Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-mwx4w Total loading time: 0 Render date: 2024-06-24T19:50:40.161Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  05 November 2013

Jeff Colvin
Affiliation:
Lawrence Livermore National Laboratory, Livermore
Jon Larsen
Affiliation:
Cascade Applied Sciences, Inc., Boulder
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Extreme Physics
Properties and Behavior of Matter at Extreme Conditions
, pp. 396 - 399
Publisher: Cambridge University Press
Print publication year: 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Amendt, P., Colvin, J. D., Ramshaw, J. D., Robey, H. F., and Landen, O. L. (2003). Modified Bell–Plesset effect with compressibility: Application to double-shell ignition target designs. Phys. Plasmas, 10, 820–829.CrossRefGoogle Scholar
Bellman, R. and Pennington, R. H. (1954). Effects of surface tension and viscosity on Taylor instability. Q. Appl. Math, 12, 151.CrossRefGoogle Scholar
Bowers, R. L. and Wilson, J. R. (1991). Numerical Modeling in Applied Physics and Astrophysics. Boston: Jones and Bartlett.Google Scholar
Braginskii, S. I. (1965). In Review of Plasma Physics. New York: Consultants Bureau, Vol. 1, pp. 205–311.Google Scholar
Brysk, H. (1974). Electron–ion equilibration in a partially degenerate plasma. Plasma Phys., 16, 927–932.CrossRefGoogle Scholar
Campbell, P. M. (1984). Transport phenomena in a completely ionized gas with large temperature gradients. Phys. Rev. A, 30(1), 365–373.CrossRefGoogle Scholar
Carslaw, H. S. and Jaeger, J. C. (1959). Conduction of Heat in Solids. Oxford: Clarendon Press.Google Scholar
Castor, J. I. (2004). Radiation Hydrodynamics. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Chandrasekhar, S. (1935). The radiative equilibrium of a planetary nebula. Z. Astrophys., 9, 266.Google Scholar
Chandrasekhar, S. (1942). Principles of Stellar Dynamics. Chicago: University of Chicago Press.Google Scholar
Chandrasekhar, S. (1943a). Dynamical friction. I. General considerations: The coefficient of dynamical friction. Astrophys. J., 97, 255–262.CrossRefGoogle Scholar
Chandrasekhar, S. (1943b). Dynamical friction. II. The rate of escape of stars from clusters and the evidence for the operation of dynamical friction. Astrophys. J., 97, 263–273.CrossRefGoogle Scholar
Chen, F. F. (1974). Introduction to Plasma Physics. New York: Plenum Press.Google Scholar
Cloutman, L. D. (1989). Numerical evaluation of the Fermi–Dirac integrals. Astrophys. J. Suppl., 71, 677–699.CrossRefGoogle Scholar
Cohen, R. S., Spitzer, L., and Routly, P. M. (1950). The electrical conductivity of an ionized gas. Phys. Rev., 80(2), 230–238.CrossRefGoogle Scholar
Colvin, J. D. and Kalantar, D. H. (2006). Scaling of pressure with intensity in laser-driven shocks and effects of hot X-ray preheat. Shock Compression of Condensed Matter – 2005, AIP Conference Proceedings, CP845, 1413–1416.CrossRef
Colvin, J. D., Legrand, M., Remington, B. A., Schurz, G., and Weber, S. V. (2003). A model for instability growth in accelerated solid metals. J. Appl. Phys., 93, 5287–5301.CrossRefGoogle Scholar
Courant, R., Friedrichs, K., and Lewy, H. (1928). Über die partiellen differenzengleichungen der mathematischen physik. Math. Ann., 100, 32–74.CrossRefGoogle Scholar
Cox, J. P. and Giuli, R. T. (1968). Principles of Stellar Structure. New York: Gordon and Breach.Google Scholar
Davies, J. R. (2009). Laser absorption by overdense plasmas in the relativistic regime. Plasma Phys. Control. Fusion, 51, 014006.CrossRefGoogle Scholar
Dimonte, G. (2000). Spanwise homogeneous buoyancy-drag model for Rayleigh–Taylor mixing and experimental evaluation. Phys. Plasmas, 7, 2255–2269.CrossRefGoogle Scholar
Drake, R. P. (2006). High-Energy-Density Physics. Heidelberg: Springer-Verlag.Google Scholar
Drucker, D. C. (1980). A further look at Rayleigh–Taylor and other surface instabilities in solids. Ingenieur-Archiv, 49, 361–367.CrossRefGoogle Scholar
Drude, P. (1900). Zur electronentherorie der metalle. Ann. Phys., 306, 566–613.CrossRefGoogle Scholar
Ensman, L. and Burrows, A. (1992). Shock breakout in SN 1987A. Astrophys. J., 393, 742–755.CrossRefGoogle Scholar
Feynman, R. P., Metropolis, N., and Teller, E. (1949). Equations of state of elements based on the generalized Fermi–Thomas theory. Phys. Rev., 75, 1561–1573.CrossRefGoogle Scholar
Ginsburg, V. L. (1970). The Propagation of Electromagnetic Waves in Plasmas. New York: Pergamon Press.Google Scholar
Griem, H. (1964). Plasma Spectroscopy. New York: McGraw-Hill.Google Scholar
Haan, S. W. (1989). Onset of non-linear saturation for Rayleigh–Taylor growth in the presence of a full spectrum of modes. Phys. Rev. A, 39, 5812.CrossRefGoogle Scholar
Jackson, J. D. (1999). Classical Electrodynamics, 3rd edn. New York: John Wiley & Sons.Google Scholar
Johnson, G. R., Hoegfeldt, J. M., Lindholm, U. S., and Nagy, A. (1983a). Response of various metals to large torsional strains over a large range of strain rates – Part 1: Ductile metals. J. Eng. Mater. Technol., 105, 42–47.CrossRefGoogle Scholar
Johnson, G. R., Hoegfeldt, J. M., Lindholm, U. S., and Nagy, A. (1983b). Response of various metals to large torsional strains over a large range of strain rates – Part 2: Less ductile metals. J. Eng. Mater. Technol., 105, 48–53.CrossRefGoogle Scholar
Kittel, C. (1958). Elementary Statistical Physics. New York: John Wiley & Sons.Google Scholar
Krall, N. and Trivelpiece, A. (1973). Principles of Plasma Physics. New York: McGraw-Hill.Google Scholar
Kramers, H. A. (1923). On the theory of X-ray absorption and of the continuous X-ray spectrum. Phil. Mag., 46, 836–871.CrossRefGoogle Scholar
Kulsrud, R. M. (2001). Magnetic reconnection: Sweet–Parker versus Petschek. Earth Planets Space, 53, 417–422.CrossRefGoogle Scholar
Landau, L. D. and Lifshitz, E. M. (1958). Statistical Physics. Reading, MA: Addison-Wesley.Google Scholar
Landau, L. D. and Lifshitz, E. M. (1960). Electrodynamics of Continuous Media. Oxford: Pergamon Press.Google Scholar
Langdon, A. B. (1980). Non-linear inverse bremsstrahlung and heated electron distributions. Phys. Rev. Lett., 44, 575–579.CrossRefGoogle Scholar
Larsen, J. T. and Lane, S. M. (1994). HYADES – A plasma hydrodynamics code for dense plasma studies. J. Quant. Spectrosc. Radiat. Transf., 51, 179–186.CrossRefGoogle Scholar
Lebedev, A. I., Nizovtsev, P. N., and Rayevsky, V. A. (1993). Rayleigh–Taylor instability in solids. Proceedings of 4th International Workshop on the Physics of Compressible Turbulent Mixing, 29 March–1 April 1993. Cambridge: Cambridge University Press, pp. 81–93.Google Scholar
Lee, Y. T. and More, R. M. (1984). An electron conductivity model for dense plasmas. Phys. Fluids, 27(5), 1273–1286.CrossRefGoogle Scholar
Leighton, R. B. (1959). Principles of Modern Physics. New York: McGraw-Hill.Google Scholar
Lokke, W. A. and Grasberger, W. H. (1977). XSNQ-U – A non-LTE emission and absorption coefficient subroutine. Lawrence Livermore Laboratory Report No. UCRL-52276.CrossRef
Marshak, R. E. (1958). Effect of radiation on shock wave behavior. Phys. Fluids, 1, 24–29.CrossRefGoogle Scholar
Mayer, H. (1948). Methods of opacity calculations. Los Alamos Scientific Laboratory Report No. LA-647.
Meshkov, E. E. (1969). Instability of a shock wave accelerated interface between two gases. Mekh. Zhidk. Gaz., 5, 151.Google Scholar
Mihalas, D. and Mihalas, B. W. (1984). Foundations of Radiation Hydrodynamics. New York: Oxford University Press.Google Scholar
Mikaelian, K. (1993). Effect of viscosity on Rayleigh–Taylor and Richtmyer–Meshkov instabilities. Phys. Rev. E, 47, 375–383.CrossRefGoogle ScholarPubMed
Mikaelian, K. (1996). Rayleigh–Taylor instability in finite thickness fluids with viscosity and surface tension. Phys. Rev. E, 54, 3676–3680.CrossRefGoogle ScholarPubMed
Miles, J. W. (1966). Taylor instability of a flat plate. Technical Report No. GAMD-7335. San Diego: General Dynamics. [This report is no longer available, but the Miles formulation is derived again in Dienes, J. K. (1978). Method of generalized coordinates and an application to Rayleigh–Taylor instability. Phys. Fluids, 21, 736–744.]Google Scholar
Milne, E. A. (1921). Radiative equilibrium in the outer layers of a star: The temperature distribution and the law of darkening. Mon. Notices Roy. Astron. Soc., 81, 361–375.CrossRefGoogle Scholar
Mitchell, A. R. (1969). Computational Methods in Partial Differential Equations. London: John Wiley & Sons.Google Scholar
More, R. M. (1982). Applied Atomic Collision Physics, Vol. 2. New York: Academic Press.Google Scholar
More, R. M., Warren, K. H., Young, D. A., and Zimmerman, G. B. (1988). A new quotidian equation of state (QEOS) for hot dense matter. Phys. Fluids, 31, 3059–3078.CrossRefGoogle Scholar
Noh, W. F. (1982). Infinite reflected shock test problems in spherical geometry. Internal Memo. Livermore, CA: Lawrence Livermore National Laboratory.
Parker, E. N. (1957). Acceleration of cosmic rays in solar flares. Phys. Rev., 107(3), 830–836.CrossRefGoogle Scholar
Petschek, H. E. (1964). Magnetic field annihilation. In Physics of Solar Flares. NASA SP-50, p. 425.
Potter, D. (1978). The formation of high-density Z-pinches. Nucl. Fusion, 18(6), 813–824.CrossRefGoogle Scholar
Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P. (1992). Numerical Recipes; The Art of Scientific Computing. Cambridge: Cambridge University Press.Google Scholar
Reighard, A. B., Drake, R. P., Mucino, J. E., Knauer, J. P., and Busquet, M. (2007). Planar radiative shock experiments and their comparison to simulations. Phys. Plasmas, 14, 056504.CrossRefGoogle Scholar
Richtmyer, R. D. (1960). Taylor instability in shock acceleration of compressible fluids. Commun. Pure Appl. Math., 13, 297–319.CrossRefGoogle Scholar
Richtmyer, R. D. and Morton, K. W. (1967). Difference Methods for Initial-Value Problems. New York: Wiley Interscience.Google Scholar
Rosen, M. D. (1994). Marshak waves: Constant flux vs. constant T – a (slight) paradigm shift. Lawrence Livermore National Laboratory Report No. UCRL-ID-119548.
Rosenbluth, M. N. (1954). Infinite conductivity theory of the pinch. Los Alamos Scientific Laboratory Technical Report No. LA-1850.
Ryutov, D. D., Drake, R. P., Kane, J., Liang, E., Remington, B. A., and Wood-Vasey, M. (1999). Similarity criteria for the laboratory simulation of supernova hydrodynamics. Astrophys. J., 518(2), 821.CrossRefGoogle Scholar
Sedov, L. I. (1946a). Le movement d'air en cas d'une forte explosion. Compt. Rend. (Doklady) Acad. Sci. URSS, 52, 17–20.Google Scholar
Sedov, L. I. (1946b). Propagation of strong blast waves. Prikl. Mat. i Mekh., 10, 241–250.Google Scholar
Shafranov, V. D. (1966). Equilibrium in a magnetic field. In Reviews of Plasma Physics, Vol. 2. New York: Consultants Bureau, p. 103.Google Scholar
Shkarovsky, I. P., Johnston, T. W., and Bachynski, M. P. (1966). The Particle Kinetics of Plasmas. Reading, MA: Addison-Wesley.Google Scholar
Spitzer, L. (1962). Physics of Fully Ionized Gases. New York: Wiley Interscience.Google Scholar
Spitzer, L. and Härm, R. (1953). Transport phenomena in a completely ionized gas. Phys. Rev., 89(2), 977–981.CrossRefGoogle Scholar
Steinberg, D. J., Cochran, S. G., and Guinan, M. W. (1980). A constitutive model for metals applicable at high strain rate. J. Appl. Phys., 51, 1498–1504.CrossRefGoogle Scholar
Sweet, P. A. (1958). Electromagnetic Phenomenon in Cosmical Physics. Cambridge: Cambridge University Press.Google Scholar
Symon, K. R. (1960). Mechanics. Reading, MA: Addison-Wesley.Google Scholar
Taylor, G. I. (1950). The formation of a blast wave by a very intense explosion. Proc. Roy. Soc. A, 201, 159–175.CrossRefGoogle Scholar
von Mises, R. (1913). Mechanik der festen Körper im plastisch deformablen Zustand. Nachr. Akad. Wiss. Goett II, Math-Phys., 1, 582–592.Google Scholar
von Neumann, J. and Richtmyer, R. D. (1950). A method for the numerical calculation of hydrodynamic shocks. J. Appl. Phys., 21, 232–237.CrossRefGoogle Scholar
Zel'dovich, Ya. B. and Raizer, Yu. P. (1967). Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena, 1st edn. New York: Academic Press.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×