Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-4hhp2 Total loading time: 0 Render date: 2024-05-06T17:40:53.150Z Has data issue: false hasContentIssue false

11 - Plant Diversity and Fire

from Section III - Comparative Ecology, Evolution and Management

Published online by Cambridge University Press:  05 January 2012

Jon E. Keeley
Affiliation:
United States Geological Survey, California
William J. Bond
Affiliation:
University of Cape Town
Ross A. Bradstock
Affiliation:
University of Wollongong, New South Wales
Juli G. Pausas
Affiliation:
Consejo Superior de Investigaciones Cientificas, Madrid
Philip W. Rundel
Affiliation:
University of California, Los Angeles
Get access

Summary

Mediterranean-type climate (MTC) regions are some of the most botanically diverse landscapes in the world (Table 11.1). They are among the 25 global hotspots of diversity in both richness of species and endemics (Myers et al. 2000). Occupying a bit more than 2% of the Earth's surface these landscapes hold 15–20% of the world's total vascular plants (Cowling et al. 1996; Rundel 2004). Between the five regions there is extraordinary variation in temporal and spatial patterns of vascular plant diversity and the relationship between fire and diversity is quite different across the five MTC ecosystems.

Differences between MTC regions are evident at many scales but one of the frequently noted differences is the regional species density or number of species per unit area. To put this in perspective we need to recognize that one of the commonly held generalizations about species diversity is that it increases with area (Fig. 11.1a,b). This species–area relationship is understandable since there are constraints on the number of individuals that can sustainably occupy a given area. Thus, as area increases, the probability of encountering more species increases. However, despite the observation that the number of species increases with increasing area is one of the few “laws” in ecology (Lomolino 2001), there are exceptions. Dissimilar environments often have very different species richness. Thus, this species–area relationship only approaches the status of a “law” when describing patterns in nested samples (Dunn & Loehl 1988); that is, samples of different size taken from within the boundaries of larger samples so that species from the smallest sample unit share environmental features with larger sample units (Box 11.1). There is no clearer demonstration of this than the species–area relationship observed for total regional diversity between the five MTC regions (Fig. 11.1c). The glaring lack of fit to an idealized species–area relationship (Fig. 11.1a) points up some of the important differences in diversity between these MTC regions. These patterns are the result of complex responses to subtle variations in climate, not so subtle variations in geology, and to their interaction with fire, as well as to phylogenetic and biogeographic histories.

Type
Chapter
Information
Fire in Mediterranean Ecosystems
Ecology, Evolution and Management
, pp. 310 - 329
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×