Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-qxdb6 Total loading time: 0 Render date: 2024-04-26T03:17:08.845Z Has data issue: false hasContentIssue false

4 - The emerging radiation field

Published online by Cambridge University Press:  07 September 2009

B. J. Conrath
Affiliation:
Goddard Space Flight Center, Maryland
D. E. Jennings
Affiliation:
Goddard Space Flight Center, Maryland
R. E. Samuelson
Affiliation:
Goddard Space Flight Center, Maryland
Get access

Summary

The last chapter dealt with the interaction of radiation with matter, mostly in the gaseous, but also in the liquid and solid phases. Absorption coefficients of infrared active gases, emission and scattering properties of surfaces, and single scattering albedos and phase functions of aerosols were considered. Applications of these concepts, along with the principles of radiative transfer discussed in Chapter 2, enable us to calculate the emerging radiation field of a planet or satellite.

In this chapter we examine how the physical state of an emitting medium gives rise to the general spectral characteristics of the outgoing radiation field. We begin in Section 4.1 by considering the behavior of a single spectral line in an isothermal atmosphere, both with and without scattering. In Section 4.2 we introduce nonscattering atmospheric models having a more complicated thermal structure, but still consider only a single line. Finally, in Section 4.3 we conclude our investigation of nonscattering models using realistic molecular parameters. Our aim in this chapter is to illustrate the principles behind the analysis of remotely sensed data, especially with regard to how scattering, atmospheric abundances, and thermal structures affect the appearance of the observed spectrum. Later, in Chapter 6, we apply these principles to the descriptions of real planetary spectra.

Models with one isothermal layer

Without scattering

The first model considered consists of a nonscattering gas layer at constant pressure and temperature adjacent to a solid surface of unit emissivity. This model is illustrated in Fig. 4.1.1.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×