Skip to main content Accessibility help
×
Hostname: page-component-7479d7b7d-68ccn Total loading time: 0 Render date: 2024-07-13T15:59:04.891Z Has data issue: false hasContentIssue false

Preface to the German Edition

Published online by Cambridge University Press:  01 March 2010

Dietrich Braess
Affiliation:
Ruhr-Universität, Bochum, Germany
Get access

Summary

The method of finite elements is one of the main tools for the numerical treatment of elliptic and parabolic partial differential equations. Because it is based on the variational formulation of the differential equation, it is much more flexible than finite difference methods and finite volume methods, and can thus be applied to more complicated problems. For a long time, the development of finite elements was carried out in parallel by both mathematicians and engineers, without either group acknowledging the other. By the end of the 60's and the beginning of the 70's, the material became sufficiently standardized to allow its presentation to students. This book is the result of a series of such lectures.

In contrast to the situation for ordinary differential equations, for elliptic partial differential equations, frequently no classical solution exists, and we often have to work with a so-called weak solution. This has consequences for both the theory and the numerical treatment. While it is true that classical solutions do exist under approriate regularity hypotheses, for numerical calculations we usually cannot set up our analisis in a framework in which the existence of classical solutions is guaranteed.

One way to get a suitable framework for solving elliptic boundary-value problems using finite elements is to pose them as variational problems. It is our goal in Chapter II to present the simplest possible introduction to this approach. In Sections 1 – 3 we discuss the existence of weak solutions in Sobolev spaces, and explain how the boundary conditions are incorporated into the variational calculation.

Type
Chapter
Information
Finite Elements
Theory, Fast Solvers, and Applications in Solid Mechanics
, pp. xii - xiii
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×