Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-cfpbc Total loading time: 0 Render date: 2024-04-25T01:55:37.351Z Has data issue: false hasContentIssue false

7 - Fire in the Cape Region of South Africa

from Section II - Regional patterns

Published online by Cambridge University Press:  05 January 2012

Jon E. Keeley
Affiliation:
United States Geological Survey, California
William J. Bond
Affiliation:
University of Cape Town
Ross A. Bradstock
Affiliation:
University of Wollongong, New South Wales
Juli G. Pausas
Affiliation:
Consejo Superior de Investigaciones Cientificas, Madrid
Philip W. Rundel
Affiliation:
University of California, Los Angeles
Get access

Summary

South Africa's mediterranean-type climate (MTC) region is the smallest of the five MTC regions, centered in the southwestern corner of the Western Cape Province (Fig. 7.1). This Cape region is dominated by fynbos shrublands (see Fig. 1.6e) but this fynbos biome continues eastward far outside the MTC. The Cape region is unusual in that shrublands dominate under climate regimes that also support forests. Entire landscapes can support alternative ecosystem states. Even the semi-arid areas can support entirely different vegetation: fire-prone shrublands or fire-resistant broadleaf thickets. Perhaps more than any other MTC region, fire plays a central role in determining major vegetation patterns of winter rainfall regions of South Africa. Soils are also thought to be of major importance since much of the Cape's MTC region is on nutrient-poor sandy soils (see Fig. 1.5). A complex interplay between soils, fire and climate and, in the east, large mammal herbivory, determines boundaries of major biomes. The Cape Floristic Region is extremely rich in species with very high levels of endemism (Linder 2003). It is the world's richest temperate flora and is largely restricted to fire-prone ecosystems (Cowling et al. 1996; Linder 2003). So, contrary to the widely held popular belief that fires are an anthropogenic disturbance (e.g. Pillans 1924; Axelrod 1980), or merely incidental to this formation (Hopper 2009), a rich endemic flora has evolved in the Cape whose members are overwhelmingly fire dependent, implying a long history of natural fires as a selective force.

Major Vegetation Patterns

This chapter discusses fire regimes in the Cape region, what little is known of their determinants, and how they influence major vegetation patterns in the region. Though a large number of studies have explored plant responses to fire (reviewed by Bond 1997; Cowling et al. 1997a), these are heavily biased toward fynbos shrublands, the dominant vegetation cover of the region (Fig. 7.2). Fire responses of species belonging to other vegetation types are poorly known. Yet the existence of these other vegetation types is one of the central conundrums of the Cape region. It implies failure of climate alone to explain apparent convergence with other MTC regions (Chapter 1). For example, low shrublands would be expected in deserts replaced, as rainfall progressively increases, by taller shrublands, woodlands and then forests. But this is clearly not the case in the Cape region. The dominant fynbos vegetation shows very little variation in aboveground biomass from arid desert fringes (mean annual precipitation ~250 mm) to rain-drenched high-altitude heathlands (> 3000 mm) (Fig. 7.3). Yet across the entire rainfall gradient fynbos co-occurs with alternative ecosystems with much greater woody biomass. These broadleaf thickets and forests have an entirely different floristic and functional composition and often are restricted to isolated fire-protected refugia (Fig. 7.2; Taylor 1978; Kruger 1979; Cowling et al. 2005; Rebelo et al. 2006). The implication is that apparent convergence of shrubby fynbos growth forms with other MTC plant communities cannot be understood in terms of climate alone and that one needs to think in terms of the climate, fire, geology filter (see Fig. 1.4).

Type
Chapter
Information
Fire in Mediterranean Ecosystems
Ecology, Evolution and Management
, pp. 168 - 200
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×