Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-2xdlg Total loading time: 0 Render date: 2024-06-28T15:31:56.394Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  03 October 2017

H. Aref
Affiliation:
Virginia Polytechnic Institute and State University
S. Balachandar
Affiliation:
University of Florida
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abramowitz, M. and Stegun, I. (eds.)(1965). Handbook of Mathematical Functions. Dover Publications.
Akiki, G. and Balachandar, S.(2016). Immersed boundary method with non- uniform distribution of Lagrangian markers for a non-uniform Eulerian mesh. J. Comp. Phys. 307, 34–59 CrossRefGoogle Scholar
Almgren, A.S., Bell, J.B., Colella, P. and Marthaler, T. (1997). A Cartesian grid projection method for the incompressible Euler equations in complex geome- tries. SIAM J. Sci. Comput. 18, 1289.CrossRefGoogle Scholar
Anderson, S.L. (1990). Random number generation on vector supercomputers and other advanced architectures. SIAM Rev. 32, 221–51 CrossRefGoogle Scholar
Aref, H. (1979). Motion of three vortices. Phys. Fluids 22, 393–400 CrossRefGoogle Scholar
Aref, H. (1982). Point vortex motions with a center of symmetry. Phys. Fluids 25, 2183–7 CrossRefGoogle Scholar
Aref, H. (1983). Integrable, chaotic and turbulent vortex motion in two- dimensional flows. Ann. Rev. Fluid Mech. 15, 345–89 CrossRefGoogle Scholar
Aref, H. (1984). Stirring by chaotic advection. J. Fluid Mech. 143, 1–21 CrossRefGoogle Scholar
Aref, H. (2002). The development of chaotic advection. Phys. Fluids 14, 1315–25 CrossRefGoogle Scholar
Aref, H. and Balachandar, S. (1986). Chaotic advection in a Stokes flow. Phys. Fluids 29, 3515–21 CrossRefGoogle Scholar
Aref, H. and Jones, S.W. (1993). Chaotic motion of a solid through ideal fluid. Phys. Fluids 5, 3026–8 CrossRefGoogle Scholar
Aref, H., Jones, S.W., Mofina, S. and Zawadzki, I. (1989). Vortices, kinematics and chaos. Physica D 37, 423–40 CrossRefGoogle Scholar
Aref, H., Rott, N. and Thomann, H. (1992). Grobli's solution of the three-vortex problem. Ann. Rev. Fluid Mech. 24, 1–20 CrossRefGoogle Scholar
Arnold, V.I. (1978). Mathematical Methods of Classical Mechanics. Springer.CrossRef
Arnold, V.I. and Avez, A. (1968). Ergodic Problems of Classical Mechanics. W.A. Benjamin, Inc.
Augenbaum, J.M. (1989). An adaptive pseudospectral method for discontinuous problems. Appl. Numer. Math. 5, 459–80 CrossRefGoogle Scholar
Axelsson, O. (1996). Iterative Solution Methods. Cambridge University Press.
Bagchi, P. and Balachandar, S. (2002a). Shear versus vortex-induced lift force on a rigid sphere at moderate Re. J. Fluid Mech. 473, 379–88 Google Scholar
Bagchi, P. and Balachandar, S. (2002b). Effect of free rotation on the motion of a solid sphere in linear shear flow at moderate Re. Phys. Fluids 14, 2719–37 Google Scholar
Bagchi, P. and Balachandar, S. (2002c). Steady planar straining flow past a rigid sphere at moderate Reynolds number. J. Fluid Mech. 466, 365–407 Google Scholar
Bagchi, P. and Balachandar, S. (2003). Effect of turbulence on the drag and lift of a particle. Phys. Fluids 15(11), 3496–513 CrossRefGoogle Scholar
Bagchi, P. and Balachandar, S. (2004). Response of the wake of an isolated particle to an isotropic turbulent flow. J. Fluid Mech. 518, 95–123 CrossRefGoogle Scholar
Bai-Lin, H. (1984). Chaos. World Scientific Publishing Co.
Balachandar, S. and Eaton, J.K. (2010). Turbulent dispersed multiphase flow. Ann. Rev. Fluid Mech. 42, 111–33 CrossRefGoogle Scholar
Balachandar, S. and Maxey, M.R. (1989). Methods for evaluating fluid velocities in spectral simulations of turbulence. J. Comp. Phys. 83(1), 96–125 CrossRefGoogle Scholar
Ballal, B.Y. and Rivlin, R.S. (1976). Flow of a Newtonian fluid between eccentric rotating cylinders: inertial effects. Arch. Rational Mech. Anal. 62(3), 237–94 CrossRefGoogle Scholar
Barenblatt, G.I. (1996). Scaling, Self-similarity, and Intermediate Asymptotics: Dimensional Analysis and Intermediate Asymptotics. Cambridge University Press.CrossRef
Bashforth, F. and Adams, J.C. (1883). An Attempt to Test the Theories of Cap- illary Action: By Comparing the Theoretical and Measured Forms of Drops of Fluid. University Press.
Basset, A.B. (1888). A Treatise on Hydrodynamics. Deighton, Bell and Company.
Batchelor, G.K. (1967). An Introduction to Fluid Dynamics. Cambridge Univer- sity Press.
Ben-Jacob, E. and Garik, P. (1990). The formation of patterns in non-equilibrium growth. Nature 343, 523–30 CrossRefGoogle Scholar
Berry, M.V., Percival, I.C. and Weiss, N.O. (1987). Dynamical Chaos. The Royal Society, London. (First published as Proc. R. Soc. London A 413, 1–199)
Birkhoff, G. and Fisher, J. (1959). Do vortex sheets roll up? Rend. Circ. Mat. Palermo 8, 77–90
Boris, J.P. (1989). New directions in computational fluid dynamics. Ann. Rev. Fluid Mech. 21, 345–85 CrossRefGoogle Scholar
Boussinesq, J. (1885). Sur la résistance qu'oppose un liquide indéfini au repos au mouvement varié d'une sphére solide. C. R. Acad. Sci. Paris 100, 935–7 Google Scholar
Boyd, J.P. (2001). Chebyshev and Fourier Spectral Methods. Courier Dover Publications.
Brachet, M.E., Meiron, D.I., Orszag, S.A., Nickel, B.G., Morf, R.H. and Frisch, U. (1983). Small scale structure of the Taylor–Green vortex. J. Fluid Mech. 130, 411–52 CrossRef
Brown, D.L., Cortez, R. and Minion, M.L. (2001). Accurate projection methods for the incompressible Navier–Stokes equations. J. Comput. Phys. 168(2), 464– 99.CrossRefGoogle Scholar
Brucato, A., Grisafi, F. and Montante, G. (1998). Particle drag coefficients in turbulent fluids. Chem. Eng. Sci. 53, 3295–314 CrossRefGoogle Scholar
Calhoun, D. and Leveque, R.J. (2000). A Cartesian grid finite-volume method for the advection–diffusion equation in irregular geometries. J. Comput. Phys. 157, 143–80 CrossRefGoogle Scholar
Canuto, C., Hussaini, M.Y., Quarteroni, A. and Zang, T.A. (2006). Spectral Methods in Fluid Dynamics. Springer.
Carnahan, B., Luther, H.A. and Wilkes, J.O. (1969). Applied Numerical Methods. Wiley.
Chaiken, J., Chevray, R., Tabor, M. and Tan, Q.M. (1986). Experimental study of Lagrangian turbulence in a Stokes flow. Proc. R. Soc. London A 408, 165–74 CrossRefGoogle Scholar
Chaiken, J., Chu, C.K., Tabor, M. and Tan, Q.M. (1987). Lagrangian turbulence and spatial complexity in a Stokes flow. Phys. Fluids 30, 687–94 CrossRefGoogle Scholar
Chandrasekhar, S. (1961). Hydrodynamic and Hydromagnetic Stability. Oxford University Press.
Chang, E.J. and Maxey, M.R. (1994). Unsteady flow about a sphere at low to moderate Reynolds number. Part 1: Oscillatory motion. J. Fluid Mech. 277, 347–79 Google Scholar
Chapra, S.C. (2002). Numerical Methods for Engineers, 4th edn. McGraw–Hill.
Chorin, A.J. (1968). Numerical solution of the Navier–Stokes equations. Math. Comput. 22, 745–62 CrossRefGoogle Scholar
Chorin, A.J. (1976). Random choice solution of hyperbolic systems. J. Comp. Phys. 22(4), 517–33 CrossRefGoogle Scholar
Chung, T.J. (2010). Computational Fluid Dynamics. Cambridge University Press.CrossRef
Clift, R., Grace, J.R. and Weber, M.E. (1978). Bubbles, Drops and Particles. Academic Press.
Cochran, W.G. (1934). The flow due to a rotating disk. Proc. Camb. Phil. Soc. 30, 365–75 Google Scholar
Collatz, L. (1960). The Numerical Treatment of Differential Equations. Springer.
Cossu, C. and Loiseleux, T. (1998). On the convective and absolute nature of instabilities in finite difference numerical simulations of open flows. J. Comp. Phys. 144(1), 98–108 CrossRefGoogle Scholar
Criminale, W.O., Jackson, T.L. and Joslin, R.D. (2003). Theory and Computa- tion of Hydrodynamic Stability. Cambridge University Press.
Crutchfield, J.P., Farmer, J.D., Packard, N.H. and Shaw, R.S. (1986). Chaos. Sci. Amer. 255, 46–57 CrossRefGoogle Scholar
Curle, N. (1957). On hydrodynamic stability in unlimited fields of viscous flow. Proc. Royal Soc. London A 238, 489–501 CrossRefGoogle Scholar
Curry, J.H., Garnett, L. and Sullivan, D. (1983). On the iteration of a rational function: computer experiments with Newton's method. Comm. Math. Phys. 91, 267–77 CrossRefGoogle Scholar
Curry, J.H., Herring, J.R., Loncaric, J. and Orszag, S.A. (1984). Order and disorder in two- and three-dimensional Benard convection. J. Fluid Mech. 147, 1–38 CrossRefGoogle Scholar
Dandy, D.S. and Dwyer, H.A. (1990). A sphere in shear flow at finite Reynolds number: effect of shear on particle lift, drag and heat transfer. J. Fluid Mech. 216, 381–410 CrossRefGoogle Scholar
Devaney, R.L. (1989). An Introduction to Chaotic Dynamical Systems, 2nd edn. Addison–Wesley.
Deville, M.O., Fischer, P.F. and Mund, E.H. (2002). High-order Methods for Incompressible Fluid Flow. Cambridge University Press.CrossRef
Dombre, T., Frisch, U., Greene, J.M., Hénon, M., Mehr, A. and Soward A.M. (1986). Chaotic streamlines and Lagrangian turbulence: the ABC flows. J. Fluid Mech. 167, 353–91
Dongarra, J.J., Croz, J.D., Hammarling, S. and Duff, I.S. (1990). A set of level 3 basic linear algebra subprograms. ACM Trans. Math. Software (TOMS) 16(1), 1–17 CrossRefGoogle Scholar
Donnelly, R.J. (1991). Taylor–Couette flow: the early days. Phys. Today, Novem- ber, 32–9 CrossRef
Drazin, P.G. and Reid, W.H. (2004). Hydrodynamic Stability, 2nd edn. Cambridge University Press.
Eckhardt, B. and Aref, H. (1988). Integrable and chaotic motions of four vortices V. Collision dynamics of vortex pairs. Phil. Trans. Royal Soc. London A 326, 655–96 Google Scholar
Edelsbrunner, H. (2001). Geometry and Topology for Mesh Generation. Cambridge University Press.CrossRef
Eiseman, P.R. (1985). Grid generation for fluid mechanics computations. Ann. Rev. Fluid Mech. 17, 4875–22 CrossRefGoogle Scholar
Emmons, H.W. (1970). Critique of numerical modelling of fluid mechanics phe- nomena. Ann. Rev. Fluid Mech. 2, 15–37 Google Scholar
Eswaran, V. and Pope, S.B. (1988). An examination of forcing in direct numerical simulations of turbulence. Comp. Fluid. 16(3), 257–78 CrossRefGoogle Scholar
Evans, G., Blackledge, J. and Yardley, P. (2012). Numerical Methods for Partial Differential Equations. Springer.
Fadlun, E.A., Verzicco, R., Orlandi, P. and Mohd-Yusof, J. (2000). Combined immersed-boundary finite-difference methods for three-dimensional complex flow simulations. J. Comput. Phys. 161, 35–60 CrossRefGoogle Scholar
Fatou, P. (1919). Sur les equations fontionelles. Bull. Soc. Math. France 47, 161–271 also 48, 33–94 208–314 Google Scholar
Feigenbaum, M.J. (1978). Quantitative universality for a class of non-linear transformations. J. Stat. Phys. 19, 25–52 Google Scholar
Feigenbaum, M.J. (1980). The metric universal properties of period doubling bifurcations and the spectrum for a route to turbulence. Ann. N.Y. Acad. Sci. 357, 330–6 CrossRefGoogle Scholar
Ferziger, J.H. and Peric, M. (2012). Computational Methods for Fluid Dynamics. Springer.
Fink, P.T. and Soh, W.K. (1978). A new approach to roll-up calculations of vortex sheets. Proc. Royal Soc. London A 362, 195–209 CrossRefGoogle Scholar
Finlayson, B.A. and Scriven, L.E. (1966). The method of weighted residuals: a review. Appl. Mech. Rev. 19(9), 735–48 Google Scholar
Finn, R. (1986). Equilibrium Capillary Surfaces. Springer.CrossRef
Fischer, P.F., Leaf, G.K. and Restrepo, J.M. (2002). Forces on particles in oscil- latory boundary layers. J. Fluid Mech. 468, 327–47 Google Scholar
Fjørtoft, R. (1950). Application of Integral Theorems in Deriving Criteria of Stability for Laminar Flows and for the Baroclinic Circular Vortex. Geofysiske Publikasjoner, Norske Videnskaps-Akademii Oslo.
Fletcher, C.A.J. (1991). Computational Techniques for Fluid Dynamics, Vol I and II. Springer.
Fornberg, B. (1988). Steady viscous flow past a sphere at high Reynolds numbers. J. Fluid Mech. 190, 471.CrossRefGoogle Scholar
Fornberg, B. (1998). A Practical Guide to Pseudospectral Methods. Cambridge University Press.
Fox, R.O. (2012). Large-eddy-simulation tools for multiphase flows. Ann. Rev. Fluid Mech. 44, 47–76 CrossRefGoogle Scholar
Franceschini, V. and Tebaldi, C. (1979). Sequences of infinite bifurcations and turbulence in a five-mode truncation of the Navier–Stokes equations. J. Stat. Phys. 21(6), 707–26 CrossRefGoogle Scholar
Funaro, D. (1992). Polynomial Approximation of Differential Equations. Springer.
Gatignol, R. (1983). The Faxén formulas for a rigid particle in an unsteady non-uniform Stokes-flow. J. Mécanique Théorique Appliquée 2(2), 143–60 Google Scholar
Gear, C.W. (1971). Numerical Initial Value Problems in Ordinary Differential Equations. Prentice–Hall.
Ghia, U.K.N.G., Ghia, K.N. and Shin, C.T. (1982). High-Re solutions for incom- pressible flow using the Navier–Stokes equations and a multigrid method. J. Comp. Phys. 48(3), 387–411 Google Scholar
Glendinning, P. (1994). Stability, Instability and Chaos: an Introduction to the Theory of Nonlinear Differential Equations. Cambridge University Press.CrossRef
Glowinski, R. and Pironneau, O., (1992). Finite element methods for Navier– Stokes equations. Ann. Rev. Fluid Mech. 24, 167–204 CrossRefGoogle Scholar
Godunov, S.K. (1959). A finite difference method for the numerical computation of discontinuous solutions of the equations of fluid dynamics. Math. Sbornik 47, 271–306 Translated as US Joint Publ. Res. Service, JPRS 7226 (1969).Google Scholar
Goldstein, D., Handler, R. and Sirovich, L. (1993). Modeling a no-slip flow boundary with an external force field. J. Comput. Phys. 105, 354–66 CrossRefGoogle Scholar
Goldstine, H.H. (1972). The Computer from Pascal to Von Neumann. Princeton University Press.
Gollub, J.P. and Benson, S.V. (1980). Many routes to turbulent convection. J. Fluid Mech. 100, 449–70 CrossRefGoogle Scholar
Golub, G.H. (ed.) (1984). Studies in Numerical Analysis. The Mathematical Association of America.
Golub, G.H. and Kautsky, J. (1983). Calculation of Gauss quadratures with multiple free and fixed knots. Numerische Mathematik 41(2), 147–63 CrossRefGoogle Scholar
Golub, G.H. and van Loan, C.F. (2012). Matrix Computations. Johns Hopkins University Press.
Gore, R.A. and Crowe, C.T. (1990). Discussion of particle drag in a dilute tur- bulent two-phase suspension flow. Int. J. Multiphase Flow 16, 359–61 Google Scholar
Gottlieb, D. and Orszag, S.A. (1983). Numerical Analysis of Spectral Methods: Theory and Applications. SIAM.
Guermond, J.L., Minev, P. and Shen, J. (2006). An overview of projection meth- ods for incompressible flows. Comp. Meth. Appl. Mech. Eng. 195(44), 6011–45 Google Scholar
Gustafsson, B., Kreis, H.-O. and Sundstrøm, A. (1972). Stability theory of dif- ference approximations for mixed initial boundary value problems, II. Math. Comput. 26, 649–86 Google Scholar
Hamming, R.W. (1973). Numerical Methods for Scientists: No-slip Engineers, 2nd edn. McGraw–Hill. (Republished by Dover Publications, 1986.)
Harrison, W.J. (1908). The influence of viscosity on the oscillations of superposed fluids. Proc. London Math. Soc. 6, 396–405 CrossRefGoogle Scholar
Hartland, S. and Hartley, R.W. (1976). Axisymmetric Fluid–Liquid Interfaces. Elsevier Scientific.
Hartree, D.R. (1937). On an equation occurring in Falkner and Skan's approxi- mate treatment of the equations of the boundary layer. Proc. Camb. Phil. Soc. 33, 223–39 Google Scholar
Hénon, M. (1969). Numerical study of quadratic area-preserving mappings. Q. Appl. Math. 27, 291–312 CrossRef
Hénon, M. (1982). On the numerical computation of Poincaré maps. Physica D 5, 412–4 CrossRefGoogle Scholar
Higdon, J.J.L. (1985). Stokes flow in arbitrary two-dimensional domains: shear flow over ridges and cavities. J. Fluid Mech. 159, 195–226 CrossRef
Hildebrand, F.B. (1974). Introduction to Numerical Analysis, 2nd edn. McGraw– Hill. (Republished by Dover Publications).
Hirsch, C. (2007). Numerical Computation of Internal and External Flows: the Fundamentals of Computational Fluid Dynamics, 2nd edn. Butterworth– Heinemann.
Hirsch, M.W., Smale, S. and Devaney, R.L. (2004). Differential Equations, Dy- namical Systems, and an Introduction to Chaos. Academic Press.
Holt, M. (1977). Numerical Methods in Fluid Dynamics. Springer.CrossRef
Howard, L.N. (1958). Hydrodynamic stability of a jet. J. Math. Phys. 37(1), 283–98 CrossRefGoogle Scholar
Huntley, H.E. (1967). Dimensional Analysis. Dover Publications.
Johnson, T.A. and Patel, V.C. (1999). Flow past a sphere up to a Reynolds number of 300. J. Fluid Mech. 378, 19–70 CrossRefGoogle Scholar
Julia, G. (1918). Memoire sur l'iteration des fonctions rationelles. J. Math. Pures Appl. 4, 47–245 Google Scholar
Kac, M. (1938). Sur les fonctions 2nt−[2nt]− 1. J. London Math. Soc. 13, 131–4 Google Scholar
Kamath, V. and Prosperetti, A. (1989). Numerical integration methods in gas– bubble dynamics. J. Acoust. Soc. Amer. 85, 1538–48 CrossRefGoogle Scholar
Karniadakis, G.E. and Sherwin, S. (2013). Spectral/hp Element Methods for Computational Fluid Dynamics. Oxford University Press.
Karniadakis, G.E. and Triantafyllou, G.E. (1992). Three-dimensional dynamics and transition to turbulence in the wake of bluff objects. J. Fluid Mech. 238, 1–30 CrossRefGoogle Scholar
Karniadakis, G.E., Israeli, M. and Orszag, S.A. (1991). High-order splitting methods for the incompressible Navier–Stokes equations. J. Comput. Phys. 97, 414–43 CrossRefGoogle Scholar
Keller, H.B. (1968). Numerical Methods for Two-point Boundary-value Problems. Dover Publications.
Kida, S. and Takaoka, M. (1987). Bridging in vortex reconnection. Phys. Fluids 30(10), 2911–4 CrossRefGoogle Scholar
Kim, D. and Choi, H. (2002). Laminar flow past a sphere rotating in the stream- wise direction. J. Fluid Mech. 461, 365–86 Google Scholar
Kim, J. and Moin, P. (1985). Application of a fractional-step method to incom- pressible Navier–Stokes equations. J. Comp. Phys. 59, 308–23 Google Scholar
Kim, I., Elghobashi, S. and Sirignano, W.A. (1998). Three-dimensional flow over 3-spheres placed side by side. J. Fluid Mech. 246, 465–88 Google Scholar
Kim, J., Kim, D. and Choi, H. (2001). An immersed-boundary finite-volume method for simulations of flow in complex geometries. J. Comput. Phys. 171, 132–50 CrossRefGoogle Scholar
Kirchhoff, G.R. (1876). Vorlesungen Uber Mathematische Physik, Vol. 1. Teubner.
Knapp, R.T., Daily, J.W. and Hammitt, F.G. (1979). Cavitation. Institute for Hydraulic Research.
Knuth, D.E. (1981). The Art of Computer Programming, 2nd edn., Vol. 2. Addison–Wesley.
Kopal, Z. (1961). Numerical Analysis. Chapman and Hall.
Kozlov, V.V. and Onischenko, D.A. (1982). Nonintegrability of Kirchhoff's equa- tions. Sov. Math. Dokl. 26, 495–8 Google Scholar
Krasny, R. (1986a). A study of singularity formation in a vortex sheet by the point-vortex approximation. J. Fluid Mech. 167, 65–93 Google Scholar
Krasny, R. (1986b). Desingularization of periodic vortex sheet roll-up. J. Com- put. Phys. 65, 292–313 Google Scholar
Kreiss, H.-O. and Oliger, J. (1972). Comparison of accurate methods for the integration of hyperbolic equations. Tellus 24(3), 199–215 Google Scholar
Krishnan, G.P. and Leighton Jr, D.T. (1995). Inertial lift on a moving sphere in contact with a plane wall in a shear flow. Phys. Fluids 7(11), 2538–45 CrossRefGoogle Scholar
Kurose, R. and Komori, S. (1999). Drag and lift forces on a rotating sphere in a linear shear flow. J. Fluid Mech. 384, 183–206 CrossRefGoogle Scholar
Lamb, Sir H. (1932). Hydrodynamics, 6th edn. Cambridge University Press.
Lanczos, C. (1938). Trigonometric interpolation of empirical and analytical func- tions. J. Math. Phys. 17, 123–99 Google Scholar
Landau, L.D. and Lifshitz, E.M. (1987). Fluid Mechanics, 2nd edn. Pergamon Press.
Ledbetter, C.S. (1990). A historical perspective of scientific computing in Japan and the United States. Supercomputing Rev. 3(11), 31–7 Google Scholar
Lee, H. and Balachandar, S. (2010). Drag and lift forces on a spherical particle moving on a wall in a shear flow at finite Re. J. Fluid Mech. 657, 89–125 CrossRefGoogle Scholar
Lee, H. and Balachandar, S. (2017). Effects of wall roughness on drag and lift forces of a particle at finite Reynolds number. Int. J. Multiphase Flow. 88, 116–132 CrossRefGoogle Scholar
Lee, H., Ha, M.Y. and Balachandar, S. (2011). Rolling/sliding of a particle on a flat wall in a linear shear flow at finite Re. Int. J. Multiphase Flow 37(2), 108–124 CrossRefGoogle Scholar
Legendre, D. and Magnaudet, J. (1998). The lift force on a spherical bubble in a viscous linear shear flow. J. Fluid Mech. 368, 81–126 CrossRefGoogle Scholar
Leighton, D. and Acrivos, A. (1985). The lift on a small sphere touching a plane in the presence of a simple shear flow. ZAMP 36(1), 174–8 CrossRefGoogle Scholar
Lele, S.K. (1992). Compact finite difference schemes with spectral-like resolution. J. Comp. Phys. 103(1), 16–42 CrossRefGoogle Scholar
Leonard, B.P. (1979). A stable and accurate convective modelling procedure based on quadratic upstream interpolation. Comp. Meth. Appl. Mech. Eng. 19(1), 59–98 CrossRefGoogle Scholar
LeVeque, R.J. (2007). Finite Difference Methods for Ordinary and Partial Dif- ferential Equations: Steady-state and Time-dependent Problems. SIAM.
LeVeque, R.J. and Li, Z. (1994). The immersed interface method for elliptic equations with discontinuous coefficients and singular sources. SIAM J. Nu- mer. Anal. 31, 1019.CrossRefGoogle Scholar
Li, T.Y. and Yorke, J.A. (1975). Period three implies chaos. Amer. Math. Monthly 82, 985–92 CrossRefGoogle Scholar
Lighthill, M.J. (1978). Waves in Fluids. Cambridge University Press.
Lin, C.C. (1943). On the Motion of Vortices in Two Dimensions. University of Toronto Press.
Liseikin, V.D. (2009). Grid Generation Methods. Springer.
Lorenz, E.N. (1963). Deterministic nonperiodic flow. J. Atmos. Sci. 20(2), 130– 41.2.0.CO;2>CrossRefGoogle Scholar
Luke, Y.L. (1969). The Special Functions and their Approximations. Academic Press.
Lundgren, T.S. and Pointin, Y.B. (1977). Statistical mechanics of two- dimensional vortices. J. Stat. Phys. 17, 323–55 CrossRefGoogle Scholar
MacCormack, R.W. (1969). The effect of viscosity in hypervelocity impact cra- tering. AIAA Paper 69–354
MacCormack, R.W. and Lomax, H. (1979). Numerical solution of compressible viscous flows. Ann. Rev. Fluid Mech. 11, 289–316 CrossRefGoogle Scholar
Mack, L.M. (1976). A numerical study of the temporal eigenvalue spectrum of the Blasius boundary layer. J. Fluid Mech. 73(3), 497–520 CrossRefGoogle Scholar
MacKay, R.S. and Meiss, J.D. (1987). Hamiltonian Dynamical Systems: A Reprint Selection. Adam Hilger.
Maeder, R.E. (1995). Function iteration and chaos. Math. J. 5, 28–40 Google Scholar
Magnaudet, J., Rivero, M. and Fabre, J. (1995). Accelerated flows past a rigid sphere or a spherical bubble. Part 1: Steady straining flow. J. Fluid Mech. 284, 97–135 Google Scholar
Mandelbrot, B.B. (1980). Fractal aspects of z → Λz(1 − z) for complex Λ and z. Ann. N.Y. Acad. Sci. 357, 249–59 CrossRefGoogle Scholar
Mandelbrot, B.B. (1983). The Fractal Geometry of Nature. Freeman.CrossRef
Marella, S., Krishnan, S.L.H.H., Liu, H. and Udaykumar, H.S. (2005). Sharp interface Cartesian grid method I: an easily implemented technique for 3D moving boundary computations. J. Comp. Phys. 210(1), 1–31 CrossRefGoogle Scholar
Matsuda, K., Onishi, R., Hirahara, M., Kurose, R., Takahashi, K. and Komori, S. (2014). Influence of microscale turbulent droplet clustering on radar cloud observations. J. Atmos. Sci. 71(10), 3569–82 CrossRefGoogle Scholar
Maxey, M.R. and Riley, J.J. (1983). Equation of motion for a small rigid sphere in a non-uniform flow. Phys. Fluids 26(4), 883–9 Google Scholar
May, R.M. (1976). Simple mathematical models with very complicated dynamics. Nature 261, 459–67 CrossRefGoogle Scholar
McLaughlin, J.B. (1991). Inertial migration of a small sphere in linear shear flows. J. Fluid Mech. 224, 261–74 CrossRefGoogle Scholar
McQueen, D.M. and Peskin, C.S. (1989). A three-dimensional computational method for blood flow in the heart. II. Contractile fibers. J. Comput. Phys. 82, 289.CrossRefGoogle Scholar
Mei, R. and Adrian, R.J. (1992). Flow past a sphere with an oscillation in the free-stream and unsteady drag at finite Reynolds number. J. Fluid Mech. 237, 133–74 CrossRefGoogle Scholar
Meiron, D.I., Baker, G.R. and Orszag, S.A. (1982). Analytic structure of vortex sheet dynamics 1. Kelvin–Helmholtz instability. J. Fluid Mech. 114, 283–98 Google Scholar
Mercier, B. (1989). An Introduction to the Numerical Analysis of Spectral Meth- ods. Springer.
Merilees, P.E. (1973). The pseudospectral approximation applied to the shallow water equations on a sphere. Atmosphere 11(1), 13–20 Google Scholar
Mitchell, A.R. and Griffiths, D.F. (1980). The Finite Difference Method in Partial Differential Equations. John Wiley.
Mittal, R. (1999). A Fourier–Chebyshev spectral collocation method for simulat- ing flow past spheres and spheroids. Int. J. Numer. Meth. Fluids 30, 921–37 Google Scholar
Mittal, R. and Balachandar, S. (1996). Direct numerical simulations of flow past elliptic cylinders. J. Comput. Phys. 124, 351–67 CrossRefGoogle Scholar
Mittal, R. and Iaccarino, G. (2005). Immersed boundary methods. Ann. Rev. Fluid Mech. 37, 239–61 CrossRefGoogle Scholar
Mohd-Yusof, J. (1997). Combined immersed boundaries B-spline methods for simulations of flows in complex geometries. CTR Annual Research Briefs. NASA Ames, Stanford University.
Moin, P. (2010a). Fundamentals of Engineering Numerical Analysis. Cambridge University Press.
Moin, P. (2010b). Engineering Numerical Analysis. Cambridge University Press.
Moin, P. and Krishnan, M. (1998). Direct numerical simulation: a tool in turbu- lence research. Ann. Rev. Fluid Mech. 30(1), 539–78 Google Scholar
Moore, D.W. (1979). The spontaneous appearance of a singularity in the shape of an evolving vortex sheet. Proc. Royal Soc. London A 365, 105–19 CrossRefGoogle Scholar
Morton, K.W. (1980). Stability of finite difference approximations to a diffusion– convection equation. Int. J. Numer. Method. Eng. 15(5), 677–83 CrossRefGoogle Scholar
Moser, J. (1973). Stable and Random Motions in Dynamical Systems. Ann. Math. Studies No.77. Princeton University Press.
Onsager, L. (1949). Statistical hydrodynamics. Nuovo Cim. 6 (Suppl.), 279–87 CrossRefGoogle Scholar
Orszag, S.A. (1969). Numerical methods for the simulation of turbulence. Phys. Fluids 12(12), Supp. II, 250–7 CrossRefGoogle Scholar
Orszag, S.A. (1970). Transform method for the calculation of vector-coupled sums: application to the spectral form of the vorticity equation. J. Atmos. Sci. 27(6), 890–5 2.0.CO;2>CrossRefGoogle Scholar
Orszag, S.A. (1974). Fourier series on spheres. Monthly Weather Rev. 102(1), 56–75 2.0.CO;2>CrossRefGoogle Scholar
Orszag, S.A. and Israeli, M. (1974). Numerical simulation of viscous incompress- ible flows. Ann. Rev. Fluid Mech. 6, 281–318 Google Scholar
Orszag, S.A. and McLaughlin, N.N. (1980). Evidence that random behavior is generic for nonlinear differential equations. Physica D 1, 68–79 CrossRefGoogle Scholar
Orszag, S.A. and Patterson Jr, G.S. (1972). Numerical simulation of three- dimensional homogeneous isotropic turbulence. Phys. Rev. Lett. 28(2), 76.CrossRefGoogle Scholar
Orszag, S.A., Israeli, M. and Deville, M. (1986). Boundary conditions for incom- pressible flows. J. Sci. Comput. 1, 75–111 Google Scholar
Oseen, C.W. (1927). Hydrodynamik. Akademische Verlagsgesellschaft.
Ottino, J.M. (1989). The Kinematics of Mixing: Stretching, Chaos and Trans- port. Cambridge University Press.
Patterson, G. (1978). Prospects for computational fluid mechanics. Ann. Rev. Fluid Mech. 10, 289–300 CrossRefGoogle Scholar
Peaceman, D.W. and Rachford Jr, H.H. (1955). The numerical solution of parabolic and elliptic differential equations. J. Soc. Indus. Appl. Math. 3(1), 28–41 CrossRefGoogle Scholar
Peitgen, H.-O. and Richter, P.H. (1986). The Beauty of Fractals. Springer.CrossRef
Peitgen, H.-O. and Saupe, D. (eds.) (1988). The Science of Fractal Images. Springer.
Peitgen, H.-O., Saupe, D. and Haessler, F.V. (1984). Cayley's problem and Julia sets. Math. Intelligencer 6, 11–20 CrossRefGoogle Scholar
Pember, R.B., Bell, J.B., Colella, P., Crutchfield, W.Y. and Welcome, M.L. (1995). An adaptive Cartesian grid method for unsteady compressible flow in irregular regions. J. Comput. Phys. 120, 278–304 CrossRefGoogle Scholar
Perot, J.B. (1993). An analysis of the fraction step method. J. Comput. Phys. 108, 51–8 Google Scholar
Peskin, C.S. (1977). Numerical analysis of blood flow in the heart. J. Comput. Phys. 25, 220–52 CrossRefGoogle Scholar
Peyret, R. and Taylor, T.D. (1983). Computational Methods for Fluid Flow. Springer.CrossRef
Pinelli, A., Naqavi, I.Z., Piomelli, U. and Favier, J. (2010). Immersed-boundary methods for general finite-difference and finite-volume Navier–Stokes solvers. J. Comp. Phys. 229(24), 9073–91 CrossRefGoogle Scholar
Pirozzoli, S. (2011). Numerical methods for high-speed flows. Ann. Rev. Fluid Mech. 43, 163–94 CrossRefGoogle Scholar
Plesset, M.S. and Prosperetti, A. (1977). Bubble dynamics and cavitation. Ann. Rev. Fluid Mech. 9, 145–85 CrossRefGoogle Scholar
Pletcher, R.H., Tannehill, J.C. and Anderson, D. (2012). Computational Fluid Mechanics and Heat Transfer. CRC Press.
Pozrikidis, C. (2011). Introduction to Theoretical and Computational Fluid Dy- namics. Oxford University Press.
Pozrikidis, C. and Higdon, J.J.L. (1985). Nonlinear Kelvin–Helmholtz instability of a finite vortex layer. J. Fluid Mech. 157, 225–63 CrossRefGoogle Scholar
Press, W.H., Flannery, B.P., Teukolsky, S.A. and Vetterling, W.T. (1986). Nu- merical Recipes: The Art of Scientific Programming. Cambridge University Press.
Prosperetti, A. and Tryggvason, G. (eds.) (2009). Computational Methods for Multiphase Flow. Cambridge University Press.
Proudman, I. and Pearson, J.R.A. (1957). Expansions at small Reynolds numbers for the flow past a sphere and a circular cylinder. J. Fluid Mech. 2(3), 237–62 CrossRefGoogle Scholar
Rayleigh, Lord (1880). On the stability, or instability, of certain fluid motions. Proc. London Math. Soc. 11, 57–72 Google Scholar
Rice, J.R. (1983). Numerical Methods, Software, and Analysis, IMSL Reference Edition. McGraw–Hill.
Richtmyer, R.D., and Morton, K.W. (1994). Difference Methods for Initial-Value Problems, 2nd edn. Krieger Publishing Co.
Roache, P.J. (1976). Computational Fluid Dynamics. Hermosa.
Roberts, K.V. and Christiansen, J.P. (1972). Topics in computational fluid mechanics. Comput. Phys. Comm. 3(Suppl.), 14–32 CrossRefGoogle Scholar
Roe, P.L. (1986). Characteristic-based schemes for the Euler equations. Ann. Rev. Fluid Mech. 18, 337–65 CrossRefGoogle Scholar
Roma, A.M., Peskin, C.S. and Berger, M.J. (1999). An adaptive version of the immersed boundary method. J. Comp. Phys. 153(2), 509–34 CrossRefGoogle Scholar
Rosenblum, L.J. (1995). Scientific visualization: advances and challenges. IEEE Comp. Sci. Eng. 2(4), 85.Google Scholar
Rosenhead, L. (1931). The formation of vortices from a surface of discontinuity. Proc. Roy. Soc. London Ser. A 134, 170–92 CrossRefGoogle Scholar
Rosenhead, L. (ed.) (1963). Laminar Boundary Layers. Oxford University Press.
Rudoff, R.C. and Bachalo, W.D. (1988) Measurement of droplet drag coefficients in polydispersed turbulent flow fields. AIAA Paper, 88–0235 CrossRef
Saad, Y. (2003). Iterative Methods for Sparse Linear Systems. SIAM.CrossRef
Saff, E.B. and Kuijlaars, A.B. (1997). Distributing many points on a sphere. Math. Intelligencer 19(1), 5–11 CrossRefGoogle Scholar
Saffman, P.G. (1965). The lift on a small sphere in a slow shear flow. J. Fluid Mech.. 22, 385–400 CrossRefGoogle Scholar
Saiki, E.M. and Biringen, S. (1996). Numerical simulation of a cylinder in uniform flow: application of a virtual boundary method. J. Comput. Phys. 123, 450–65 CrossRefGoogle Scholar
Sankagiri, S. and Ruff, G.A. (1997). Measurement of sphere drag in high turbu- lent intensity flows. Proc. ASME FED. 244, 277–82 Google Scholar
Sansone, G. (1959). Orthogonal Functions. Courier Dover Publications.
Sato, H. and Kuriki, K. (1961). The mechanism of transition in the wake of a thin flat plate placed parallel to a uniform flow. J. Fluid Mech. 11(3), 321–52 CrossRefGoogle Scholar
Schlichting, H. (1968). Boundary-Layer Theory. McGraw–Hill.
Shampine, L.F. and Gordon, M.K. (1975). Computer Solution of Ordinary Dif- ferential Equations. W.H. Freeman and Co.
Shirayama, S. (1992). Flow past a sphere: topological transitions of the vorticity field. AIAA J. 30, 349–58 CrossRefGoogle Scholar
Shu, S.S. (1952). Note on the collapse of a spherical cavity in a viscous, incom- pressible fluid. In Proc. First US Nat. Congr. Appl. Mech. ASME, pp. 823–5
Siemieniuch, J.L. and I., Gladwell. (1978). Analysis of explicit difference methods for a diffusion–convection equation. Int. J. Numer. Method. Eng. 12(6), 899– 916.CrossRefGoogle Scholar
Silcock, G. (1975). On the Stability of Parallel Stratified Shear Flows. PhD Dis- sertation, University of Bristol.
Smereka, P., Birnir, B. and Banerjee, S. (1987). Regular and chaotic bubble oscillations in periodically driven pressure fields. Phys. Fluids 30, 3342–50 CrossRefGoogle Scholar
Smith, G.D. (1985). Numerical Solution of Partial Differential Equations: Finite Difference Methods. Oxford University Press.
Sommerfeld, A. (1964). Mechanics of Deformable Bodies. Academic Press
Spalart, P.R. (2009). Detached-eddy simulation. Ann. Rev. Fluid Mech. 41, 181– 202.CrossRefGoogle Scholar
Squire, H.B. (1933). On the stability for three-dimensional disturbances of vis- cous fluid flow between parallel walls. Proc. Roy. Soc. London A 142, 621–8 Google Scholar
Stewartson, K. (1954). Further solutions of the Falkner–Skan equation. Math. Proc. Cambridge Phil. Soc. 50(3), 454–65 CrossRefGoogle Scholar
Strang, G. (2016). Introduction to Linear Algebra, 5th edn. Wellesley-Cambridge Publishers.
Streett, C.L. and Macaraeg, M. (1989). Spectral multi-domain for large-scale fluid dynamics simulations. Appl. Numer. Math. 6, 123–39 CrossRefGoogle Scholar
Struik, D.J. (1961). Lectures on Classical Differential Geometry, 2nd edn. Addison–Wesley. (Reprinted by Dover Publications, 1988.)
Swanson, P.D. and Ottino, J.M. (1990). A comparative computational and exper- imental study of chaotic mixing of viscous fluids. J. Fluid Mech. 213, 227–49 Google Scholar
Taneda, S. (1963). The stability of two-dimensional laminar wakes at low Reynolds numbers. J. Phys. Soc. Japan 18(2), 288–96 CrossRefGoogle Scholar
Temam, R. (1969). Sur l'approximation de la solution des équations de Navier– Stokes par la méthode des pas fractionnaires (II). Arch. Ration. Mech. Anal. 33, 377–85 Google Scholar
Tennetti, S., Garg, R. and Subramaniam, S. (2011). Drag law for monodisperse gas–solid systems using particle-resolved direct numerical simulation of flow past fixed assemblies of spheres. Int. J. Multiphase Flow 37(9), 1072–92 CrossRefGoogle Scholar
Theofilis, V. (2011). Global linear instability. Ann. Rev. Fluid Mech. 43, 319–52 CrossRefGoogle Scholar
Thomas, J.W. (2013). Numerical Partial Differential Equations: Finite Differ- ence Methods. Springer.
Thompson, J.F., Warsi, Z.U.A. and Mastin, C.W. (1982). Boundary-fitted co- ordinate systems for numerical solution of partial differential equations – a review. J. Comp. Phys. 47, 1–108 Google Scholar
Thompson, J.F., Warsi, Z.U.A. and Mastin, C.W. (1985). Numerical Grid Generation. North–Holland.
Tomboulides, A.G. and Orszag, S.A. (2000). Numerical investigation of transi- tional and weak turbulent flow past a sphere. J. Fluid Mech. 416, 45–73 Google Scholar
Toro, E.F. (1999). Riemann Solvers and Numerical Methods for Fluid Dynamics. Springer.CrossRef
Trefethen, L.N. (1982). Group velocity in finite difference schemes. SIAM Rev. 24(2), 113–36 CrossRefGoogle Scholar
Trefethen, L.N. and Embree, M. (2005). Spectra and Pseudospectra: The Behav- ior of Non-normal Matrices and Operators. Princeton University Press.
Tseng, Y.-H. and Ferziger, J.H. (2003). A ghost-cell immersed boundary method for flow in complex geometry. J. Comp. Phys. 192(2), 593–623 CrossRefGoogle Scholar
Udaykumar, H.S., Kan, H.-C., Shyy, W. and Tran-son-Tay, R. (1997). Multiphase dynamics in arbitrary geometries on fixed Cartesian grids. J. Comput. Phys. 137, 366–405 CrossRefGoogle Scholar
Udaykumar, H.S., Mittal, R. and Shyy, W. (1999). Solid–fluid phase front com- putations in the sharp interface limit on fixed grids. J. Comput. Phys. 153, 535–74 Google Scholar
Udaykumar, H.S., Mittal, R., Rampunggoon, P. and Khanna, A. (2001). A sharp interface Cartesian grid method for simulating flows with complex moving boundaries. J. Comput. Phys. 174, 345–80 CrossRefGoogle Scholar
Uhlherr, P.H.T. and Sinclair, C.G. (1970). The effect of freestream turbulence on the drag coefficients of spheres. Proc. Chemca. 1, 1–12 Google Scholar
Uhlmann, M. (2005). An immersed boundary method with direct forcing for the simulation of particulate flows. J. Comp. Phys. 209(2), 448–76 CrossRefGoogle Scholar
Uhlmann, M. and Doychev, T. (2014). Sedimentation of a dilute suspension of rigid spheres at intermediate Galileo numbers: the effect of clustering upon the particle motion. J. Fluid Mech. 752, 310–48 CrossRefGoogle Scholar
Ulam, S.M. and von Neumann, J. (1947). On combinations of stochastic and deterministic processes. Bull. Amer. Math. Soc. 53, 1120.Google Scholar
van de Vooren, A.I. (1980). A numerical investigation of the rolling-up of vortex sheets. Proc. Roy. Soc. London A. 373, 67–91 CrossRefGoogle Scholar
van Dyke, M. (1964). Perturbation Methods in Fluid Mechanics. Academic Press.
van Dyke, M. (1982). An Album of Fluid Motion. Parabolic Press.CrossRef
van Dyke, M. (1994). Computer-extended series. Ann. Rev. Fluid Mech. 16(1), 287–309 Google Scholar
van Kan, J. (1986). A second-order accurate pressure-correction scheme for viscous incompressible flow. SIAM J. Sci. Stat. Comput. 7(3), 870–91 CrossRefGoogle Scholar
van Leer, B. (1974). Towards the ultimate conservative difference scheme. II. Monotonicity and conservation combined in a second-order scheme. J. Comp. Phys. 14(4), 361–70 Google Scholar
Varga, R.S. (1962). Matrix Iterative Methods. Prentice–Hall Inc.
Versteeg, H.K. and Malalasekera, W. (2007). An Introduction to Computational Fluid Dynamics: The Finite Volume Method. Pearson Education.
Vrscay, E.R. (1986). Julia sets and Mandelbrot-like sets associated with higher- order Schröder rational iteration functions: a computer assisted study. Math. Comp. 46, 151–69 Google Scholar
Wang, M., Freund, J.B. and Lele, S.K. (2006). Computational prediction of flow- generated sound. Ann. Rev. Fluid Mech. 38, 483–512 CrossRefGoogle Scholar
Warnica, W.D., Renksizbulut, M. and Strong, A.B. (1994). Drag coefficient of spherical liquid droplets. Exp. Fluids 18, 265–70 Google Scholar
Wazzan, A.R., Okamura, T. and Smith, A.M.O. (1968). The stability of water flow over heated and cooled flat plates. J. Heat Transfer 90(1), 109–14 CrossRefGoogle Scholar
Wendroff, B. (1969). First Principles of Numerical Analysis: An Undergraduate Text. Addison–Wesley.
White, F.M. (1974). Viscous Flow Theory. McGraw–Hill.
Whittaker, E.T. (1937). A Treatise on the Analytical Mechanics of Particles and Rigid Bodies, 4th edn. Cambridge University Press.
Wilkinson, J.H. (1965). The Algebraic Eigenvalue Problem. Clarendon Press.
Yakhot, V., Bayly, B. and Orszag, S.A. (1986). Analogy between hyperscale transport and cellular automaton fluid dynamics. Phys. Fluids 29, 2025–7 CrossRefGoogle Scholar
Ye, T., Mittal, R., Udaykumar, H.S. and Shyy, W. (1999). An accurate Cartesian grid method for viscous incompressible flows with complex immersed bound- aries. J. Comput. Phys. 156, 209–40 Google Scholar
Yee, S.Y. (1981). Solution of Poisson's equation on a sphere by truncated double Fourier series. Monthly Weather Rev. 109(3), 501–5 2.0.CO;2>CrossRefGoogle Scholar
Yeung, P.K. and Pope, S.B. (1988). An algorithm for tracking fluid particles in numerical simulations of homogeneous turbulence. J. Comp. Phys. 79(2), 373–416 CrossRefGoogle Scholar
Young, D.M. (2014). Iterative Solution of Large Linear Systems. Elsevier.
Young, D.M. and Gregory, R.T. (1988). A Survey of Numerical Mathematics, Vols. I and II. Dover Publications.
Zabusky, N.J. (1987). A numerical laboratory. Phys. Today 40, 28–37 Google Scholar
Zabusky, N.J. and Kruskal, M.D. (1965). Interaction of solitons in a collisionless plasma and the recurrence of initial states. Phys. Rev. Lett. 15(6), 240.CrossRefGoogle Scholar
Zabusky, N.J. and Melander, M.V. (1989). Three-dimensional vortex tube recon- nection: morphology for orthogonally-offset tubes. Physica D 37, 555–62 Google Scholar
Zarin, N.A. and Nicholls, J.A. (1971). Sphere drag in solid rockets – non- continuum and turbulence effects. Comb. Sci. Tech. 3, 273–80 CrossRefGoogle Scholar
Zeng, L., Najjar, F., Balachandar, S. and Fischer, P. (2009). Forces on a finite- sized particle located close to a wall in a linear shear flow. Phys. Fluids 21(3), 033302.CrossRefGoogle Scholar
Zhang, L., Gerstenberger, A., Wang, X. and Liu, W.K. (2004). Immersed finite element method. Comp. Meth. Appl. Mech. Eng. 193(21), 2051–67 CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • H. Aref, Virginia Polytechnic Institute and State University, S. Balachandar, University of Florida
  • Book: A First Course in Computational Fluid Dynamics
  • Online publication: 03 October 2017
  • Chapter DOI: https://doi.org/10.1017/9781316823736.010
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • H. Aref, Virginia Polytechnic Institute and State University, S. Balachandar, University of Florida
  • Book: A First Course in Computational Fluid Dynamics
  • Online publication: 03 October 2017
  • Chapter DOI: https://doi.org/10.1017/9781316823736.010
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • H. Aref, Virginia Polytechnic Institute and State University, S. Balachandar, University of Florida
  • Book: A First Course in Computational Fluid Dynamics
  • Online publication: 03 October 2017
  • Chapter DOI: https://doi.org/10.1017/9781316823736.010
Available formats
×