Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-qxdb6 Total loading time: 0 Render date: 2024-04-26T07:18:19.461Z Has data issue: false hasContentIssue false

13 - Fetal and neonatal injury as a consequence of maternal substance abuse

from Part II - Pregnancy, Labor, and Delivery Complications Causing Brain Injury

Published online by Cambridge University Press:  10 November 2010

Louis P. Halamek
Affiliation:
Stanford University Medical Center, Palo Alto, CA, USA
David K. Stevenson
Affiliation:
Stanford University School of Medicine, California
William E. Benitz
Affiliation:
Stanford University School of Medicine, California
Philip Sunshine
Affiliation:
Stanford University School of Medicine, California
Get access

Summary

Introduction

Substance abuse is widely prevalent in our society and women in their child-bearing years are not immune to this epidemic. In addition to the many problems substance abuse causes for these women it also places the children they are carrying at risk for lifelong sequelae. Virtually all pregnant women are exposed to drugs in some form (such as acetaminophen, iron, multivitamins, and antimicrobials) and it is estimated that approximately 10% are exposed to illicit substances. The purpose of this chapter will be to describe the fetal and neonatal effects of various sensorium-altering licit and illicit substances ingested by pregnant women.

Drug distribution in pregnancy

Before discussing the various substances that may be ingested, it is important to understand general principles of drug distribution during pregnancy, including the roles of the placenta and breast in biotransformation and secretion. Drugs that are abused are capable of easily and rapidly entering the nervous system. The characteristics that favor transport of a drug across the lipoprotein barriers between the circulation and the central and peripheral nervous systems include high lipid solubility, minimal ionization at physiologic pH, low proteinbinding, and low molecular weight. High lipid solubility may result in storage of such substances in maternal body fat with subsequent release and transfer into fetal lipid stores during pregnancy. These same characteristics also enable drugs to cross the placenta readily and enter the fetal circulation.

Type
Chapter
Information
Fetal and Neonatal Brain Injury
Mechanisms, Management and the Risks of Practice
, pp. 274 - 302
Publisher: Cambridge University Press
Print publication year: 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×