Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-tn8tq Total loading time: 0 Render date: 2024-06-16T05:57:33.732Z Has data issue: false hasContentIssue false

4 - Nutrient ecology of ferns

Published online by Cambridge University Press:  05 June 2012

Sarah J. Richardson
Affiliation:
Landcare Research
Lawrence R. Walker
Affiliation:
University of Nevada
Klaus Mehltreter
Affiliation:
Instituto de Ecologia, A.C., Xalapa, Mexico
Lawrence R. Walker
Affiliation:
University of Nevada, Las Vegas
Get access

Summary

Key points

  1. 1. Ferns both respond to and impact ecosystem nutrient cycling.

  2. 2. Most ferns and lycophytes acquire nutrients through roots and generally in association with endomycorrhizal fungi. Ferns also acquire nutrients through direct absorption from decomposing litter and exceptionally through association with either ants or nitrogen-fixing cyanobacteria.

  3. 3. At a local scale, the vegetative cover and richness of ferns appears to be greatest on sites with high fertility. However, ferns probably make the greatest proportional contribution to total plant biomass on infertile soils.

  4. 4. Nutrient levels of fern leaves span a wide range of nitrogen (N) and phosphorus (P) concentrations but ferns still have low N concentrations relative to seed plants. The decomposition rates of fern litter vary widely among species and habitats.

  5. 5. Ferns have low leaf calcium (Ca) concentrations relative to seed plants at any given site. Variation among sites in the amount of fern biomass will influence soil Ca cycling.

Introduction

Soil fertility and associated soil biodiversity are critical drivers of vegetation composition and function (Bardgett, 2005), even in human-modified ecosystems (Yaalon, 2007). Adaptations to persist and compete for nutrients on sites of varying fertility drive the development of variation among species and help to determine how species are distributed across the landscape (Grime, 2002; Callaway, 2007). Contrary to the popular notion that ferns are poorly adapted to current environmental conditions, they present a bewildering array of strategies and have radiated into the same habitats as seed plants.

Type
Chapter
Information
Fern Ecology , pp. 111 - 139
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allison, S. D. and Vitousek, P. M. (2004a). Extracellular enzyme activities and carbon chemistry as drivers of tropical plant litter decomposition. Biotropica, 36, 285–96.Google Scholar
Allison, S. D. and Vitousek, P. M. (2004b). Rapid nutrient cycling in leaf litter from invasive plants in Hawai‘i. Oecologia, 141, 612–9.CrossRefGoogle ScholarPubMed
Amatangelo, K. L. and Vitousek, P. M. (2008). Stoichiometry of ferns in Hawai‘i: implications for nutrient cycling. Oecologia, 157, 619–27.CrossRefGoogle Scholar
Aplet, G. H. and Vitousek, P. M. (1994). An age–altitude matrix analysis of Hawai‘ian rain-forest succession. Journal of Ecology, 82, 137–47.CrossRefGoogle Scholar
Bardgett, R. (2005). The Biology of Soil: A Community and Ecosystem Approach. Oxford, UK: Oxford University Press.CrossRefGoogle Scholar
Barrington, D. S. (1993). Ecological and historical factors in fern biogeography. Journal of Biogeography, 20, 275–9.CrossRefGoogle Scholar
Baruch, Z. and Goldstein, G. (1999). Leaf construction cost, nutrient concentration, and net CO2 assimilation of native and invasive species in Hawai‘i. Oecologia, 121, 183–92.CrossRefGoogle Scholar
Berch, S. M. and Kendrick, B. (1982). Vesicular–arbuscular mycorrhizae of southern Ontario ferns and fern-allies. Mycologia, 74, 769–76.CrossRefGoogle Scholar
Bray, J. R. (1991). Growth, biomass, and productivity of a bracken (Pteridium esculentum) infested pasture in Marlborough Sounds, New Zealand. New Zealand Journal of Botany, 29, 169–76.CrossRefGoogle Scholar
Brooker, R. W., Callaghan, T. V. and Jonasson, S. (1999). Nitrogen uptake by rhizomes of the clonal sedge Carex bigelowii: a previously overlooked nutritional benefit of rhizomatous growth. New Phytologist, 142, 35–48.CrossRefGoogle Scholar
Brundrett, M. C. (2002). Coevolution of roots and mycorrhizas of land plants. New Phytologist, 154, 275–304.CrossRefGoogle Scholar
Callaghan, T. V. (1980). Age-related patterns of nutrient allocation in Lycopodium annotinum from Swedish Lapland: strategies of growth and population dynamics of tundra plants, 5. Oikos, 35, 373–86.CrossRefGoogle Scholar
Callaway, R. M. (2007). Positive Interactions and Interdependence in Plant Communities. New York: Springer-Verlag.Google Scholar
Calvert, H. E. and Peters, G. A. (1981). The Azolla–Anabaena azollae relationship. IX. Morphological analysis of leaf cavity hair populations. New Phytologist, 89, 327–35.CrossRefGoogle Scholar
Coomes, D. A., Allen, R. B., Canham, C. D., et al. (2005). The hare, the tortoise, and the crocodile: the ecology of angiosperm dominance, conifer persistence, and fern filtering. Journal of Ecology, 93, 918–35.CrossRefGoogle Scholar
Cooper, K. M. (1976). A field survey of mycorrhizas in New Zealand ferns. New Zealand Journal of Botany, 14, 169–81.CrossRefGoogle Scholar
Cornelissen, J. H. C., Quested, H. M., Logtestijn, R. S. P., et al. (2006). Foliar pH as a new plant trait: can it explain variation in foliar chemistry and carbon cycling processes among subarctic plant species and types?Oecologia, 147, 315–26.CrossRefGoogle ScholarPubMed
Costa, F. R., Magnusson, W. E. and Luizao, R. C. (2005). Mesoscale distribution patterns of Amazonian understorey herbs in relation to topography, soil and watersheds. Journal of Ecology, 93, 863–78.CrossRefGoogle Scholar
Crews, T. E., Kitayama, K., Fownes, J. H., et al. (1995). Changes in soil phosphorus fractions and ecosystem dynamics across a long chronosequence in Hawai‘i. Ecology, 76, 1407–24.CrossRefGoogle Scholar
Crews, T. E., Kurina, L. M. and Vitousek, P. M. (2001). Organic matter and nitrogen accumulation and nitrogen fixation during early ecosystem development in Hawai‘i. Biogeochemistry, 52, 259–79.CrossRefGoogle Scholar
Cullen, P. J. (1987). Regeneration patterns in populations of Athrotaxis selaginoides D. Don. from Tasmania. Journal of Biogeography, 14, 39–51.CrossRefGoogle Scholar
Dearden, F. M. and Wardle, D. A. (2007). The potential for forest canopy litterfall interception by a dense fern understorey, and the consequences for litter decomposition. Oikos, 117, 83–92.CrossRefGoogle Scholar
Durand, L. Z. and Goldstein, G. (2001). Growth, leaf characteristics, and spore production in native and invasive tree ferns in Hawai‘i. American Fern Journal, 91, 25–35.CrossRefGoogle Scholar
Farrar, D. R., Dassler, C., Watkins, J. E.. and Skelton, C. (2008). Gametophyte ecology. In Biology and Evolution of Ferns and Lycophytes, ed. Ranker, T. A. and Haufler, C. H.. Cambridge, UK: Cambridge University Press, pp. 222–56.CrossRefGoogle Scholar
Fischer, R. C., Wanek, W., Richter, A. and Mayer, V. (2003). Do ants feed plants? A 15N labelling study of nitrogen fluxes from ants to plants in the mutualism of Pheidole and Piper. Journal of Ecology, 91, 126–34.CrossRefGoogle Scholar
Flenley, J. R. (1969). The vegetation of the Wabag Region, New Guinea Highlands: a numerical study. Journal of Ecology, 57, 465–90.CrossRefGoogle Scholar
Ganjegunte, G. K., Condron, L. M., Clinton, P. W. and Davis, M. R. (2005). Effects of mixing radiata pine needles and understory litters on decomposition and nutrient release. Biology and Fertility of Soils, 41, 310–19.CrossRefGoogle Scholar
Gay, H. (1993). Animal-fed plants: an investigation into the uptake of ant-derived nutrients by the far-eastern epiphytic fern Lecanopteris Reinw. (Polypodiaceae). Biological Journal of the Linnean Society, 50, 221–33.CrossRefGoogle Scholar
Gemma, J. N., Koske, R. E. and Flynn, T. (1992). Mycorrhizae in Hawai‘ian pteridophytes: occurrence and evolutionary significance. American Journal of Botany, 79, 843–52.CrossRefGoogle Scholar
Gómez, L. D. (1977). The Azteca ants of Solanopteris brunei. American Fern Journal, 67, 31.CrossRefGoogle Scholar
Grime, J. P. (2002). Plant Strategies, Vegetation Processes and Ecosystem Properties. Chichester, UK: Wiley.Google Scholar
Güsewell, S. (2004). N:P ratios in terrestrial plants: variation and functional significance. New Phytologist, 164, 243–66.CrossRefGoogle Scholar
Halleck, L. F., Sharpe, J. M. and Zou, X. (2004). Understorey fern responses to post-hurricane fertilization and debris removal in a Puerto Rican rain forest. Journal of Tropical Ecology, 20, 173–81.CrossRefGoogle Scholar
Han, W., Fang, J., Guo, D. and Zhang, Y. (2005). Leaf nitrogen and phosphorus stoichiometry across 753 terrestrial plant species in China. New Phytologist, 168, 377–85.CrossRefGoogle Scholar
Harley, J. L. and Harley, E. L. (1987). A check-list of mycorrhiza in the British flora. New Phytologist, 105, 1–102.CrossRefGoogle Scholar
Harms, K. E., Powers, J. S. and Montgomery, R. A. (2004). Variation in small sapling density, understory cover, and resource availability in four neotropical forests. Biotropica, 36, 40–51.Google Scholar
Harrington, R. A., Fownes, J. H. and Vitousek, P. M. (2001). Patterns and components of response to nutrient limitation: comparison of long-term results in N- and P-limited tropical forest ecosystems. Ecosystems, 4, 646–57.CrossRefGoogle Scholar
Huston, M. A. (1996). Biological Diversity: The Coexistence of Species on Changing Landscapes. Cambridge, UK: Cambridge University Press.Google Scholar
Iqbal, S. H., Yousaf, M. and Younus, M. (1981). A field survey of mycorrhizal associations in ferns of Pakistan. New Phytologist, 87, 69–79.CrossRefGoogle Scholar
Janes, R. (1998). Growth and survival of Azolla filiculoides in Britain. I. Vegetative reproduction. New Phytologist, 138, 367–75.CrossRefGoogle Scholar
Johnson-Maynard, J. L., McDaniel, P. A., Ferguson, D. E. and Falen, A. L. (1998). Changes in soil solution chemistry of andisols following invasion by bracken fern. Soil Science, 163, 814–21.CrossRefGoogle Scholar
Jones, M. M., Olivas Rojas, P., Tuomisto, H. and Clark, D. B. (2007). Environmental and neighbourhood effects on tree fern distributions in a neotropical lowland rain forest. Journal of Vegetation Science, 18, 13–24.CrossRefGoogle Scholar
Karasawa, S. and Hijii, N. (2006). Determinants of litter accumulation and the abundance of litter-associated microarthropods in bird's nest ferns (Asplenium nidus complex) in the forest of Yambaru on Okinawa Island, southern Japan. Journal of Forest Research, 11, 313–18.CrossRefGoogle Scholar
Karst, A. L. and Lechowicz, M. J. (2007). Are correlations among foliar traits in ferns consistent with those in the seed plants?New Phytologist, 173, 306–12.CrossRefGoogle ScholarPubMed
Kelly, D. (1994). Demography and conservation of Botrychium australe, a peculiar, sparse mycorrhizal fern. New Zealand Journal of Botany, 32, 393–400.CrossRefGoogle Scholar
Killingbeck, K. T. (1996). Nutrients in senesced leaves: keys to the search for potential resorption and resorption proficiency. Ecology, 77, 1716–27.CrossRefGoogle Scholar
Killingbeck, K. T., Hammen-Winn, S. L., Vecchio, P. G. and Goguen, M. E. (2002). Nutrient resorption efficiency and proficiency in fronds and trophopods of a winter-deciduous fern, Dennstaedtia punctilobula. International Journal of Plant Sciences, 163, 99–105.CrossRefGoogle Scholar
Kitayama, K. and Mueller-Dombois, D. (1995). Vegetation changes along gradients of long-term soil development in the Hawai‘ian montane rainforest zone. Vegetatio, 120, 1–20.Google Scholar
Kramer, K. U., Schneller, J. J. and Wollenweber, E. (1995). Farne und Farnverwandte. Stuttgart, Germany: Georg Thieme Verlag.Google Scholar
Lambers, H., Chapin, F. S., III. and Pons, T. L. (2008). Plant Physiological Ecology, 2nd edn. New York: Springer-Verlag.CrossRefGoogle Scholar
Langan, S. J. ed. (1999). The Impacts of Nitrogen Deposition on Natural and Semi-Natural Ecosystems. New York: Springer-Verlag.CrossRef
Lee, W. G. (1992). New Zealand ultramafics. In The Ecology of Areas with Serpentinized Rocks: A World View, ed. Roberts, B. A. and Proctor, J.. Dordrecht, The Netherlands: Kluwer Academic Publishers, pp. 375–418.CrossRefGoogle Scholar
Lwanga, J. S., Balmford, A. and Badaza, R. (1998). Assessing fern diversity: relative species richness and its environmental correlates in Uganda. Biodiversity and Conservation, 7, 1387–98.CrossRefGoogle Scholar
Maheswaran, J. and Gunatilleke, I. A. U. N. (1988). Litter decomposition in a lowland rain forest and a deforested area in Sri Lanka. Biotropica, 20, 90–9.CrossRefGoogle Scholar
Maheswaran, J. and Gunatilleke, I. A. U. N. (1990). Nitrogenase activity in soil and litter of a tropical lowland rainforest and adjacent fernland in Sri Lanka. Journal of Tropical Ecology, 6, 281–9.CrossRefGoogle Scholar
Marrs, R. H., Pakeman, R. J. and Lowday, J. E. (1993). Control of bracken and the restoration of heathland. V. Effects of bracken control treatments on the rhizome and its relationship with frond performance. Journal of Applied Ecology, 30, 107–18.CrossRefGoogle Scholar
Marsh, A. S., Arnone, J. A. A., III., Bormann, B. T. and Gordon, J. C. (2000). The role of Equisetum in nutrient cycling in an Alaskan shrub wetland. Journal of Ecology, 88, 999–1011.CrossRefGoogle Scholar
McConnachie, A. J., Hill, M. P. and Byrne, M. J. (2004). Field assessment of a frond-feeding weevil, a successful biological control agent of red waterfern, Azolla filiculoides, in southern Africa. Biological Control, 29, 326–31.CrossRefGoogle Scholar
McGlone, M. S., Dungan, R. J., Hall, G. M. J. and Allen, R. B. (2006). Winter leaf loss in the New Zealand woody flora. New Zealand Journal of Botany, 42, 1–19.CrossRefGoogle Scholar
Mitchell, R. J., Auld, M. H. D., Hughes, J. M. and Marrs, R. H. (2000). Estimates of nutrient removal during heathland restoration on successional sites in Dorset, southern England. Biological Conservation, 95, 233–46.CrossRefGoogle Scholar
Moran, R. C. (2004). A Natural History of Ferns. Portland, OR, USA: Timber Press.Google Scholar
Müller, L., Starnecker, G. and Winkler, S. (1981). Zur Ökologie epiphytischer Farne in Südbrasilien I. Saugschuppen. Flora, 171, 55–63.CrossRefGoogle Scholar
Nordin, A. and Näsholm, T. (1997). Nitrogen storage forms in nine boreal understorey plant species. Oecologia, 110, 487–92.CrossRefGoogle ScholarPubMed
Page, C. N. (1979). The diversity of ferns: an ecological perspective. In The Experimental Biology of Ferns, ed. Dyer, A. F.. London: Academic Press, pp. 10–53.Google Scholar
Pegman, A. P. McK. and Ogden, J. (2006). Productivity–decomposition dynamics of Baumea juncea and Gleichenia dicarpa at Kaitoke Swamp, Great Barrier Island, New Zealand. New Zealand Journal of Botany, 44, 261–71.CrossRefGoogle Scholar
Perkins, S. K. and Peters, G. A. (1993). The Azolla–Anabaena symbiosis: Endophyte continuity in the Azolla life-cycle is facilitated by epidermal trichomes. I. Partitioning of the endophytic Anabaena into developing sporocarps. New Phytologist, 123, 53–64.CrossRefGoogle Scholar
Quested, H. M., Cornelissen, J. H. C., Press, M. C., et al. (2003). Decomposition of sub-arctic plants with differing nitrogen economies: a functional role for hemiparasites. Ecology, 84, 3209–21.CrossRefGoogle Scholar
Raich, J. W., Russell, A. E., Crews, T. E., Farrington, H. and Vitousek, P. M. (1996). Both nitrogen and phosphorus limit plant production on young Hawai‘ian lava flows. Biogeochemistry, 32, 1–14.CrossRefGoogle Scholar
Raich, J. W., Russell, A. E. and Vitousek, P. M. (1997). Primary productivity and ecosystem development along an elevational gradient on Mauna Loa, Hawai‘i. Ecology, 78, 707–21.Google Scholar
Read, D. J., Duckett, J. G., Francis, R., Ligrone, R. and Russell, A. (2000). Symbiotic fungal associations in ‘lower’ land plants. Philosophical Transactions of the Royal Society, Series B, 355, 815–31.CrossRefGoogle ScholarPubMed
Reich, A., Ewel, J. J., Nadkarni, N. M., Dawson, T. and Evans, R. D. (2003). Nitrogen isotope ratios shift with plant size in tropical bromeliads. Oecologia, 137, 587–90.CrossRefGoogle ScholarPubMed
Reich, P. B., Ellsworth, D. S., Walters, M. B., et al. (1999). Generality of leaf traits relationships: a test across six biomes. Ecology, 80, 1955–69.CrossRefGoogle Scholar
Remy, W., Taylor, T. N., Hass, H. and Kerp, H. (1994). Four hundred-million-year-old vesicular arbuscular mycorrhizae. Proceedings of the National Academy of Sciences, USA, 91, 11841–3.CrossRefGoogle ScholarPubMed
Richardson, S. J., Peltzer, D. A., Allen, R. B. and McGlone, M. S. (2005). Resorption proficiency along a chronosequence: responses among communities and within species. Ecology, 86, 20–5.CrossRefGoogle Scholar
Richardson, S. J., Allen, R. B. and Doherty, E. J. (2008). Shifts in leaf N:P ratio during resorption reflect soil P in temperate rainforest. Functional Ecology, 22, 738–45.CrossRefGoogle Scholar
Royo, A. and Carson, W. P. (2006). On the formation of dense understory layers in forests worldwide: consequences and implications for forest dynamics, biodiversity, and succession. Canadian Journal of Forest Research, 36, 1345–62.CrossRefGoogle Scholar
Russell, A. E. and Vitousek, P. M. (1997). Decomposition and potential nitrogen fixation in Dicranopteris linearis litter on Mauna Loa, Hawai‘i, USA. Journal of Tropical Ecology, 13, 579–94.CrossRefGoogle Scholar
Russell, A. E., Raich, J. W. and Vitousek, P. M. (1998). The ecology of the climbing fern Dicranopteris linearis on windward Mauna Loa, Hawai‘i. Journal of Ecology, 86, 765–79.CrossRefGoogle Scholar
Scatena, F. N., Silver, W., Siccama, T., Johnson, A. and Sanchez, M. J. (1993). Biomass and nutrient content of the Bisley Experimental Watersheds, Luquillo Experimental Forest, Puerto Rico, before and after Hurricane Hugo, 1989. Biotropica, 25, 15–27.CrossRefGoogle Scholar
Schrumpf, M., Axmacher, J. C., Zech, W., Lehmann, J. and Lyaruu, H. V. C. (2007). Long-term effects of rainforest disturbance on the nutrient composition of throughfall, organic layer percolate and soil solution at Mt. Kilimanjaro. Science of the Total Environment, 376, 241–54.CrossRefGoogle ScholarPubMed
Scowcroft, P. G. (1997). Mass and nutrient dynamics of decaying litter from Passiflora mollissima and selected native species in a Hawai‘ian montane rain forest. Journal of Tropical Ecology, 13, 407–26.CrossRefGoogle Scholar
Shiels, A. B. (2006). Leaf litter decomposition and substrate chemistry of early successional species on landslides in Puerto Rico. Biotropica, 38, 348–53.CrossRefGoogle Scholar
Shiels, A. B., West, C. A., Weiss, L., Klawinski, P. D. and Walker, L. R. (2008). Soil factors predict initial plant colonization on Puerto Rican landslides. Plant Ecology, 195, 165–78.CrossRefGoogle Scholar
Siccama, T. G., Bormann, F. H. and Likens, G. E. (1970). The Hubbard Brook Ecosystem Study: productivity, nutrients, and phytosociology of the herbaceous layer. Ecological Monographs, 40, 389–402.CrossRefGoogle Scholar
Sterner, R. W. and Elser, J. J. (2002). Ecological Stoichiometry: The Biology of Elements from Molecules to the Biosphere. Princeton, NJ, USA: Princeton University Press.Google Scholar
Tanner, E. V. J. (1983). Leaf demography and growth of the tree fern Cyathea pubescens in Jamaica. Botanical Journal of the Linnean Society, 87, 213–27.CrossRefGoogle Scholar
Tanner, E. V. J. (1985). Jamaican montane forests: nutrient capital and cost of growth. Journal of Ecology, 73, 553–68.CrossRefGoogle Scholar
Tessier, J. T. and Raynal, D. J. (2003). Use of nitrogen to phosphorus ratios in plant tissue as an indicator of nutrient limitation and nitrogen saturation. Journal of Applied Ecology, 40, 523–34.CrossRefGoogle Scholar
Thomas, S. C., Halpern, C. B., Falk, D. A., Liguori, D. A. and Austin, K. A. (1999). Plant diversity in managed forests: understory responses to thinning and fertilization. Ecological Applications, 9, 864–79.CrossRefGoogle Scholar
Treseder, K. K., Davidson, D. W. and Ehleringer, J. R. (1995). Absorption of ant-provided carbon dioxide and nitrogen by a tropical epiphyte. Nature, 375, 137–9.CrossRefGoogle Scholar
Tuomisto, H. and Poulsen, A. D. (1996). Influence of edaphic specialization on pteridophyte distribution in neotropical rain forests. Journal of Biogeography, 23, 283–93.CrossRefGoogle Scholar
Tuomisto, H., Ruokolainen, K., Kalliola, R., et al. (1995). Dissecting Amazonian biodiversity. Science, 269, 63–6.CrossRefGoogle ScholarPubMed
Tuomisto, H., Poulsen, A. D. and Moran, R. C. (1998). Edaphic distribution of some species of the fern genus Adiantum in Western Amazonia. Biotropica, 30, 392–9.CrossRefGoogle Scholar
Tuomisto, H., Ruokolainen, K., Poulsen, A. D., et al. (2002). Distribution and diversity of pteridophytes and Melastomataceae along edaphic gradients in Yasuni National Park, Ecuadorian Amazonia. Biotropica, 34, 516–33.Google Scholar
Turner, B. L. (2008). Resource partitioning for soil phosphorus: a hypothesis. Journal of Ecology, 96, 698–702.CrossRefGoogle Scholar
Tyson, M. J., Oughton, D. H., Callaghan, T. V., Day, J. P. and Sheffield, E. (1990). The uptake and translocation of caesium-134 and strontium-85 in bracken Pteridium aquilinum (Dennstaedtiaceae: Pteridophyta). Fern Gazette, 13, 381–3.Google Scholar
Vitousek, P. M. (2004). Nutrient Cycling and Limitation: Hawai'i as a Model System. Princeton, NJ, USA: Princeton University Press.Google Scholar
Vitousek, P. M., Turner, D. R. and Kitayama, K. (1995a). Foliar nutrient during long-term soil development in Hawai‘ian montane rain forest. Ecology, 76, 712–20.CrossRefGoogle Scholar
Vitousek, P. M., Gerrish, G., Turner, D. R., Walker, L. R. and Mueller-Dombois, D. (1995b). Litterfall and nutrient cycling in four Hawai‘ian montane rain forests. Journal of Tropical Ecology, 11, 189–203.CrossRefGoogle Scholar
Walker, J., Thompson, C. H., Fergus, I. F. and Tunstall, B. R. (1981). Plant succession and soil development in coastal sand dunes of subtropical eastern Australia. In Forest Succession: Concepts and Application, ed. West, D. C., Shugart, H. H. and Botkin, D. B. New York: Springer-Verlag, pp. 107–31.CrossRef
Walker, L. R. and Aplet, G. H. (1994). Growth and fertilization responses of Hawaiian tree ferns. Biotropica, 26, 378–83.CrossRefGoogle Scholar
Walker, L. R., Zimmerman, J. K., Lodge, D. J. and Guzmán-Grajales, S. (1996). An altitudinal comparison of growth and species composition in hurricane-damaged forests in Puerto Rico. Journal of Ecology, 84, 877–89.CrossRefGoogle Scholar
Wang, B. and Qiu, Y.-L. (2006). Phylogenetic distribution and evolution of mycorrhizas in land plants. Mycorrhiza, 16, 299–363.CrossRefGoogle ScholarPubMed
Wardle, D. A., Bonner, K. I. and Barker, G. M. (2002). Linkages between plant litter decomposition, litter quality, and vegetation responses to herbivores. Functional Ecology, 16, 585–95.CrossRefGoogle Scholar
Wardle, D. A., Yeates, G. W., Barker, G. M., et al. (2003). Island biology and ecosystem functioning in epiphytic soil communities. Science, 301, 1717–20.CrossRefGoogle ScholarPubMed
Wardle, D. A., Walker, L. R. and Bardgett, R. D. (2004). Ecosystem properties and forest decline in contrasting long-term chronosequences. Science, 305, 509–13.CrossRefGoogle ScholarPubMed
Watkins, J. E., Jr., Cardelús, C., Colwell, R. K. and Moran, R. C. (2006). Species richness and distribution of ferns along an elevational gradient in Costa Rica. American Journal of Botany, 93, 73–83.CrossRefGoogle Scholar
Watkins, J. E.., Mack, M. C., Sinclair, T. R. and Mulkey, S. S. (2007a). Ecological and evolutionary consequences of desiccation tolerance in tropical fern gametophytes. New Phytologist, 176, 708–17.CrossRefGoogle ScholarPubMed
Watkins, J. E.., Rundel, P. W. and Cardelús, S. L. (2007b). The influence of life form on carbon and nitrogen relationships in tropical rainforest ferns. Oecologia, 153, 225–32.CrossRefGoogle ScholarPubMed
Wegner, C., Wunderlich, M., Kessler, M. and Schawe, M. (2003). Foliar C:N ratio of ferns along an Andean elevational gradient. Biotropica, 35, 486–90.CrossRefGoogle Scholar
Wright, I. J., Reich, P. B., Westoby, M., et al. (2004). The world-wide leaf economics spectrum. Nature, 428, 821–7.CrossRefGoogle Scholar
Wright, I. J., Reich, P. B., Cornelissen, J. H. C., et al. (2005). Assessing the generality of global leaf trait relationships. New Phytologist, 166, 485–96.CrossRefGoogle ScholarPubMed
Yaalon, D. H. (2007). Human-induced ecosystem and landscape processes always involve soil change. BioScience, 57, 918–19.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×