Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-8bljj Total loading time: 0 Render date: 2024-06-17T16:00:04.412Z Has data issue: false hasContentIssue false

3 - Cellular and molecular biology of hypoxic–ischemic encephalopathy

from Section 1 - Epidemiology, pathophysiology, and pathogenesis of fetal and neonatal brain injury

Published online by Cambridge University Press:  12 January 2010

David K. Stevenson
Affiliation:
Stanford University School of Medicine, California
William E. Benitz
Affiliation:
Stanford University School of Medicine, California
Philip Sunshine
Affiliation:
Stanford University School of Medicine, California
Susan R. Hintz
Affiliation:
Stanford University School of Medicine, California
Maurice L. Druzin
Affiliation:
Stanford University School of Medicine, California
Get access

Summary

Introduction

The exact timing of hypoxic–ischemic brain injury and the preceding course of events are often unknown, but they play a crucial role in pathogenesis, regional susceptibility, and injury severity in humans, requiring different treatment approaches. The dynamic nature of the developing brain requires the use of age-appropriate models to advance our understanding of both the injurious mechanisms and the means to ameliorate injury.

Several aspects of injury to the immature brain caused by experimental hypoxia–ischemia (HI) or focal stroke in animals have been recently reviewed, including the role of age, blood-flow regulation and energy metabolism, inflammation, intracellular injury mechanisms, and neuronal death, and these will not be covered in great detail here. We will review recently emerging concepts, including the status of the neurovascular unit and blood–brain barrier, neuroinflammation, adaptive intracellular mechanisms, gender differences in the injury response, neuroprotection, and brain repair.

Energy failure and early intracellular injury

The role of disruption of cerebral blood flow and failure of mitochondrial ATP production in initiating injury after HI has been recently reviewed by Vannucci & Vannucci and Perlman. The role of elevated levels of extracellular glutamate, overactivation of excitatory amino acid (EAA) receptors, and calcium (Ca2+i)-mediated intracellular injury, which in part depends on failure of ATP-dependent processes, have been recently reviewed as well.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Volpe, JJ. Brain injury in the premature infant: overview of clinical aspects, neuropathology, and pathogenesis. Semin Pediatr Neurol 1998; 5: 135–51.CrossRefGoogle ScholarPubMed
Ferriero, DM. Neonatal brain injury. N Engl J Med 2004; 351: 1985–95.CrossRefGoogle ScholarPubMed
Vannucci, RC, Vannucci, SJ. A model of perinatal hypoxic–ischemic brain damage. Ann N Y Acad Sci 1997; 835: 234–49.CrossRefGoogle ScholarPubMed
Derugin, N, Ferriero, DM, Vexler, ZS. Neonatal reversible focal cerebral ischemia: a new model. Neurosci Res 1998; 32: 349–53.CrossRefGoogle ScholarPubMed
Ashwal, S, Tone, B, Tian, HR, et al. Core and penumbral nitric oxide synthase activity during cerebral ischemia and reperfusion. Stroke 1998; 29: 1037–47.CrossRefGoogle ScholarPubMed
McQuillen, PS, Ferriero, DM. Selective vulnerability in the developing central nervous system. Pediatr Neurol 2004; 30: 227–35.CrossRefGoogle ScholarPubMed
Hagberg, H, Mallard, C. Effect of inflammation on central nervous system development and vulnerability. Curr Opin Neurol 2005; 18: 117–23.CrossRefGoogle ScholarPubMed
Vexler, ZS. Hypoxic ischemic insults and inflammation in the developing brain. In Yenari, MA, Giffard, RG, eds., Glia and Inflammation in Neurodegenerative Disease. New York, NY: Nova Science, 2006: 197–220.Google Scholar
Vannucci, SJ, Hagberg, H. Hypoxia–ischemia in the immature brain. J Exp Biol 2004; 207: 3149–54.CrossRefGoogle ScholarPubMed
Vexler, ZS, Tang, D, Yenari, M. Inflammation in adult and neonatal stroke. Clin Neurosci Res 2006; 6: 293–313.CrossRefGoogle ScholarPubMed
Northington, FJ, Zelaya, ME, O'Riordan, DP, et al. Failure to complete apoptosis following neonatal hypoxia–ischemia manifests as “continuum” phenotype of cell death and occurs with multiple manifestations of mitochondrial dysfunction in rodent forebrain. Neuroscience 2007; 149: 822–33.CrossRefGoogle ScholarPubMed
Vannucci, RC, Vannucci, SJ. Glucose metabolism in the developing brain. Semin Perinatol 2000; 24: 107–15.CrossRefGoogle ScholarPubMed
Perlman, JM. Intervention strategies for neonatal hypoxic–ischemic cerebral injury. Clin Ther 2006; 28: 1353–65.CrossRefGoogle ScholarPubMed
Vexler, ZS, Ferriero, DM. Mechanisms of ischemic cell death in the developing brain. In Chan, P, Lajtha, A, eds., Handbook of Neurochemistry and Molecular Neurobiology. New York, NY: Springer, 2007: 209–34.CrossRefGoogle Scholar
Jiang, X, Mu, D, Biran, V, et al. Activated Src kinases interact with N-methyl-D-aspartate receptor after neonatal brain ischemia. Ann Neurol 2008; 63: 632–41.CrossRefGoogle ScholarPubMed
Sheldon, RA, Christen, S, Ferriero, DM. Genetic and pharmacologic manipulation of oxidative stress after neonatal hypoxia–ischemia. Int J Dev Neurosci 2008; 26: 87–92.CrossRefGoogle ScholarPubMed
Garcia, JH, Liu, KF, Yoshida, Y, et al. Influx of leukocytes and platelets in an evolving brain infarct (Wistar rat). Am J Pathol 1994; 144: 188–99.Google Scholar
Hallenbeck, JM. Significance of the inflammatory response in brain ischemia. Acta Neurochir Suppl 1996; 66: 27–31.Google ScholarPubMed
Rosenberg, GA. Matrix metalloproteinases in neuroinflammation. Glia 2002; 39: 279–91.CrossRefGoogle ScholarPubMed
Allan, SM, Tyrrell, PJ, Rothwell, NJ. Interleukin-1 and neuronal injury. Nat Rev Immunol 2005; 5: 629–40.CrossRefGoogle ScholarPubMed
Pan, W, Ding, Y, Yu, Y, et al. Stroke upregulates TNFα transport across the blood–brain barrier. Exp Neurol 2006; 198: 222–33.CrossRefGoogle ScholarPubMed
Kniesel, U, Risau, W, Wolburg, H. Development of blood–brain barrier tight junctions in the rat cortex. Brain Res Dev Brain Res 1996; 96: 229–40.CrossRefGoogle ScholarPubMed
Engelhardt, B. Development of the blood–brain barrier. Cell Tissue Res 2003; 314: 119–29.CrossRefGoogle ScholarPubMed
Blamire, AM, Anthony, DC, Rajagopalan, B, et al. Interleukin-1β-induced changes in blood–brain barrier permeability, apparent diffusion coefficient, and cerebral blood volume in the rat brain: a magnetic resonance study. J Neurosci 2000; 20: 8153–9.CrossRefGoogle ScholarPubMed
Palmer, C, Roberts, RL, Young, PI. Timing of neutrophil depletion influences long-term neuroprotection in neonatal rat hypoxic–ischemic brain injury. Pediatr Res 2004; 55: 549–56.CrossRefGoogle ScholarPubMed
Bona, E, Andersson, AL, Blomgren, K, et al. Chemokine and inflammatory cell response to hypoxia–ischemia in immature rats. Pediatr Res 1999; 45: 500–9.CrossRefGoogle ScholarPubMed
Denker, SP, Ji, S, Dingman, A, et al. Macrophages are comprised of resident brain microglia not infiltrating peripheral monocytes acutely after neonatal stroke. J Neurochem 2007; 100: 893–904.CrossRefGoogle Scholar
Svedin, P, Hagberg, H, Savman, K, et al. Matrix metalloproteinase-9 gene knock-out protects the immature brain after cerebral hypoxia–ischemia. J Neurosci 2007; 27: 1511–8.CrossRefGoogle ScholarPubMed
Raivich, G, Bohatschek, M, Kloss, CU, et al. Neuroglial activation repertoire in the injured brain: graded response, molecular mechanisms and cues to physiological function. Brain Res Brain Res Rev 1999; 30: 77–105.CrossRefGoogle ScholarPubMed
Monje, ML, Toda, H, Palmer, TD. Inflammatory blockade restores adult hippocampal neurogenesis. Science 2003; 302: 1760–5.CrossRefGoogle ScholarPubMed
Walton, NM, Sutter, BM, Laywell, ED, et al. Microglia instruct subventricular zone neurogenesis. Glia 2006; 54: 815–25.CrossRefGoogle ScholarPubMed
Britschgi, M, Wyss-Coray, T. Immune cells may fend off Alzheimer disease. Nat Med 2007; 13: 408–9.CrossRefGoogle ScholarPubMed
Marin-Teva, JL, Dusart, I, Colin, C, et al. Microglia promote the death of developing Purkinje cells. Neuron 2004; 41: 535–47.CrossRefGoogle ScholarPubMed
Derugin, N, Wendland, M, Muramatsu, K, et al. Evolution of brain injury after transient middle cerebral artery occlusion in neonatal rat. Stroke 2000; 31: 1752–61.CrossRefGoogle Scholar
McRae, A, Gilland, E, Bona, E, et al. Microglia activation after neonatal hypoxic-ischemia. Brain Res Dev Brain Res 1995; 84: 245–52.CrossRefGoogle ScholarPubMed
Dommergues, MA, Plaisant, F, Verney, C, et al. Early microglial activation following neonatal excitotoxic brain damage in mice: a potential target for neuroprotection. Neuroscience 2003; 121: 619–28.CrossRefGoogle ScholarPubMed
Tikka, T, Fiebich, BL, Goldsteins, G, et al. Minocycline, a tetracycline derivative, is neuroprotective against excitotoxicity by inhibiting activation and proliferation of microglia. J Neurosci 2001; 21: 2580–8.CrossRefGoogle ScholarPubMed
Tweel, ER, Bel, F, Kavelaars, A, et al. Long-term neuroprotection with 2-iminobiotin, an inhibitor of neuronal and inducible nitric oxide synthase, after cerebral hypoxia-ischemia in neonatal rats. J Cereb Blood Flow Metab 2005; 25: 67–74.CrossRefGoogle ScholarPubMed
Dingman, A, Lee, SY, Derugin, N, et al. Aminoguanidine inhibits caspase-3 and calpain activation without affecting microglial activation following neonatal transient ischemia. J Neurochem 2006; 96: 1467–79.CrossRefGoogle Scholar
Dong, Y, Benveniste, EN. Immune function of astrocytes. Glia 2001; 36: 180–90.CrossRefGoogle ScholarPubMed
Nawashiro, H, Brenner, M, Fukui, S, et al. High susceptibility to cerebral ischemia in GFAP-null mice. J Cereb Blood Flow Metab 2000; 20: 1040–4.CrossRefGoogle ScholarPubMed
Benjelloun, N, Renolleau, S, Represa, A, et al. Inflammatory responses in the cerebral cortex after ischemia in the P7 neonatal rat. Stroke 1999; 30: 1916–1923.CrossRefGoogle ScholarPubMed
Ducrocq, S, Benjelloun, N, Plotkine, M, et al. Poly(ADP-ribose) synthase inhibition reduces ischemic injury and inflammation in neonatal rat brain. J Neurochem 2000; 74: 2504–11.CrossRefGoogle ScholarPubMed
Jin, Y, Silverman, AJ, Vannucci, SJ. Mast cell stabilization limits hypoxic–ischemic brain damage in the immature rat. Dev Neurosci 2007; 29: 373–84.CrossRefGoogle ScholarPubMed
Biran, V, Cochois, V, Karroubi, A, et al. Stroke induces histamine accumulation and mast cell degranulation in the neonatal rat brain. Brain Pathol 2008; 18: 1–9.CrossRefGoogle ScholarPubMed
Mesples, B, Fontaine, RH, Lelievre, V, et al. Neuronal TGF-β1 mediates IL-9/mast cell interaction and exacerbates excitotoxicity in newborn mice. Neurobiol Dis 2005; 18: 193–205.CrossRefGoogle ScholarPubMed
Hedtjarn, M, Mallard, C, Hagberg, H. Inflammatory gene profiling in the developing mouse brain after hypoxia–ischemia. J Cereb Blood Flow Metab 2004; 24: 1333–51.CrossRefGoogle ScholarPubMed
Szaflarski, J, Burtrum, D, Silverstein, FS. Cerebral hypoxia–ischemia stimulates cytokine gene expression in perinatal rats. Stroke 1995; 26: 1093–100.CrossRefGoogle ScholarPubMed
Fox, C, Dingman, A, Derugin, N, et al. Minocycline confers early but transient protection in the immature brain following focal cerebral ischemia–reperfusion. J Cereb Blood Flow Metab 2005; 25: 1138–49.CrossRefGoogle ScholarPubMed
Dommergues, MA, Patkai, J, Renauld, JC, et al. Proinflammatory cytokines and interleukin-9 exacerbate excitotoxic lesions of the newborn murine neopallium. Ann Neurol 2000; 47: 54–63.3.0.CO;2-Y>CrossRefGoogle ScholarPubMed
Patkai, J, Mesples, B, Dommergues, MA, et al. Deleterious effects of IL-9-activated mast cells and neuroprotection by antihistamine drugs in the developing mouse brain. Pediatr Res 2001; 50: 222–30.CrossRefGoogle ScholarPubMed
Mesples, B, Plaisant, F, Gressens, P. Effects of interleukin-10 on neonatal excitotoxic brain lesions in mice. Brain Res Dev Brain Res 2003; 141: 25–32.CrossRefGoogle ScholarPubMed
Gerard, C, Rollins, BJ. Chemokines and disease. Nat Immunol 2001; 2: 108–15.CrossRefGoogle ScholarPubMed
Hedtjarn, M, Mallard, C, Eklind, S, et al. Global gene expression in the immature brain after hypoxia–ischemia. J Cereb Blood Flow Metab 2004; 24: 1317–32.CrossRefGoogle ScholarPubMed
Galasso, JM, Miller, MJ, Cowell, RM, et al. Acute excitotoxic injury induces expression of monocyte chemoattractant protein-1 and its receptor, CCR2, in neonatal rat brain. Exp Neurol 2000; 165: 295–305.CrossRefGoogle ScholarPubMed
Cowell, RM, Xu, H, Galasso, JM, et al. Hypoxic–ischemic injury induces macrophage inflammatory protein-1α expression in immature rat brain. Stroke 2002; 33: 795–801.CrossRefGoogle ScholarPubMed
Cowell, RM, Plane, JM, Silverstein, FS. Complement activation contributes to hypoxic–ischemic brain injury in neonatal rats. J Neurosci 2003; 23: 9459–68.CrossRefGoogle ScholarPubMed
Hu, BR, Liu, XL, Ouyang, Y, et al. Involvement of caspase-3 in cell death after hypoxia–ischemia declines during brain maturation. J Cereb Blood Flow Metab 2000; 20: 1294–1300.CrossRefGoogle ScholarPubMed
Han, BH, Xu, D, Choi, J, et al. Selective, reversible caspase-3 inhibitor is neuroprotective and reveals distinct pathways of cell death following neonatal hypoxic–ischemic brain injury. J Biol Chem 2002; 277: 30128–36.CrossRefGoogle Scholar
Zhu, C, Wang, X, Xu, F, et al. The influence of age on apoptotic and other mechanisms of cell death after cerebral hypoxia-ischemia. Cell Death Differ 2005; 12: 162–76.CrossRefGoogle ScholarPubMed
Manabat, C, Han, BH, Wendland, M, et al. Reperfusion differentially induces caspase-3 activation in ischemic core and penumbra after stroke in immature brain. Stroke 2003; 34: 207–13.CrossRefGoogle ScholarPubMed
Cheng, Y, Deshmukh, M, D'Costa, A, et al. Caspase inhibitor affords neuroprotection with delayed administration in a rat model of neonatal hypoxic–ischemic brain injury. J Clin Invest 1998; 101: 1992–9.CrossRefGoogle Scholar
West, T, Atzeva, M, Holtzman, DM. Caspase-3 deficiency during development increases vulnerability to hypoxic–ischemic injury through caspase-3-independent pathways. Neurobiol Dis 2006; 22: 523–37.CrossRefGoogle ScholarPubMed
Zhu, C, Xu, F, Fukuda, A, et al. X chromosome-linked inhibitor of apoptosis protein reduces oxidative stress after cerebral irradiation or hypoxia–ischemia through up-regulation of mitochondrial antioxidants. Eur J Neurosci 2007; 26: 3402–10.CrossRefGoogle ScholarPubMed
Matsumori, Y, Hong, SM, Aoyama, K, et al. Hsp70 overexpression sequesters AIF and reduces neonatal hypoxic/ischemic brain injury. J Cereb Blood Flow Metab 2005; 25: 899–910.CrossRefGoogle ScholarPubMed
Blomgren, K, Leist, M, Groc, L. Pathological apoptosis in the developing brain. Apoptosis 2007; 12: 993–1010.CrossRefGoogle ScholarPubMed
Carloni, S, Carnevali, A, Cimino, M, et al. Extended role of necrotic cell death after hypoxia–ischemia-induced neurodegeneration in the neonatal rat. Neurobiol Dis 2007; 27: 354–61.CrossRefGoogle ScholarPubMed
Johnston, MV, Hagberg, H. Sex and the pathogenesis of cerebral palsy. Dev Med Child Neurol 2007; 49: 74–8.CrossRefGoogle ScholarPubMed
Hagberg, H, Wilson, MA, Matsushita, H, et al. PARP-1 gene disruption in mice preferentially protects males from perinatal brain injury. J Neurochem 2004; 90: 1068–75.CrossRefGoogle ScholarPubMed
Renolleau, S, Fau, S, Charriaut-Marlangue, C. Gender-related differences in apoptotic pathways after neonatal cerebral ischemia. Neuroscientist 2008; 14: 46–52.CrossRefGoogle ScholarPubMed
Renolleau, S, Fau, S, Goyenvalle, C, et al. Sex, neuroprotection, and neonatal ischemia. Dev Med Child Neurol 2007; 49: 477–8.CrossRefGoogle Scholar
Nijboer, CH, Groendendaal, F, Kavelaars, A, et al. Gender-specific neuroprotection by 2-iminobiotin after hypoxia–ischemia in the neonatal rat via a nitric oxide independent pathway. J Cereb Blood Flow Metab 2007; 27: 282–92.CrossRefGoogle Scholar
Nijboer, CH, Kavelaars, A, Bel, F, et al. Gender-dependent pathways of hypoxia–ischemia-induced cell death and neuroprotection in the immature P3 rat. Dev Neurosci 2007; 29: 385–92.CrossRefGoogle ScholarPubMed
Wang, GL, Semenza, GL. Characterization of hypoxia-inducible factor 1 and regulation of DNA binding activity by hypoxia. J Biol Chem 1993; 268: 21513–18.Google ScholarPubMed
Bergeron, M, Yu, AY, Solway, KE, et al. Induction of hypoxia-inducible factor-1 (HIF-1) and its target genes following focal ischaemia in rat brain. Eur J Neurosci 1999; 11: 4159–70.CrossRefGoogle ScholarPubMed
Chavez, JC, LaManna, JC. Activation of hypoxia-inducible factor-1 in the rat cerebral cortex after transient global ischemia: potential role of insulin-like growth factor-1. J Neurosci 2002; 22: 8922–31.CrossRefGoogle ScholarPubMed
Bruick, RK, McKnight, SL. A conserved family of prolyl-4-hydroxylases that modify HIF. Science 2001; 294: 1337–40.CrossRefGoogle ScholarPubMed
Semenza, GL. Hypoxia-inducible factor 1: master regulator of O2 homeostasis. Curr Opin Genet Dev 1998; 8: 588–94.CrossRefGoogle ScholarPubMed
Baranova, O, Miranda, LF, Pichiule, P, et al. Neuron-specific inactivation of the hypoxia inducible factor 1 alpha increases brain injury in a mouse model of transient focal cerebral ischemia. J Neurosci 2007; 27: 6320–32.CrossRefGoogle Scholar
Zaman, K, Ryu, H, Hall, D, et al. Protection from oxidative stress-induced apoptosis in cortical neuronal cultures by iron chelators is associated with enhanced DNA binding of hypoxia-inducible factor-1 and ATF-1/CREB and increased expression of glycolytic enzymes, p21(waf1/cip1), and erythropoietin. J Neurosci 1999; 19: 9821–30.CrossRefGoogle Scholar
Bruick, RK. Expression of the gene encoding the proapoptotic Nip3 protein is induced by hypoxia. Proc Natl Acad Sci USA 2000; 97: 9082–7.CrossRefGoogle ScholarPubMed
Hoecke, M, Prigent-Tessier, AS, Garnier, PE, et al. Evidence of HIF-1 functional binding activity to caspase-3 promoter after photothrombotic cerebral ischemia. Mol Cell Neurosci 2007; 34: 40–7.CrossRefGoogle ScholarPubMed
Helton, R, Cui, J, Scheel, JR, et al. Brain-specific knock-out of hypoxia-inducible factor-1α reduces rather than increases hypoxic–ischemic damage. J Neurosci 2005; 25: 4099–107.CrossRefGoogle ScholarPubMed
Bergeron, M, Gidday, JM, Yu, AY, et al. Role of hypoxia-inducible factor-1 in hypoxia-induced ischemic tolerance in neonatal rat brain. Ann Neurol 2000; 48: 285–96.3.0.CO;2-8>CrossRefGoogle ScholarPubMed
Mu, D, Jiang, X, Sheldon, RA, et al. Regulation of hypoxia-inducible factor 1α and induction of vascular endothelial growth factor in a rat neonatal stroke model. Neurobiol Dis 2003; 14: 524–34.CrossRefGoogle Scholar
Mu, D, Chang, YS, Vexler, ZS, et al. Hypoxia-inducible factor 1α and erythropoietin upregulation with deferoxamine salvage after neonatal stroke. Exp Neurol 2005; 195: 407–15.CrossRefGoogle ScholarPubMed
Li, L, Qu, Y, Mao, M, et al. The involvement of phosphoinositid 3-kinase/Akt pathway in the activation of hypoxia-inducible factor-1α in the developing rat brain after hypoxia–ischemia. Brain Res 2008; 1197: 152–8.CrossRefGoogle ScholarPubMed
Li, L, Xiong, Y, Qu, Y, et al. The requirement of extracellular signal-related protein kinase pathway in the activation of hypoxia inducible factor 1α in the developing rat brain after hypoxia–ischemia. Acta Neuropathol 2008; 115: 297–303.CrossRefGoogle Scholar
Jones, NM, Bergeron, M. Hypoxic preconditioning induces changes in HIF-1 target genes in neonatal rat brain. J Cereb Blood Flow Metab 2001; 21: 1105–14.CrossRefGoogle ScholarPubMed
Bernaudin, M, Tang, Y, Reilly, M, et al. Brain genomic response following hypoxia and re-oxygenation in the neonatal rat. Identification of genes that might contribute to hypoxia-induced ischemic tolerance. J Biol Chem 2002; 277: 39728–38.CrossRefGoogle ScholarPubMed
Jelkmann, W. Erythropoietin: structure, control of production, and function. Physiol Rev 1992; 72: 449–89.CrossRefGoogle ScholarPubMed
Chen, ZY, Asavaritikrai, P, Prchal, J, et al. Endogenous erythropoietin signaling is required for normal neural progenitor cell proliferation. J Biol Chem 2007; 282: 25875–83.CrossRefGoogle ScholarPubMed
Shingo, T, Sorokan, ST, Shimazaki, T, et al. Erythropoietin regulates the in vitro and in vivo production of neuronal progenitors by mammalian forebrain neural stem cells. J Neurosci 2001; 21: 9733–43.CrossRefGoogle ScholarPubMed
Wu, H, Liu, X, Jaenisch, R, et al. Generation of committed erythroid BFU-E and CFU-E progenitors does not require erythropoietin or the erythropoietin receptor. Cell 1995; 83: 59–67.CrossRefGoogle ScholarPubMed
Digicaylioglu, M, Lipton, SA. Erythropoietin-mediated neuroprotection involves cross-talk between Jak2 and NF-κB signalling cascades. Nature 2001; 412: 641–7.CrossRefGoogle ScholarPubMed
Kawakami, M, Sekiguchi, M, Sato, K, et al. Erythropoietin receptor-mediated inhibition of exocytotic glutamate release confers neuroprotection during chemical ischemia. J Biol Chem 2001; 276: 39469–75.CrossRefGoogle ScholarPubMed
Marti, HH, Bernaudin, M, Petit, E, et al. Neuroprotection and angiogenesis: dual role of erythropoietin in brain ischemia. News Physiol Sci 2000; 15: 225–9.Google ScholarPubMed
Solaroglu, I, Solaroglu, A, Kaptanoglu, E, et al. Erythropoietin prevents ischemia–reperfusion from inducing oxidative damage in fetal rat brain. Childs Nerv Syst 2003; 19: 19–22.Google ScholarPubMed
Sola, A, Wen, C, Hamrick, SE, et al. Potential for protection and repair following injury to the developing brain: a role for erythropoietin?Pediatr Res 2005; 57: 110R–117R.CrossRefGoogle ScholarPubMed
Wang, L, Zhang, Z, Wang, Y, et al. Treatment of stroke with erythropoietin enhances neurogenesis and angiogenesis and improves neurological function in rats. Stroke 2004; 35: 1732–7.CrossRefGoogle ScholarPubMed
Sun, Y, Calvert, JW, Zhang, JH. Neonatal hypoxia/ischemia is associated with decreased inflammatory mediators after erythropoietin administration. Stroke 2005; 36: 1672–8.CrossRefGoogle ScholarPubMed
Kellert, BA, McPherson, RJ, Juul, SE. A comparison of high-dose recombinant erythropoietin treatment regimens in brain-injured neonatal rats. Pediatr Res 2007; 61: 451–5.CrossRefGoogle ScholarPubMed
Spandou, E, Papousopoulou, S, Soubasi, V, et al. Hypoxia–ischemia affects erythropoietin and erythropoietin receptor expression pattern in the neonatal rat brain. Brain Res 2004; 1021: 167–72.CrossRefGoogle ScholarPubMed
McClure, MM, Threlkeld, SW, Fitch, RH. Auditory processing and learning/memory following erythropoietin administration in neonatally hypoxic–ischemic injured rats. Brain Res 2007; 1132: 203–9.CrossRefGoogle ScholarPubMed
Iwai, M, Cao, G, Yin, W, et al. Erythropoietin promotes neuronal replacement through revascularization and neurogenesis after neonatal hypoxia/ischemia in rats. Stroke 2007; 38: 2795–803.CrossRefGoogle ScholarPubMed
Kumral, A, Uysal, N, Tugyan, K, et al. Erythropoietin improves long-term spatial memory deficits and brain injury following neonatal hypoxia–ischemia in rats. Behav Brain Res 2004; 153: 77–86.CrossRefGoogle ScholarPubMed
Chang, YS, Mu, D, Wendland, M, et al. Erythropoietin improves functional and histological outcome in neonatal stroke. Pediatr Res 2005; 58: 106–11.CrossRefGoogle ScholarPubMed
Gonzalez, F, McQuillen, P, Mu, D, et al. Erythropoietin enhances long-term neuroprotection and neurogenesis in neonatal stroke. Dev Neurosci 2007; 29: 321–30.CrossRefGoogle ScholarPubMed
Ferrara, N, Gerber, HP. The role of vascular endothelial growth factor in angiogenesis. Acta Haematol 2001; 106: 148–56.CrossRefGoogle ScholarPubMed
Carmeliet, P, Ferreira, V, Brier, G, et al. Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele. Nature 1996; 380: 435–9.CrossRefGoogle ScholarPubMed
Dougher, M, Terman, BI. Autophosphorylation of KDR in the kinase domain is required for maximal VEGF-stimulated kinase activity and receptor internalization. Oncogene 1999; 18: 1619–27.CrossRefGoogle ScholarPubMed
Takahashi, T, Yamaguchi, S, Chida, K, et al. A single autophosphorylation site on KDR/Flk-1 is essential for VEGF-A-dependent activation of PLC-gamma and DNA synthesis in vascular endothelial cells. EMBO J 2001; 20: 2768–78.CrossRefGoogle ScholarPubMed
Fujio, Y, Walsh, K. Akt mediates cytoprotection of endothelial cells by vascular endothelial growth factor in an anchorage-dependent manner. J Biol Chem 1999; 274: 16349–54.CrossRefGoogle Scholar
Shibuya, M. Structure and dual function of vascular endothelial growth factor receptor-1 (Flt-1). Int J Biochem Cell Biol 2001; 33: 409–20.CrossRefGoogle Scholar
Vogel, C, Bauer, A, Wiesnet, M, et al. Flt-1, but not Flk-1 mediates hyperpermeability through activation of the PI3-K/Akt pathway. J Cell Physiol 2007; 212: 236–43.CrossRefGoogle Scholar
Rahimi, N, Dayanir, V, Lashkari, K. Receptor chimeras indicate that the vascular endothelial growth factor receptor-1 (VEGFR-1) modulates mitogenic activity of VEGFR-2 in endothelial cells. J Biol Chem 2000; 275: 16986–92.CrossRefGoogle ScholarPubMed
Autiero, M, Waltenberger, J, Communi, D, et al. Role of PlGF in the intra- and intermolecular cross talk between the VEGF receptors Flt1 and Flk1. Nat Med 2003; 9: 936–43.CrossRefGoogle ScholarPubMed
Jin, KL, Mao, XO, Greenberg, DA. Vascular endothelial growth factor: direct neuroprotective effect in in vitro ischemia. Proc Natl Acad Sci USA 2000; 97: 10242–7.CrossRefGoogle ScholarPubMed
Shweiki, D, Itin, A, Soffer, D, et al. Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-initiated angiogenesis. Nature 1992; 359: 843–5.CrossRefGoogle ScholarPubMed
Sun, Y, Jin, K, Xie, L, et al. VEGF-induced neuroprotection, neurogenesis, and angiogenesis after focal cerebral ischemia. J Clin Invest 2003; 111: 1843–51.CrossRefGoogle ScholarPubMed
Wang, Y, Jin, K, Mao, XO, et al. VEGF-overexpressing transgenic mice show enhanced post-ischemic neurogenesis and neuromigration. J Neurosci Res 2007; 85: 740–7.CrossRefGoogle ScholarPubMed
Zhang, ZG, Zhang, L, Jiang, O, et al. VEGF enhances angiogenesis and promotes blood–brain barrier leakage in the ischemic brain. J Clin Invest 2000; 106: 829–38.CrossRefGoogle ScholarPubMed
Manoonkitiwongsa, PS, Schultz, RL, McCreery, DB, et al. Neuroprotection of ischemic brain by vascular endothelial growth factor is critically dependent on proper dosage and may be compromised by angiogenesis. J Cereb Blood Flow Metab 2004; 24: 693–702.CrossRefGoogle ScholarPubMed
Ogunshola, OO, Stewart, WB, Mihalcik, V, et al. Neuronal VEGF expression correlates with angiogenesis in postnatal developing rat brain. Brain Res Dev Brain Res 2000; 119: 139–53.CrossRefGoogle ScholarPubMed
Laudenbach, V, Fontaine, RH, Medja, F, et al. Neonatal hypoxic preconditioning involves vascular endothelial growth factor. Neurobiol Dis 2007; 26: 243–52.CrossRefGoogle ScholarPubMed
Shimotake, J, et al. Effect of a VEGF receptor inhibitor SU5416 on short-term outcome in neonatal rodent stroke. Pediatric Academic Societies meeting, 2008.Google Scholar
Gluckman, PD, Wyatt, JS, Azzopardi, D, et al. Selective head cooling with mild systemic hypothermia after neonatal encephalopathy: multicentre randomised trial. Lancet 2005; 365: 663–70.CrossRefGoogle ScholarPubMed
Shankaran, S, Laptook, AR, Ehrenkranz, RA, et al. Whole-body hypothermia for neonates with hypoxic–ischemic encephalopathy. N Engl J Med 2005; 353: 1574–84.CrossRefGoogle ScholarPubMed
Wyatt, JS, Gluckman, PD, Liu, PY, et al. Determinants of outcomes after head cooling for neonatal encephalopathy. Pediatrics 2007; 119: 912–21.CrossRefGoogle ScholarPubMed
Yager, JY, Armstrong, EA, Jaharus, C, et al. Preventing hyperthermia decreases brain damage following neonatal hypoxic–ischemic seizures. Brain Res 2004; 1011: 48–57.CrossRefGoogle ScholarPubMed
Mishima, K,Ikeda, , Yoshikawa, T, et al. Effects of hypothermia and hyperthermia on attentional and spatial learning deficits following neonatal hypoxia-ischemic insult in rats. Behav Brain Res 2004; 151: 209–17.CrossRefGoogle ScholarPubMed
Zhu, C, Wang, X, Cheng, X, et al. Post-ischemic hypothermia-induced tissue protection and diminished apoptosis after neonatal cerebral hypoxia–ischemia. Brain Res 2004; 996: 67–75.CrossRefGoogle ScholarPubMed
Wagner, BP, Nedelcu, J, Martin, E. Delayed postischemic hypothermia improves long-term behavioral outcome after cerebral hypoxia–ischemia in neonatal rats. Pediatr Res 2002; 51: 354–60.CrossRefGoogle ScholarPubMed
Liu, Y, Barks, JD, Xu, G, et al. Topiramate extends the therapeutic window for hypothermia-mediated neuroprotection after stroke in neonatal rats. Stroke 2004; 35: 1460–5.CrossRefGoogle ScholarPubMed
Thoresen, M, Haaland, K, Loberg, EM, et al. A piglet survival model of posthypoxic encephalopathy. Pediatr Res 1996; 40: 738–48.CrossRefGoogle ScholarPubMed
Bona, E, Hagberg, H, Loberg, EM, et al. Protective effects of moderate hypothermia after neonatal hypoxia–ischemia: short- and long-term outcome. Pediatr Res 1998; 43: 738–45.CrossRefGoogle ScholarPubMed
Taylor, DL, Mehmet, H, Cady, EB, et al. Improved neuroprotection with hypothermia delayed by 6 hours following cerebral hypoxia–ischemia in the 14-day-old rat. Pediatr Res 2002; 51: 13–19.CrossRefGoogle ScholarPubMed
Gunn, AJ, Gunn, TR, Haan, HH, et al. Dramatic neuronal rescue with prolonged selective head cooling after ischemia in fetal lambs. J Clin Invest 1997; 99: 248–56.CrossRefGoogle ScholarPubMed
Gunn, AJ, Bennet, L, Gunning, MI, et al. Cerebral hypothermia is not neuroprotective when started after postischemic seizures in fetal sheep. Pediatr Res 1999; 46: 274–80.CrossRefGoogle Scholar
Jatan, M, Singh, I, Singh, AK, et al. Combination of systemic hypothermia and N-acetylcysteine attenuates hypoxic–ischemic brain injury in neonatal rats. Pediatr Res 2006; 59: 684–9.CrossRefGoogle Scholar
Hobbs, CT, Tucker, M, Aquilina, A, et al. Xenon and hypothermia combine additively, offering long-term functional and histopathologic neuroprotection after neonatal hypoxia/ischemia. Stroke 2008; 39: 1307–13.CrossRefGoogle ScholarPubMed
Loren, DJ, Seeram, NP, Schulman, RN, et al. Maternal dietary supplementation with pomegranate juice is neuroprotective in an animal model of neonatal hypoxic–ischemic brain injury. Pediatr Res 2005; 57: 858–64.CrossRefGoogle Scholar
West, T, Atzeva, M, Holtzman, DM. Pomegranate polyphenols and resveratrol protect the neonatal brain against hypoxic–ischemic injury. Dev Neurosci 2007; 29: 363–72.CrossRefGoogle ScholarPubMed
Feng, Y, Liu, YM, Leblanc, MH, et al. Grape seed extract given three hours after injury suppresses lipid peroxidation and reduces hypoxic–ischemic brain injury in neonatal rats. Pediatr Res 2007; 61: 295–300.CrossRefGoogle ScholarPubMed
Parent, JM, Vexler, ZS, Gong, C, et al. Rat forebrain neurogenesis and striatal neuron replacement after focal stroke. Ann Neurol 2002; 52: 802–13.CrossRefGoogle ScholarPubMed
Lindvall, O, Kokaia, Z. Recovery and rehabilitation in stroke: stem cells. Stroke 2004; 35: 2691–4.CrossRefGoogle ScholarPubMed
Plane, JM, Liu, R, Wang, TW, et al. Neonatal hypoxic–ischemic injury increases forebrain subventricular zone neurogenesis in the mouse. Neurobiol Dis 2004; 16: 585–95.CrossRefGoogle ScholarPubMed
Arvidsson, A, Collin, T, Kirik, D, et al. Neuronal replacement from endogenous precursors in the adult brain after stroke. Nat Med 2002; 8: 963–70.CrossRefGoogle ScholarPubMed
Zhang, R, Zhang, Z, Wang, L, et al. Activated neural stem cells contribute to stroke-induced neurogenesis and neuroblast migration toward the infarct boundary in adult rats. J Cereb Blood Flow Metab 2004; 24: 441–8.CrossRefGoogle ScholarPubMed
Zhang, R, Zhang, Z, Zhang, C, et al. Stroke transiently increases subventricular zone cell division from asymmetric to symmetric and increases neuronal differentiation in the adult rat. J Neurosci 2004; 24: 5810–15.CrossRefGoogle ScholarPubMed
Ohab, JJ, Fleming, S, Blesch, A, et al. A neurovascular niche for neurogenesis after stroke. J Neurosci 2006; 26: 13007–16.CrossRefGoogle ScholarPubMed
Romanko, MJ, Zhu, C, Bahr, BA, et al. Death effector activation in the subventricular zone subsequent to perinatal hypoxia/ischemia. J Neurochem 2007; 103: 1121–31.CrossRefGoogle ScholarPubMed
Yang, Z, Covey, MV, Bitel, CL, et al. Sustained neocortical neurogenesis after neonatal hypoxic/ischemic injury. Ann Neurol 2007; 61: 199–208.CrossRefGoogle ScholarPubMed
Greenberg, DA, Jin, K. From angiogenesis to neuropathology. Nature 2005; 438: 954–9.CrossRefGoogle ScholarPubMed
Distler, JH, Hirth, A, Kurowska-Stolarska, M, et al. Angiogenic and angiostatic factors in the molecular control of angiogenesis. Q J Nucl Med 2003; 47: 149–61.Google ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×