Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-5g6vh Total loading time: 0 Render date: 2024-04-26T09:01:40.771Z Has data issue: false hasContentIssue false

Chapter 15 - In Utero Intervention for Cardiac Disease

from Structural Heart Disease in the Fetus

Published online by Cambridge University Press:  21 October 2019

Mark D. Kilby
Affiliation:
University of Birmingham
Anthony Johnson
Affiliation:
University of Texas Medical School at Houston
Dick Oepkes
Affiliation:
Leids Universitair Medisch Centrum
Get access

Summary

Unlike other fetal therapies, cardiac interventions have not been tested by randomized controlled trials (RCT), such as the one to determine the optimal management of twin-to-twin transfusion syndrome (TTTS) [1]. Most reports of fetal cardiac interventions have no appropriate control subjects and have resulted in level three evidence at best, so their clinical value and generalizability to the fetal population with obstructive cardiac lesions remain uncertain.

Type
Chapter
Information
Fetal Therapy
Scientific Basis and Critical Appraisal of Clinical Benefits
, pp. 146 - 156
Publisher: Cambridge University Press
Print publication year: 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Senat, MV, Deprest, J, Boulvain, M, Paupe, A, Winer, N, Ville, Y. Endoscopic laser surgery versus serial amnioreduction for severe twin-to-twin transfusion syndrome. N Engl J Med. 2004; 351: 136144.Google Scholar
Szwast, A, Tian, Z, McCann, M, Donaghue, D, Rychik, J. Vasoreactive response to maternal hyperoxygenation in the fetus with hypoplastic left heart syndrome. Circ Cardiovasc Imaging. 2010; 3: 172–8.CrossRefGoogle ScholarPubMed
Schidlow, DN, Donofrio, MT. Prenatal maternal hyperoxygenation testing and implications for critical care delivery planning among fetuses with congenital heart disease: early experience. Am J Perinatol. 2018; 35: 1623.Google ScholarPubMed
Kohl, T. Chronic intermittent materno-fetal hyperoxygenation in late gestation may improve on hypoplastic cardiovascular structures associated with cardiac malformations in human fetuses. Pediatr Cardiol. 2010; 31: 250–63.CrossRefGoogle ScholarPubMed
Zeng, S, Zhou, J, Peng, Q, Deng, W, Zhang, M, Zhao, Y, et al. Sustained maternal hyperoxygenation improves aortic arch dimensions in fetuses with coarctation. Sci Rep. 2016; 6: 39304.Google Scholar
Zeng, S, Zhou, J, Peng, Q, Deng, W, Zang, M, Wang, T, Zhou, Q. Sustained chronic maternal hyperoxygenation increases myocardial deformation in fetuses with a small aortic isthmus at risk for coarctation. J Am Soc Echocardiogr. 2017; 30; 9921000.CrossRefGoogle ScholarPubMed
Maxwell, D, Allan, L, Tynan, MJ. Balloon dilatation of the aortic valve in the fetus: a report of two cases. Br Heart J. 1991; 65: 256–8.Google Scholar
Delius, RE, Rademecker, MA, de Leval, MR, Elliott, MJ, Stark, J. Is a high-risk biventricular repair always preferable to conversion to a single ventricle repair? J Thorac Cardiovasc Surg. 1996; 112: 1561–8; discussion 1568–9.Google Scholar
Burch, M, Kaufman, L, Archer, N, Sullivan, I. Persistent pulmonary hypertension late after neonatal aortic valvotomy: a consequence of an expanded surgical cohort. Heart. 2004; 90: 918920.CrossRefGoogle ScholarPubMed
Emani, SM, Bacha, EA, McElhinney, DB, Marx, GR, Tworetzky, W, Pigula, FA, del Nido, PJ. Primary left ventricular rehabilitation is effective in maintaining two-ventricle physiology in the borderline left heart. J Thorac Cardiovasc Surg. 2009; 138: 1276–82.Google Scholar
Tulzer, G, Arzt, W, Franklin, RC, Loughna, PV, Mair, R, Gardiner, HM. Pulmonary valvuloplasty for critical pulmonary stenosis or atresia with intact septum. Lancet. 2002; 360: 1567–8.Google Scholar
Tworetzky, W, McElhinney, DB, Marx, GR, Benson, CB, Brusseau, R, Morash, D, et al. In utero valvuloplasty for pulmonary atresia with hypoplastic right ventricle: techniques and outcomes. Pediatrics. 2009; 124; e510–18.Google Scholar
Marshall, AC, van der Velde, ME, Tworetzky, W, Gomez, CA, Wilkins-Haug, L, Benson, CB, et al. Creation of an atrial septal defect in utero for fetuses with hypoplastic left heart syndrome and intact or highly restrictive atrial septum. Circulation. 2004; 110: 253–8.Google Scholar
Rychik, J, Rome, JJ, Collins, MH, DeCampli, WM, Spray, TL. The hypoplastic left heart syndrome with intact atrial septum: atrial morphology, pulmonary vascular histopathology and outcome. J Am Coll Cardiol. 1999; 34: 554–60.Google Scholar
Taylor, PV, Scott, JS, Gerlis, LM, Esscher, E, Scott, O. Maternal antibodies against fetal cardiac antigens in congenital complete heart block. N Engl J Med. 1986; 315: 667–72.Google Scholar
Eliasson, H, Sonesson, SE, Sharland, G, Granath, F, Simpson, JM, Carvalho, JS, et al. Isolated atrioventricular block in the fetus: a retrospective, multinational, multicenter study of 175 patients. Circulation. 2011; 124: 1919–26.CrossRefGoogle ScholarPubMed
Lopes, LM, Tavares, GM, Damiano, AP, Lopes, MA, Aiello, VD, Schultz, R, Zugaib, M. Perinatal outcome of fetal atrioventricular block: one-hundred-sixteen cases from a single institution. Circulation. 2008; 118: 1268–75.Google Scholar
Jaeggi, ET, Fouron, JC, Silverman, ED, Ryan, G, Smallhorn, J, Hornberger, LK. Transplacental fetal treatment improves the outcome of prenatally diagnosed complete atrioventricular block without structural heart disease. Circulation. 2004; 110: 1542–8.Google Scholar
Carpenter, RJ Jr., Strasburger, JF, Garson, A Jr., Smith, RT, Deter, RL, Engelhardt, HT Jr. Fetal ventricular pacing for hydrops secondary to complete atrioventricular block. J Am Coll Cardiol. 1986; 8: 1434–6.Google Scholar
Walkinshaw, SA, Welch, CR, McCormack, J, Walsh, K. In utero pacing for fetal congenital heart block. Fetal Diagn Ther. 1994; 9: 183–5.Google Scholar
Assad, RS, Zielinsky, P, Kalil, R, Lima, G, Aramayo, A, Santos, A, et al. New lead for in utero pacing for fetal congenital heart block. J Thorac Cardiovasc Surg. 2003; 126: 300–2.CrossRefGoogle ScholarPubMed
Bar-Cohen, Y, Loeb, GE, Pruetz, JD, Silka, MJ, Guerra, C, Vest, AN, Zhou, L, Chmait, RH. Preclinical testing and optimization of a novel fetal micropacemaker. Heart Rhythm. 2015; 12: 1683–90.Google Scholar
Co-Vu, J, Lopez-Colon, D, Vyas, HV, Weiner, N, DeGroff, C. Maternal hyperoxygenation: a potential therapy for congenital heart disease in the fetuses? A systematic review of the current literature. Echocardiography. 2017; 34: 1822–33.Google Scholar
Kovacevic, A, Öhman, A, Tulzer, G, Herberg, U, Dangel, J, Carvalho, JS, et al. Fetal hemodynamic response to aortic valvuloplasty and postnatal outcome: a European multicenter study. Ultrasound Obstet Gynecol. 2018; 52: 221–9.CrossRefGoogle ScholarPubMed
Gardiner, HM, Kovacevic, A, Tulzer, G, Sarkola, T, Herberg, U, Dangel, J, et al. Natural history of 107 cases of fetal aortic stenosis from a European multicenter retrospective study. Ultrasound Obstet Gynecol. 2016; 48: 373–81.CrossRefGoogle ScholarPubMed
Di Donato, RM, Jonas, RA, Lang, P, Rome, JJ, Mayer, JE Jr., Castaneda, AR. Neonatal repair of tetralogy of Fallot with and without pulmonary atresia. J Thorac Cardiovasc Surg. 1991; 101: 126–37.Google Scholar
Freud, LR, McElhinney, DB, Marshall, AC, Marx, GR, Friedman, KG, del Nido, PJ, et al. Fetal aortic valvuloplasty for evolving hypoplastic left heart syndrome: postnatal outcomes of the first 100 patients. Circulation. 2014; 130: 638–45.Google Scholar
Axt-Fliedner, R, Kreiselmaier, P, Schwarze, A, Krapp, M, Gembruch, U. Development of hypoplastic left heart syndrome after diagnosis of aortic stenosis in the first trimester by early echocardiography. Ultrasound Obstet Gynecol. 2006; 28: 106–9.CrossRefGoogle ScholarPubMed
Freud, LR, Moon-Grady, A, Escobar-Diaz, MC, Gotteiner, NL, Young, LT, McElhinney, DB, Tworetzky, W. Low rate of prenatal diagnosis among neonates with critical aortic stenosis: insight into the natural history in utero. Ultrasound Obstet Gynecol. 2015; 45: 326–32.Google Scholar
Matsui, H, Gardiner, HM. Fetal intervention for cardiac disease: the cutting edge of perinatal care. Semin Fetal Neonatal Med. 2007; 12: 482–9.Google Scholar
Reich, O, Tax, P, Marek, J, Rázek, V, Gilík, J, Tomek, V, et al. Long term results of percutaneous balloon valvuloplasty of congenital aortic stenosis: independent predictors of outcome. Heart. 2004; 90: 7076.Google Scholar
McElhinney, DB, Lock, JE, Keane, JF, Moran, AM, Colan, SD. Left heart growth, function, and reintervention after balloon aortic valvuloplasty for neonatal aortic stenosis. Circulation. 2005; 111: 451–8.Google Scholar
Ashburn, DA, McCrindle, BW, Tchervenkov, CI, Jacobs, ML, Lofland, GK, Bove, EL, et al. Outcomes after the Norwood operation in neonates with critical aortic stenosis or aortic valve atresia. J Thorac Cardiovasc Surg. 2003; 125: 1070–82.Google Scholar
Jacobs, JP, O’Brien, SM, Pasquali, SK, Jacobs, ML, Lacour-Gayet, FG, Tchervenkov, CI, et al. Variation in outcomes for benchmark operations: an analysis of the Society of Thoracic Surgeons Congenital Heart Surgery Database. Ann Thorac Surg. 2011; 92: 2184–91; discussion 2191–2.Google Scholar
Rasiah, SV, Ewer, AK, Miller, P, Wright, JG, Barron, DJ, Brawn, WJ, Kilby, MD. Antenatal perspective of hypoplastic left heart syndrome: 5 years on. Arch Dis Child Fetal Neonatal Ed. 2008; 93: F192–7.CrossRefGoogle Scholar
Daubeney, PE, Wang, D, Delany, DJ, Keeton, BR, Anderson, RH, Slavik, Z, Flather, M, Webber, SA, UK and Ireland Collaborative Study of Pulmonary Atresia with Intact Ventricular Septum. UK and Ireland collaborative study of pulmonary atresia with intact ventricular septum. J Thorac Cardiovasc Surg. 2005; 130: 1071.Google ScholarPubMed
Baba, K, Kotani, Y, Chetan, D, Chaturvedi, RR, Lee, KJ, Benson, LN, et al. Hybrid versus Norwood strategies for single-ventricle palliation. Circulation. 2012; 126 (Suppl. 1): S123–31.CrossRefGoogle ScholarPubMed
Kovacevic, A, Roughton, M, Mellander, M, Öhman, A, Tulzer, G, Dangel, J, et al. Fetal aortic valvuloplasty: investigating institutional bias in surgical decision-making. Ultrasound Obstet Gynecol. 2014; 44: 538–44.CrossRefGoogle ScholarPubMed
Arzt, W, Wertaschnigg, D, Veit, I, Klement, F, Gitter, R, Tulzer, G. Intrauterine aortic valvuloplasty in fetuses with critical aortic stenosis: Experience and results of 24 procedures. Ultrasound Obstet Gynecol. 2011; 37: 689–95.CrossRefGoogle ScholarPubMed
McElhinney, DB, Marshall, AC, Wilkins-Haug, LE, Brown, DW, Benson, CB, Silva, V, et al. Predictors of technical success and postnatal biventricular outcome after in utero aortic valvuloplasty for aortic stenosis with evolving hypoplastic left heart syndrome. Circulation. 2009; 120: 1482–90.CrossRefGoogle ScholarPubMed
Jaeggi, E, Renaud, C, Ryan, G, Chaturvedi, R. Intrauterine therapy for structural congenital heart disease: Contemporary results and Canadian experience. Trends Cardiovasc Med. 2016; 26: 639–46.Google Scholar
Pedra, SR, Peralta, CF, Crema, L, Jatene, IB, da Costa, RN, Pedra, CA. Fetal interventions for congenital heart disease in Brazil. Pediatr Cardiol. 2014; 35: 399405.Google Scholar
Galindo, A, Gómez-Montes, E, Gómez, O, Bennasar, M, Crispi, F, Herraiz, I, et al. Fetal aortic valvuloplasty: experience and results of two tertiary centers in Spain. Fetal Diagn Ther. 2017; 42: 262–70.Google Scholar
Moon-Grady, AJ, Morris, SA, Belfort, M, Chmait, R, Dangel, J, Devlieger, R, et al. International Fetal Cardiac Intervention Registry: A Worldwide Collaborative Description and Preliminary Outcomes. J Am Coll Cardiol. 2015; 66: 388–99.Google ScholarPubMed
Hunter, LE, Chubb, H, Miller, O, Sharland, G, Simpson, JM. Fetal aortic valve stenosis: a critique of case selection criteria for fetal intervention. Prenat Diagn. 2015; 35: 1176–81.Google Scholar
Roman, KS, Fouron, JC, Nii, M, Smallhorn, JF, Chaturvedi, R, Jaeggi, ET. Determinants of outcome in fetal pulmonary valve stenosis or atresia with intact ventricular septum. Am J Cardiol. 2007; 99: 699703.Google Scholar
Gardiner, HM, Belmar, C, Tulzer, G, Barlow, A, Pasquini, L, Carvalho, JS, et al. Morphological and functional predictors of eventual circulation in the fetus with pulmonary atresia or critical pulmonary stenosis with intact septum. J Am Coll Cardiol. 2008; 51: 1299–308.CrossRefGoogle ScholarPubMed
Tulzer, A, Arzt, W, Gitter, R, Prandstetter, C, Grohmann, E, Mair, R, Tulzer, G. Immediate effects and outcomes after in-utero pulmonary valvuloplasty in fetuses with pulmonary atresia with intact septum or critical pulmonary stenosis. Ultrasound Obstet Gynecol. 2018; 52: 230–7.Google Scholar
Tworetzky, W, McElhinney, DB, Marx, GR, Benson, CB, Brusseau, R, Morash, D, et al. In utero valvuloplasty for pulmonary atresia with hypoplastic right ventricle: techniques and outcomes. Pediatrics. 2009; 124: e510–18.CrossRefGoogle ScholarPubMed
Lara, DA, Morris, SA, Maskatia, SA, Challman, M, Nguyen, M, Feagin, DK, et al. Pilot study of chronic maternal hyperoxygenation and effect on aortic and mitral valve annular dimensions in fetuses with left heart hypoplasia. Ultrasound Obstet Gynecol. 2016; 48: 365–72.CrossRefGoogle ScholarPubMed
Wohlmuth, C, Wertaschnigg, D, Wieser, I, Arzt, W, Tulzer, G. Tissue Doppler imaging in fetuses with aortic stenosis and evolving hypoplastic left heart syndrome before and after fetal aortic valvuloplasty. Ultrasound Obstet Gynecol. 2016; 47: 608–15.Google Scholar
Tworetzky, W, Wilkins-Haug, L, Jennings, RW, van der Velde, ME, Marshall, AC, Marx, GR, et al. Balloon dilation of severe aortic stenosis in the fetus: potential for prevention of hypoplastic left heart syndrome: candidate selection, technique, and results of successful intervention. Circulation. 2004; 110: 2125–31.CrossRefGoogle ScholarPubMed
Donofrio, MT, Moon-Grady, AJ, Hornberger, LK, Copel, JA, Sklansky, MS, Abuhamad, A, et al. Diagnosis and treatment of fetal cardiac disease: a scientific statement from the American Heart Association. Circulation. 2014; 129: 2183–242.Google Scholar
Jouannic, JM, Boudjemline, Y, Benifla, JL, Bonnet, D. Transhepatic ultrasound-guided cardiac catheterization in the fetal lamb. Circulation. 2005; 111: 736–41.Google Scholar
Kohl, T, Müller, A, Tchatcheva, K, Achenbach, S, Gembruch, U. Fetal transesophageal echocardiography: clinical introduction as a monitoring tool during cardiac intervention in a human fetus. Ultrasound Obstet Gynecol. 2005; 26: 780–5.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×