Skip to main content Accessibility help
×
Home
  • Cited by 8
  • Print publication year: 2014
  • Online publication date: May 2014

8 - Satellite-based remote sensing estimation of precipitation for early warning systems

from Part II - Extreme hazards and disaster risks

Related content

Powered by UNSILO

References

Adler, R. F. and Negri, A. J. (1988). A satellite infrared technique to estimate tropical convective and stratiform rainfall. Journal of Applied Meteorology, 27, 30–38.
Adler, R. F., Huffman, G. J., Chang, A. T. C.et al. (2003). The Version 2 Global Precipitation Climatology Project (GPCP) monthly precipitation analysis (1979–present). Journal of Hydrometeorology, 4, 1147–1167.
AghaKouchak, A. and Nakhjiri, N. (2012). A near real-time satellite-based global drought climate data record. Environmental Research Letters, 7(4), 044037, doi:10.1088/1748-9326/7/4/044037.
AghaKouchak, A., Behrangi, A., Sorooshian, S., Hsu, K. and Amitai, E. (2011). Evaluation of satellite-retrieved extreme precipitation rates across the Central United States. Journal of Geophysical Research, 116, D02115, doi:10.1029/2010JD014741.
AghaKouchak, A., Mehran, A., Norouzi, H. and Behrangi, A. (2012). Systematic and random error components in satellite precipitation data sets. Geophysical Research Letters, 39, L09406, doi:10.1029/2012GL051592.
Anderson, L., Malhi, Y., Aragao, L. and Saatchi, S. (2007). Spatial patterns of the canopy stress during 2005 drought in Amazonia. In 2007 IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2007, Barcelona, Spain, 23–28 July 2007. Piscataway, NJ: Institute of Electrical and Electronic Engineers, pp. 2294–2297.
Arkin, P. A. and Meisner, B. N. (1987). The relationship between large-scale convective rainfall and cold cloud over the western hemisphere during 1982–84. Monthly Weather Review, 115, 51–74.
Atlas, D., Rosenfeld, D. and Short, D. (1990). The estimation of convective rainfall by area integrals. 1. The theoretical and empirical basis. Journal of Geophysical Research, 95, No D3, 2153–2160.
Ba, M. B. and Gruber, A. (2001). GOES Multispectral Rainfall Algorithm (GMSRA). Journal of Applied Meteorology, 40, 1500–1514.
Behrangi, A., Hsu, K., Imam, B.et al. (2010). PERSIANN-MSA: a precipitation estimation method from satellite-based multi-spectral Analysis. Journal of Hydrometeorology, 10(6), 1414–1429.
Behrangi, A., Imam, B., Hsu, K.et al. (2011). Rain estimation using forward adjusted-advection of microwave estimates (REFAME). Journal of Hydrometeorology, 11, 1305–1321.
Bellerby, T. (2004). A feature-based approach to satellite precipitation monitoring using geostationary IR imagery. Journal of Hydrometeorology, 5, 910–921.
Bellerby, T., Todd, M., Kniveton, D. and Kidd, C. (2000). Rainfall estimation from a combination of TRMM Precipitation Radar and GOES multi-spectral satellite imagery through the use of an artificial neural network. Journal of Applied Meteorology, 39, 2115–2128.
Bellerby, T., Hsu, K. and Sorooshian, S. (2009). LMODEL: A satellite precipitation algorithm using cloud development modeling and model updating. Part I: Model development and calibration. Journal of Hydrometeorology, 10(5), 1081–1095. doi: 10.1175/2009JHM1091.1.
Boushaki, F. I., Hsu, K., Sorooshian, S.et al. (2009). Bias adjustment of satellite precipitation estimation using ground-based measurement. Journal of Hydrometeorology, 10, 1231–1242.
Capacci, D. and Conway, B. J. (2005). Delineation of precipitation areas from MODIS visible and infrared imagery with artificial neural networks. Meteorological Applications, 12, 291–305.
Deltares. (2010). Software Delft-FEWS. Innovative solutions for water and subsurface issues. Available at http://www.deltares.nl/en/software/479962/delft-fews/479964.
Duan, Q., Sorooshian, S. and Gupta, V. K. (1992). Effective and efficient global optimization for conceptual rainfall-runoff models. Water Resources Research, 28(4), 1015–1031.
Easterling, D. (2012). Global data sets for analysis of climate extremes. In Extremes in a Changing Climate: Detection, Analysis and Uncertainty, eds. AghaKouchak, A., Easterling, D., Hsu, K., Schubert, S. S., and Sorooshian, S., eds., Springer, doi: 10.1007/978-94-007-4479-012.
Ebert, E. E., Janowiak, J. E. and Kidd, C. (2007). Comparison of near-real-time precipitation estimates from satellite observations and numerical models. Bulletin of the American Meteorological Society, 88, 47–64.
Ferraro, R. R. and Marks, G. F. (1995). The development of SSM/I rain-rate retrieval algorithms using ground-based radar measurements. Journal of Atmospheric and Oceanic Technology, 12, 755–770.
Hayes, M., Svoboda, M., Wilhite, D. and Vanyarkho, O. (1999). Monitoring the 1996 drought using the standardized precipitation index. Bulletin of the American Meteorological Society, 80, 429–438.
Hong, Y., Hsu, K., Sorooshian, S. and Gao, X. (2004). Precipitation estimation from remotely sensed imagery using an artificial neural network cloud classification system. Journal of Applied Meteorology, 43, 1834–1852.
Horsfield, N. (2006). Development of a mass balance approach to modeling cloud lifecycles and rainfall using satellite observations. Ph.D. Thesis. University of Hull, UK. 353pp.
Hou, A., Jackson, G. S., Kummerow, C. and Shepherd, J. M. (2008). Global precipitation measurement. In Precipitation: Advances in Measurement, Estimation, and Prediction, ed. Michaelides, S.Berlin: Springer, pp. 131–170.
Hsu, K., Gupta, H. V. and Sorooshian, S. (1995). Artificial Neural Network Modeling of the Rainfall-Runoff Process. Water Resources Research, 31(10), 2517–2530, doi:10.1029/95WR01955.
Hsu, K., Gao, X., Sorooshian, S. and Gupta, H. V., (1997). Precipitation estimation from remotely sensed information using artificial neural networks. Journal of Applied Meteorology, 36(9), 1176–11.
Hsu, K., Gupta, H. V., Gao, X. and Sorooshian, S. (1999). Estimation of physical variables from multiple channel remotely sensed imagery using a neural network: application to rainfall estimation. Water Resources Research, 35(5), 1605–1618.
Hsu, K., Hong, Y. and Sorooshian, S. (2007). Rainfall estimation using a cloud patch classification map. In Measuring Precipitation from Space: EURAINSAT and Future, eds. Levizzani, V., Bauer, P. and Turk, F.J.Dordrecht: Springer Publishing Company, pp. 329–242.
Hsu, K., Bellerby, T. and Sorooshian, S. (2009). LMODEL: A satellite precipitation algorithm using cloud development modeling and model updating. Part II: Model updating. Journal of Hydrometeorology, 10(5), 1096–1108. doi: 10.1175/2009JHM1092.1.
Huffman, G. J., Adler, R. F., Morrissey, M.et al. (2001). Global precipitation at one-degree daily resolution from multisatellite observations. Journal of Hydrometeorology, 2, 36–50.
Huffman, G. J., Adler, R. F., Bolvin, D. T.et al. (2007). The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. Journal of Hydrometeorology, 8, 38–55.
ICHARM. (2012). ICHARM Newsletter, 7, No. 2, July 2012.
Janowiak, J. E., Joyce, R. J. and Yarosh, Y. (2001). A real-time global half-hourly pixel resolution infrared dataset and its applications. Bulletin of the American Meteorological Society, 82, 205–217.
Joyce, R. J., Janowiak, J. E., Arkin, P. A. and Xie, P. (2004). CMORPH: A method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution. Journal of Hydrometeorology, 5(3), 487–503.
Joyce, R. J. and Xie, P. (2011). Kalman filter based CMORPH. Journal of Hydrometeorology, 12(6), 1547–1563.
Kidd, C., Kniveton, D. R., Todd, M. C. and Bellerby, T. J. (2003). Satellite rainfall estimation using combined passive microwave and infrared algorithms. Journal of Hydrometeorology, 4, 1088–1104.
Kohonen, T. (1995). Self-Organizing Map, 1st edn. Berlin: Springer-Verlag.
Kummerow, C., Barnes, W., Kozu, T., Shiue, J. and Simpson, J. (1998). The Tropical Rainfall Measuring Mission (TRMM) sensor package. Journal of Atmospheric and Oceanic Technology, 15(3), 809–817.
Kummerow, C., Simpson, J., Thiele, O.et al. (2000). The status of the Tropical Rainfall Measuring Mission (TRMM) after two years in orbit. Journal of Applied Meteorology, 39(12), 1965–1982.
Machado, L. A. T., Rossow, W. B., Guedes, R. L. and Walker, A. W. (1998). Life cycle variations of mesoscale convective systems over the Americas. Monthly Weather Review, 126, 1630–1654.
Marzano, F. S., Palmacci, M., Cimini, Giuliani, G. and Turk, F. J. (2004). Multivariate statistical integration of satellite infrared and microwave radiometric measurements for rainfall retrieval at the geostationary scale. IEEE Transactions on Geoscience and Remote Sensing, 42, 1018–1032.
McKee, T., Doesken, N. and Kleist, J. (1993). The relationship of drought frequency and duration to time scales. In Proceedings of the 8th Conference of Applied Climatology, 17–22 January 1993. Anaheim, CA: American Meteorological Society, pp. 179–184.
MRC (2011). Flood Situation Report 2011. MRC Technical Paper No. 36, November 2011.
Nicholson, S. E., Some, B., McCollum, J.et al. (2003a). Validation of TRMM and other rainfall estimates with a high-density gauge dataset for West Africa. Part I: Validation of GPCC rainfall product and pre-TRMM satellite and blended products. Journal of Applied Meteorology, 42, 1337–1354.
Nicholson, S. E., Some, B., McCollum, J.et al. (2003b) Validation of TRMM and other rainfall estimates with a high-density gauge dataset for West Africa. Part II: Validation of TRMM rainfall products. Journal of Applied Meteorology, 42, 1355–1368.
Okamoto, K., Iguchi, T., Takahashi, N., Iwanami, K. and Ushio, T. (2005). The global satellite mapping of precipitation (GSMaP) project. In Proceedings of the International Geoscience and Remote Sensing Symposium, IGARSS 2005, Seoul, South Korea, 25–29 July 2005. Piscataway, NJ: Institute of Electrical and Electronic Engineers, pp. 3414–3416.
Paridal, B. R., Collado, W. B., Borah, R., Hazarika, M. K. and Sarnarakoon, L. (2008). Detecting drought-prone areas of rice agriculture using a modis-derived soil moisture index. GIScience & Remote Sensing, 45(1), 109–129.
Rosenfeld, D.Wolff, D. B. and Amitai, E. (1994). The window probability matching method for rainfall measurements with radar. Journal of Applied Meteorology, 33, 683–693.
Sheffield, J., Goteti, G. and Wood, E. (2006). Development of a 50-yr, high resolution global dataset of meteorological forcings for land surface modeling. Journal of Climate, 13, 3088–3111.
Simpson, J., Adler, R. F. and North, G. R. (1988). A proposed Tropical Rainfall Measurement Mission (TRMM) satellite. Bulletin of the American Meteorological Society, 69(3), 278–295.
Sorooshian, S., Hsu, K., Gao, X.et al. (2000). Evaluation of PERSIANN system satellite-based estimates of tropical rainfall. Bulletin of the American Meteorological Society, 81, 2035–2046.
Sorooshian, S., AghaKouchak, A., Arkin, P.et al. (2011). Advanced concepts on remote sensing of precipitation at multiple scales. Bulletin of the American Meteorological Society, 92 (10), 1353–1357, doi: 10.1175/2011BAMS3158.1.
The World Bank. (2011). The World Bank supports Thailand's post-floods recovery effort. Feature story, 13 December 2011.
Tian, Y., Peters-Lidard, C. D. and Eylander, J. B. (2010). Real-time bias reduction for satellite-based precipitation estimates. Journal of Hydrometeorology, 11, 1275–85.
Todd, M., Kidd, C., Kniveton, D. R. and Bellerby, T. J. (2001). A combined satellite infrared and passive microwave technique for the estimation of small scale rainfall. Journal of Atmospheric and Oceanic Technology, 18, 742–755.
Turk, F. J. and Miller, S. D. (2005). Toward improving estimates of remotely-sensed precipitation with MODIS/AMSR-E blended data techniques. IEEE Transactions on Geoscience and Remote Sensing, 43, 1059–1069.
UCAR (2010). Flash Flood Early Warning System Reference Guide 2010. Available at http://www.meted.ucar.edu/communities/hazwarnsys/haz_fflood.php.
UNEP (2012). Early Warning Systems: A State of the Art Analysis and Future Directions. Division of Early Warning and Assessment (DEWA), United Nations Environment Programme (UNEP), Nairobi.
United Nations (2006). Global Survey of Early Warning Systems. United Nations report.
Vincent, L. and Soille, P. (1991). Watersheds in digital spaces: an efficient algorithm based on immersion simulations. IEEE Transactions on Pattern Analysis and Machine Intelligence, 13(6), 583–598.
Vicente, G., Scofield, R. A. and Mensel, W. P. (1998). The operational GOES infrared rainfall estimation technique. Bulletin of the American Meteorological Society, 79, 1881–1898.
Wilhite, D. and Glantz, M. (1985). Understanding the drought phenomenon: The role of definitions. Water International, 10, 111120.
WMO (2010). WMO Fact-finding and Needs-assessment Mission to Pakistan. Mission Report, November 2010.
Xie, P., and Arkin, P. A. (1997). Global precipitation: A 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bulletin of the American Meteorological Society, 78, 2539–2558.
Zhang, Q., Xu, C.-Y., Zhang, Z.et al. (2008). Spatial and temporal variability of precipitation maxima during 1960–2005 in the Yangtze river basin and possible association with large-scale circulation. Journal of Hydrology, 353, 215–227.