Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-4rdrl Total loading time: 0 Render date: 2024-06-24T19:56:26.868Z Has data issue: false hasContentIssue false

Further reading

Published online by Cambridge University Press:  05 November 2013

Jeff Colvin
Affiliation:
Lawrence Livermore National Laboratory, Livermore
Jon Larsen
Affiliation:
Cascade Applied Sciences, Inc., Boulder
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Extreme Physics
Properties and Behavior of Matter at Extreme Conditions
, pp. 400 - 402
Publisher: Cambridge University Press
Print publication year: 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Albritton, J. R. and Langdon, A. B. (1980). Profile modification and hot-electron temperature from resonant absorption at modest intensity. Phys. Rev. Lett., 45, 1794–1798.CrossRefGoogle Scholar
Bar-Shalom, A., Klapisch, M., and Oreg, J. (2001). HULLAC, an integrated computer package for atomic processes in plasmas. J. Quant. Spectr. Rad. Trans., 71, 169–188.CrossRefGoogle Scholar
Bar-Shalom, A., Oreg, J., Goldstein, W. H., Shvarts, D., and Zigler, A. (1989). Super-transition arrays: A model for the spectral analysis of hot, dense plasma. Phys. Rev. A, 40, 3183–3193.CrossRefGoogle ScholarPubMed
Besnard, D. C., Harlow, F. H., Rauenzahn, R. M., and Zemach, C. (1996). Spectral transport model for turbulence. Theor. Comp. Fluid Dynamics, 8, 1–35.CrossRefGoogle Scholar
Betti, R., Goncharov, V. N., McCrory, R. L., and Verdon, C. P. (1995). Self-consistent cutoff wavenumber of the ablative Rayleigh–Taylor instability. Phys. Plasmas, 2, 3844–3851.CrossRefGoogle Scholar
Boehly, T. R., Brown, D. R., Craxton, R. S., Keck, R. L., Knauer, J. P., Kelly, J. H., et al. (1997). Initial performance results of the OMEGA laser system. Opt. Commun., 133, 495–506.CrossRefGoogle Scholar
Born, M. and Wolf, E. (1964). Principles of Optics, 2nd edn. New York: Pergamon Press.Google Scholar
Bourne, N. K., Gray, G. T., and Millett, J. C. F. (2009). On the shock response of cubic metals. J. Appl. Phys., 106, 091301.CrossRefGoogle Scholar
Bowers, R. L. and Wilson, J. R. (1991). Numerical Modeling in Applied Physics and Astrophysics. Boston: Jones and Bartlett.Google Scholar
Braginskii, S. I. (1958). Transport processes in a plasma. Soviet Physics JETP, 6, 358.Google Scholar
Brysk, H., Campbell, P. M., and Hammerling, P. (1975). Thermal conduction in laser fusion. Plasma Phys., 17, 473–484.CrossRefGoogle Scholar
Carroll, M. M. and Holt, A. C. (1972). Static and dynamic pore-collapse relations for ductile porous materials. J. Appl. Phys., 43, 1626–1636.CrossRefGoogle Scholar
Chandrasekhar, S. (1961). Hydrodynamic and Hydromagnetic Stability. New York: Dover.Google Scholar
Chapman, S. and Cowling, T. G. (1939). The Mathematical Theory of Non-Uniform Gases. Cambridge: Cambridge University Press.Google Scholar
Colvin, J. D. (2007). Modeling dynamic ductility: An equation of state for porous metals. Shock Compression of Condensed Matter – 2007, AIP Conference Proceedings, CP955, pp. 31–34.Google Scholar
Colvin, J. D., Ault, E. R., King, W. E., and Zimmerman, I. H. (2003). Computational model for a low-temperature laser-plasma driver for shock-processing of metals and comparison to experimental data. Phys. Plasmas, 10, 2940–2947.CrossRefGoogle Scholar
Davies, R. M. and Taylor, G. I. (1950). The mechanics of large bubbles rising through extended liquids and through liquids in tubes. Proc. Roy. Soc., A200, 375.CrossRefGoogle Scholar
de Groot, S. R. (1961). Thermodynamics of Irreversible Processes. New York: Wiley Interscience.Google Scholar
De Silva, A. W. and Katsouros, J. D. (1998). Electrical conductivity of dense copper and aluminum plasmas. Phys. Rev. E, 57(5), 5945–5951.CrossRefGoogle Scholar
Einstein, A. (1917). Quantentheorie der Strahlung. Phys. Z., 18, 121–128.Google Scholar
Garabedian, P. R. (1964). Partial Differential Equations. New York: John Wiley.Google Scholar
Haynam, C. A., Wegner, P. J., Auerbach, J. M., Bowers, M. W., Dixit, S. N., Erbert, G. V., et al. (2007). National Ignition Facility laser performance status. Appl. Opt., 46, 3276–3303.CrossRefGoogle ScholarPubMed
Hill, M. J. M. (1894). On a spherical vortex. Phil. Trans. A, CLXXXV, 213.CrossRefGoogle Scholar
Hubbard, W. (1966). Studies in stellar evolution. V. Transport coefficients of degenerate stellar matter. Astrophys. J., 146, 858–870.CrossRefGoogle Scholar
Hubbard, W. B. and Lampe, M. (1969). Thermal conduction by electrons in stellar matter. Asrophys. J. Suppl., 18, 297–346.CrossRefGoogle Scholar
Jackson, J. D. (1962). Classical Electrodynamics. New York: John Wiley & Sons.Google Scholar
Keldysh, L. V. (1965). Ionization in the field of a strong electromagnetic wave. Soviet Phys. JETP, 20, 1307–1314.Google Scholar
Kruer, W. L. (2001). The Physics of Laser-Plasma Interactions. Boulder, CO: Westview Press.Google Scholar
Landau, L. D. and Lifshitz, E. M. (1959). Fluid Mechanics. Reading, MA: Addison-Wesley.Google Scholar
Lee, K. T., Kim, S. H., Kim, D., and Lee, T. N. (1996). Numerical study on the dynamics of Z-pinch carbon plasma. Phys. Plasmas, 3(4), 1340–1347.CrossRefGoogle Scholar
Liberman, M. A., De Groot, D. S., Toor, A., and Spielman, R. B. (1999). Physics of High-Density Z-pinch Plasmas. New York: Springer-Verlag.CrossRefGoogle Scholar
Lindl, J. D. (1998). Inertial Confinement Fusion. New York: Springer-Verlag.Google Scholar
Rayleigh, Lord (1965). Scientific Papers. New York: Dover.Google Scholar
Matzen, M. K. (1997). Z pinches as intense X-ray sources for high-energy-density physics applications. Phys. Plasmas, 4, 1519–1527.CrossRefGoogle Scholar
Montross, C. S., Wei, T., Ye, L., Clark, G., and Mai, Y.-W. (2002). Laser shock processing and its effects on microstructure and properties of metal alloys: A review. Int. J. Fatigue, 24, 1021–1036.CrossRefGoogle Scholar
Munro, D. H. (1988). Analytic solutions for Rayleigh–Taylor growth rates in smooth density gradients. Phys. Rev. A, 38, 1433.CrossRefGoogle ScholarPubMed
Ragusa, J. C., Guermond, J. L., and Kanschat, G. (2012). A robust SN-DG-approximation for radiation transport in optically thick and diffusive regimes. J. Comp. Phys., 231, 1947–1962.CrossRefGoogle Scholar
Roach, P. J. (1972). Computational Fluid Dynamics. Albuquerque, NM: Hermosa.Google Scholar
Rosenbluth, M. N., MacDonald, W. M., and Judd, D. L. (1957). Fokker–Planck equation for an inverse-square force. Phys. Rev., 107, 1–6.CrossRefGoogle Scholar
Ryutov, D. D., Derzon, M. S., and Matzen, M. K. (2000). The physics of fast Z pinches. Rev. Mod. Phys., 72(1), 167–223.CrossRefGoogle Scholar
Scott, H. A. and Hansen, S. B. (2010). Advances in NLTE modeling for integrated simulations. High Energy Density Phys., 6, 39–47.CrossRefGoogle Scholar
Spitzer, L. (1940). The stability of isolated clusters. Mon. Notices Roy. Astron. Soc., 100, 396–413.CrossRefGoogle Scholar
Stewart, J. C. and Pyatt, Jr., K. D. (1966). Lowering of ionization potentials in plasmas. Astrophys. J., 144, 1203–1211.CrossRefGoogle Scholar
Takabe, H., Mima, K., Montierth, L., and Morse, R. L. (1985). Self-consistent growth rate of the Rayleigh–Taylor instability in an ablatively accelerating plasma. Phys. Fluids, 28, 3676–3681.CrossRefGoogle Scholar
Taylor, G. I. (1950). The instability of liquid surfaces when accelerated in a direction perpendicular to their planes. Proc. Roy. Soc., A201, 192–196.CrossRefGoogle Scholar
US Department of Energy Office of Science and National Nuclear Security Administration. (2009). Basic Research Needs for High Energy Density Laboratory Physics. Washington, DC: US Department of Energy.Google Scholar
Zel'dovich, Ya. B. and Raizer, Yu. P. (1967). Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena, 2nd edn. Mineola, NY: Dover Press.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×