.O., Wang, C., Enfield, D.B., Yeager, S.G., and B.P., Kirtman (2011). What caused the significant increase in Atlantic Ocean heat content since the mid-20th century? Geophysical Research Letters, 38, L17607, doi:10.1029/2011GL048856.Google Scholar
Levermann, A., Bamber, J.L., Drijfhout, S., Ganopolski, A., Haeberli, W., Harris, N.R.P., Huss, M., Krüger, K., Lenton, T.M., Lindsay, R.W., Notz, D., Wadhams, P. and Weber, S.(2012). Potential climatic transitions with profound impact on Europe: Review of the current state of six ‘tipping elements of the climate system’. ClimaticChange, 110, 845–878, DOI 10.1007/s10584-011-0126-5.CrossRefGoogle Scholar
Levitus, S., Antonov, J.I., Boyer, T.P., Locarnini, R.A., Garcia, H.E., and Mishonov, A.V. (2009). Global ocean heat content 1955–2008 in light of recently revealed instrumentation problems, Geophysical Research Letters, 36, L07608, doi:10.1029/2008GL037155.CrossRefGoogle Scholar
Lima, F.P., and Wethey, D.S. (2012). Three decades of high-resolution coastal sea surface temperatures reveal more than warming, Nature communications, 3.Google Scholar
Marengo, J.A., Tomasella, J., Alves, L.M., Soares, W.R., and Rodriguez, D.A. (2011), The drought of 2010 in the context of historical droughts in the Amazon region, Geophysical Research Letters, 38, L12703, doi:10.1029/2011GL047436.CrossRefGoogle Scholar
McCarthy, G., Frajka-Williams, E., Johns, W.E., Baringer, M.O., Meinen, C.S., Bryden, H.L., Rayner, D., Duchez, A., Roberts., C., and Cunningham, S.A. (2012). Observed interannual variability of the Atlantic meridional overturning circulation at 26.5°N, Geophysical Research Letters, 39, L19609, doi:10.1029/2012GL052933.CrossRefGoogle Scholar
McPhaden, M.J., (2012). A 21st century shift in the relationship between ENSO SST and warm water volume anomalies, Geophysical Research Letters, 39, L09706, doi:10.1029/2012GL051826.Google Scholar
McPhaden, M.J., and Nagura, M. (2014). Indian Ocean dipole interpreted in terms of recharge oscillator theory. Climate Dynamics, 42, 1569-1586.CrossRefGoogle Scholar
Meehl, G.A., Hu, A., Arblaster, J.M., Fasullo, J.Y., and Trenberth, K.E. (2013). Externally forced and internally generated decadal climate variability associated with the Interdecadal Pacific Oscillation, Journal of Climate, 26, 7298–7310.Google Scholar
Nagura, M., and McPhaden, M.J. (2010). Dynamics of zonal current variations associated with the Indian Ocean dipole. Journal of Physical Research, 115, C 11026,Google Scholar
Occhipinti-Ambrogi, A. (2007). Global change and marine communities: Alien species and climate change, Marine Pollution Bulletin., 55, 342-52.Google Scholar
Palmer, M., D., and Haines, K. (2009). Estimating oceanic heat content change using isotherms, Journal of Climate, 22, 4953–4969, doi: 10.1175/2009JCLI2823.1.Google Scholar
Perry, A., Low, P.J., Ellis, J.R., Reynolds, J.D. (2005). Climate change and distribution shifts in marine fishes, Science, 308, 1912–15.Google Scholar
Ren, H.-L., and Jin, F.-F. (2013). Recharge oscillator mechanisms in two types of ENSO. Journal of Climate, 26, 6506–6523. doi: http://dx.doi.org/10.1175/JCLID- 12-00601.1.CrossRefGoogle Scholar
Rhein, M., Rintoul, S.R., Aoki, S., Campos, E., Chambers, D., Feely, R.A., Gulev, S., Johnson, G.C., Josey, S.A., Kostianoy, A., Mauritzen, C., Roemmich, D., Talley, L.D. and Wang, F. (2013). Observations: Ocean. In: Climate Change 2013: The Physical ScienceBasis. Contribution of Working Group I to the Fifth Assessment Report of theIntergovernmental Panel on Climate Change [Stocker, T.F., Qin, D., Plattner, G.-K, Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V. and. Midgley, P.M. (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.
Rodrigues, R.R., Haarsma, R.J., Campos, E.J.D., and Ambrizzi, T. (2011). The impacts of inter-El Nino variability on the Tropical Atlantic and Northeast Brazil climate, Journal of Climate, 24, 3402–22.Google Scholar
Rodriguez-Fonseca, B., Polo, I., Garcia-Serrano, J., Losada, T., Mohino, E., Mechoso, C.R., and Kucharski, F. (2009). Are Atlantic Ninos enhancing Pacific ENSO events in recent decades? Geophysical Research Letters, 36, L20705, doi:10.1029/2009GL040048.CrossRefGoogle Scholar
Roemmich, D., and Gilson, J. (2011), The global ocean imprint of ENSO, GeophysicalResearch Letters, 38, L13606Google Scholar
Sabine C., L., Feely, R.A., Gruber, N., Key, R.M., Lee, K., Bullister, J.L., Wanninkhof, R., Wong, C.S., Wallace, D.W.R., Tilbrook, B., Millero, F.J., Peng, T.H., Kozyr, A., Ono, T., and Rios, A.F., (2004). The Oceanic sink for anthropogenic CO2. Science 305: 367-371.Google Scholar
Sabine, C.L. and Feely, R.A. (2007). The oceanic sink for carbon dioxide. pp. 31–49. In Reay, D., Hewitt, N., Grace, J., and Smith, K. (Eds.), Greenhouse Gas Sinks, CABI Publishing, Oxfordshire, UK.CrossRef
Saji, N.H., Goswami, B.N., Vinayachandran, P.N., and Yamagata, T. (1999). A dipole mode in the tropical Indian Ocean. Nature, 401, 360–63.CrossRefGoogle Scholar
Seidel, D.J., Fu, Q., Randel, W.J., Reichler, T.J. (2008), Widening of the tropical belt in a changing climate. Nature Geoscience, 1(1), 21-24.CrossRefGoogle Scholar
Smith, D.M., Murphy, J.M. (2007). An objective ocean temperature and salinity analysis using covariances from a global climate model. Journal of Geophysical Research. Vol. 112, Issue C2.CrossRefGoogle Scholar
Stocker, T.F., Qin, D., Plattner, G.-K., Alexander, L.V., Allen, S.K., Bindoff, N.L., Breon, F.-M., Church, J.A., Cubasch, U., Emori, S., Forster, P., Friedlingstein, P., Gillett, N., Gregory, J.M., Hartmann, D.L., Jansen, E., Kirtman, B., Knutti, R., Krishna Kumar, K., Lemke, P., Marotzke, J., Masson-Delmotte, V., Meehl, G.A., Mokhov, I.I., Piao, S., Ramaswamy, V., Randall, D., Rhein, M., Rojas, M., Sabine, C., Shindell, D., Talley, L.D., Vaughan, D.G., and Xie, S.-P. (2013). Technical Summary. In: ClimateChange 2013: The Physical Science Basis. Contribution of Working Group I tothe Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Stocker, T.F., Qin, D., Plattner, G-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V. and Midgley, P.M. (eds.). Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.
Suthers, I.M., Young, J.W., Baird, M.E., Roughan, M., Everett, J.D., Brassington, G.B., Byrne, M., Condie, S.A., Hartog, J.R., Hassler, C.S., Hobday, A.J., Holbrook, N.J., Malcolm, H.A., Oke, P.R., Thompson, P.A., Ridgway, K. (2011). The strengthening East Australian Current, its eddies and biological effects - An introduction and overview. Deep Sea Research Part II: Topical Studies in Oceanography. 58 (2011) 538–546.CrossRefGoogle Scholar
Takahashi, T., Sutherland, S.C., Wanninkhof, R., Sweeney, C., Feely, R.A., Chipman, D.W., Hales, B., Friederich, G., Chavez, F., Watson, A., Bakker, D.C.E., Schuster, U., Metzl, N., Yoshikawa-Inoue, H., Ishii, M., Midorikawa, T., Nojiri, Y., Sabine, C., Olafsson, J., Arnarson, Th.S., Tilbrook, B., Johannessen, T., Olsen, A., Richard, Bellerby, Kortzinger, A., Steinhoff, T., Hoppema, M., de Baar, H.J.W., Wong, C.S., Bruno, Delille and Bates, N.R. (2009). Climatological mean and decadal changes in surface ocean pCO2, and net sea-air CO2 flux over the global oceans. Deep-SeaResearch II, 56, 554-57.CrossRefGoogle Scholar
Taschetto, A.S., and England, M.H. (2009). El Nino Modoki impacts on Australian rainfall, Journal of Climate, 22, 3167–3174, doi:10.1175/2008JCLI2589.1.CrossRefGoogle Scholar
Tokinaga, H., and Xie, S.-P. (2011). Weakening of the equatorial Atlantic cold tongue over the past six decades. Nature Geosciences, 4, 222–226.CrossRefGoogle Scholar
Ummenhofer, C.C., Sen Gupta, A., England, M.H., and Reason, C.J.C. (2009). Contributions of Indian Ocean sea surface temperatures to enhanced East African rainfall. Journal of Climate, 22, 993-1013.CrossRefGoogle Scholar
von Schuckmann, K. and Le Traon, P.-Y. (2011). How well can we derive Global Ocean Indicators from Argo data? Ocean Science, 7, 783-91. doi:10.5194/os-7- 783-2011.CrossRefGoogle Scholar
Woodruff, J.D., Irish, J.L., and Camargo, S.J. (2013). Coastal flooding by tropical cyclones and sea-level rise. Nature, 504(7478), 44-52.Google Scholar
Yamagata, T., Behera, S.K., Luo, J.-J., Masson, S., Jury, M., Rao, S.A. (2004). Coupledocean–atmosphere variability in the tropical Indian Ocean. Earth Climate: Ocean-Atmosphere Interaction, Geophysical Monograph Series, 147, 189–211.Google Scholar
Yeh, S.-W., Kug, J.-S., Dewitte, B., Kwon, M.-H., Kirtman, B., and Jin, F.-F. (2009). El Nino in a changing climate, Nature, 461, 511–514, doi:10.1038/nature08316.CrossRefGoogle Scholar
Yeh, S.-W., Kirtman, B.P. Kug, J.-S. Park, W. and Latif, M. (2011). Natural variability of the central Pacific El Nino event on multi-centennial timescales, GeophysicalResearch Letters, 38, L02704, doi:10.1029/2010GL045886. Sea-Air Interactions Chapter 5CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Sea-Air Interactions
  • Edited by United Nations
  • Book: The First Global Integrated Marine Assessment
  • Online publication: 18 May 2017
  • Chapter DOI: https://doi.org/10.1017/9781108186148.008
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Sea-Air Interactions
  • Edited by United Nations
  • Book: The First Global Integrated Marine Assessment
  • Online publication: 18 May 2017
  • Chapter DOI: https://doi.org/10.1017/9781108186148.008
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Sea-Air Interactions
  • Edited by United Nations
  • Book: The First Global Integrated Marine Assessment
  • Online publication: 18 May 2017
  • Chapter DOI: https://doi.org/10.1017/9781108186148.008
Available formats
×