Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-45l2p Total loading time: 0 Render date: 2024-04-26T02:42:51.795Z Has data issue: false hasContentIssue false

6 - Evo-devo's identity: from model organisms to developmental types

Published online by Cambridge University Press:  08 August 2009

Giuseppe Fusco
Affiliation:
Università degli Studi di Padova, Italy
Alessandro Minelli
Affiliation:
Università degli Studi di Padova, Italy
Get access

Summary

EVO-DEVO'S IDENTITY

Evo-devo studies the evolution of development, and how changes in development influence phenotypic evolutionary change. The evolution of novelties and body plans are considered as the most distinctive research areas of evo-devo (Wagner 2000, 2001, Wagner et al. 2000, Müller and Newman 2005). Nevertheless, there seems to be little consensus about evo-devo's disciplinary identity. It has been regarded as a branch of developmental biology, part of evolutionary biology, a revision of evolutionary theory or an independent new synthetic discipline (Gilbert et al. 1996, Arthur 2000, 2002, 2004a, b, Hall 2000, Raff 2000, Wagner 2000, Robert et al. 2001, Gould 2002, Wilkins 2002, Baguñá and Garcia-Fernàndez 2003, Gilbert 2003, Kutschera and Niklas 2004, Amundson 2005, Müller and Newman 2005). Similarly, there has been skepticism about evo-devo's promise in both the literature (Wagner 2000, 2001, Richardson 2003, Wagner and Larsson 2003, Coyne 2005) and at meetings such as the one in 2006 in Venice, at which the present book was conceived.

Although various factors are at play, I think that current skepticism partly results from a failure to articulate evo-devo's conceptual foundation properly. This issue comes into focus when it is observed that the papers outlining evo-devo's research agenda almost exclusively link the promise of evo-devo to discovering general concepts and rules. Arthur (2002: 757), for example, expresses concern when he writes that we are currently in a situation ‘where it almost seems that anything goes, that is, any developmental gene, its expression pattern and the resultant ontogenetic trajectory can evolve in any way.

Type
Chapter
Information
Evolving Pathways
Key Themes in Evolutionary Developmental Biology
, pp. 100 - 120
Publisher: Cambridge University Press
Print publication year: 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abouheif, E. & Wray, G. A. 2002. Evolution of the gene network underlying wing polyphenism in ants. Science 297, 249–252.CrossRefGoogle ScholarPubMed
Amundson, R. 2005. The Changing Role of the Embryo in Evolutionary Thought: Roots of Evo-Devo. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Ankeny, R. A. 2001. Model organisms as models: understanding the ‘Lingua Franca’ of the human genome project. Philosophy of Science 68, S251–S261.CrossRefGoogle Scholar
Arthur, W. 1997. The Origin of Animal Body Plans. A Study in Evolutionary Developmental Biology. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Arthur, W. 2000. Intraspecific variation in developmental characters: the origin of evolutionary novelties. American Zoologist 40, 811–818.Google Scholar
Arthur, W. 2002. The emerging conceptual framework of evolutionary developmental biology. Nature 415, 757–764.CrossRefGoogle ScholarPubMed
Arthur, W. 2004a. Biased Embryos and Evolution. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Arthur, W. 2004b. The effect of development on the direction of evolution: toward a twenty-first century consensus. Evolution & Development 6, 282–288.CrossRefGoogle Scholar
Azevedo, R. B. R., Lohaus, R., Braun, V.et al. 2005. The simplicity of metazoan cell lineages. Nature 433, 152–156.CrossRefGoogle ScholarPubMed
Baguñà, J. & Garcia-Fernàndez, J. 2003. Evo-devo: the long and winding road. International Journal of Developmental Biology 47, 705–713.Google Scholar
Biémont, C. & Vieira, C. 2006. Junk DNA as an evolutionary force. Nature 443, 521–524.CrossRefGoogle ScholarPubMed
Blackstone, N. W. & Ellison, A. M. 2000. Maximal indirect development, set-aside cells, and levels of selection. Journal of Experimental Zoology B (Molecular and Developmental Evolution) 288, 99–104.3.0.CO;2-R>CrossRefGoogle ScholarPubMed
Bolker, J. A. 1995. Model systems in developmental biology. BioEssays 17, 451–455.CrossRefGoogle ScholarPubMed
Bolker, J. A. & Raff, R. A. 1997. Beyond worms, flies, and mice: it's time to widen the scope of developmental biology. The Journal of NIH Research 9, 35–39.Google Scholar
Carroll, S. B. 2005. Evolution at two levels: on genes and form. PLoS Biology 3, e245.CrossRefGoogle ScholarPubMed
Coyne, J. A. 2005. Switching on evolution. How does evo-devo explain the huge diversity of life on Earth?Nature 435, 1029–1030.CrossRefGoogle Scholar
Darling, J. A., Reitzel, A. R., Burton, P. M.et al. 2005. Rising starlet: the starlet sea anemone, Nematostella vectensis. BioEssays 27, 211–221.CrossRefGoogle ScholarPubMed
Davidson, E. H. 1991. Spatial mechanisms of gene regulation in metazoan embryos. Development 113, 1–26.Google ScholarPubMed
Davidson, E. H. & Erwin, D. H. 2006. Gene regulatory networks and the evolution of animal body plans. Science 311, 796–800.CrossRefGoogle ScholarPubMed
Extavour, C. 2004. Hold the germ cells, I'm on duty. BioEssays 26, 1263–1267.CrossRefGoogle ScholarPubMed
Fitch, D. H. A. & Sudhaus, W. 2002. One small step for worms, one giant leap for “Bauplan?”Evolution & Development 4, 243–246.CrossRefGoogle ScholarPubMed
Flatt, T. 2005. The evolutionary genetics of canalization. Quarterly Review of Biology 80, 287–316.CrossRefGoogle ScholarPubMed
Franz-Odendaal, T. A. & Hall, B. K. 2006. Modularity and sense organs in the blind cavefish, Astyanax mexicanus. Evolution & Development 8, 94–100.CrossRefGoogle ScholarPubMed
Ghiselin, M. T. 1995. Darwin, progress, and economic principles. Evolution 49, 1029–1037.CrossRefGoogle ScholarPubMed
Ghiselin, M. T. 1997. Metaphysics and the Origin of Species. Albany: State University of New York Press.Google Scholar
Ghiselin, M. T. 1999. Progress and the economy of nature. Journal of Bioeconomics 1, 35–45.CrossRefGoogle Scholar
Ghiselin, M. T. 2005. Homology as a relation of correspondence between parts of individuals. Theory in Biosciences 24, 91–103.CrossRefGoogle Scholar
Gibson, G. & Dworkin, I. 2004. Uncovering cryptic genetic variation. Nature Reviews Genetics 5, 681–690.CrossRefGoogle ScholarPubMed
Gilbert, S. F. 2001. Ecological developmental biology: developmental biology meets the real world. Developmental Biology 233, 1–12.CrossRefGoogle ScholarPubMed
Gilbert, S. F. 2003. Evo-Devo, Devo-Evo, and Devgen-Popgen. Biology & Philosophy 18, 347–352.CrossRefGoogle Scholar
Gilbert, S. F., Opitz, J. M. & Raff, R. A. 1996. Resynthesizing evolutionary and developmental biology. Developmental Biology 173, 357–372.CrossRefGoogle ScholarPubMed
Gould, S. J. 1980. The promise of paleobiology as a nomothetic, evolutionary discipline. Paleobiology 6, 96–118.CrossRefGoogle Scholar
Gould, S. J. 2002. The Structure of Evolutionary Theory. Cambridge Massachusetts: The Belknap Press of Harvard University Press.Google Scholar
Gould, S. J. & Lloyd, E. A. 1999. Individuality and adaptation across levels of selection: How shall we name and generalize the unit of Darwinism?Proceedings of the National Academy of Sciences of the USA 96, 11904–11909.CrossRefGoogle ScholarPubMed
Hall, B. K. 1996. Baupläne, phylotypic stages and constraint: why there are so few types of animals. Evolutionary Biology 29, 215–261.Google Scholar
Hall, B. K. 1999. Evolutionary Developmental Biology. Dordrecht: Kluwer Academic Publishers.CrossRefGoogle Scholar
Hall, B. K. 2000. Evo-devo or devo-evo – does it matter?Evolution & Development 2, 177–178.CrossRefGoogle ScholarPubMed
Hall, B. K. 2003a. Evo-devo: evolutionary developmental mechanisms. International Journal of Developmental Biology 47, 491–495.Google Scholar
Hall, B. K. 2003b. Unlocking the black box between genotype and phenotype: cell condensations as morphogenetic (modular) units. Biology & Philosophy 18, 219–247.CrossRefGoogle Scholar
Hong, R. L. & Sommer, R. J. 2006. Pristionchus pacificus: a well-rounded nematode. BioEssays 28, 651–659.CrossRefGoogle ScholarPubMed
Hübner, C. 2006. Hox genes, homology and axis formation – the application of morphological concepts to evolutionary developmental biology. Theory in Biosciences 124, 371–396.CrossRefGoogle ScholarPubMed
Hughes, C. L. & Kaufman, T. C. 2000. A diverse approach to arthropod development. Evolution & Development 2, 6–8.CrossRefGoogle ScholarPubMed
Jeffery, W. R., Strickler, A. G. & Yamamoto, Y. 2003. To see or not to see: evolution of eye degeneration in Mexican blind cavefish. Integrative and Comparative Biology 43, 531–541.CrossRefGoogle ScholarPubMed
Jenner, R. A. 2006a. Unburdening evo-devo: ancestral attractions, model organisms, and basal baloney. Development, Genes & Evolution 216, 385–394.CrossRefGoogle Scholar
Jenner, R. A. 2006b. On cosmik debris and palaeontology. Palaeontological Association Newsletter 62, 28–35.Google Scholar
Jenner, R. A. & Wills, M. A. 2007. The choice of model organisms in evo-devo. Nature Reviews Genetics 8, 311–319.CrossRefGoogle ScholarPubMed
Joron, M., Jiggins, C. D., Papanicolaou, A. & McMillan, W. O. 2006. Heliconius wing patterns: an evo-devo model for understanding phenotypic diversity. Heredity 97, 157–167.CrossRefGoogle ScholarPubMed
Kingsolver, J. G. & Pfennig, D. W. 2004. Individual-level selection as a cause of Cope's rule of phyletic size increase. Evolution 58, 1608–1612.CrossRefGoogle ScholarPubMed
Kutschera, U. & Niklas, K. J. 2004. The modern theory of biological evolution: an expanded synthesis. Naturwissenschaften 91, 255–276.CrossRefGoogle Scholar
Leroi, A. M. 1998. The burden of the bauplan. Trends in Ecology and Evolution 13, 82–83.CrossRefGoogle Scholar
Lewontin, R. C. 2002. Directions in evolutionary biology. Annual Review of Genetics 36, 1–18.CrossRefGoogle ScholarPubMed
Love, A. C. 2006. Reflections on the middle stages of evodevo's ontogeny. Biological Theory 1, 94–97.CrossRefGoogle Scholar
Lyman, R. L. & O'Brien, M. J. 2004. Nomothetic science and idiographic history in twentieth-century americanist anthropology. Journal of the History of the Behavioral Sciences 40, 77–96.CrossRefGoogle ScholarPubMed
Maynard Smith, J., Burian, R., Kauffman, S.et al. 1985. Developmental constraints and evolution. Quarterly Review of Biology 60, 265–287.CrossRefGoogle Scholar
Michod, R. E. & Roze, D. 2001. Cooperation and conflict in the evolution of multicellularity. Heredity 86, 1–7.CrossRefGoogle ScholarPubMed
Minelli, A. 2003. The Development of Animal Form: Ontogeny, Morphology, and Evolution. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Minelli, A. & Fusco, G. 2004. Evo-devo perspectives on segmentation: model organisms, and beyond. Trends in Ecology and Evolution 19, 423–429.CrossRefGoogle ScholarPubMed
Moczek, A. P. 2006. Integrating micro- and macroevolution of development through the study of horned beetles. Heredity 97, 168–178.CrossRefGoogle Scholar
Müller, G. B. & Newman, S. A. 2005. The innovation triad: an evodevo agenda. Journal of Experimental Zoology B (Molecular and Developmental Evolution) 304, 487–503.CrossRefGoogle ScholarPubMed
Peel, A. D., Telford, M. J. & Akam, M. 2006. The evolution of hexapod engrailed-family genes: evidence for conservation and concerted evolution. Proceedings of the Royal Society of London B 273, 1733–1742.CrossRefGoogle ScholarPubMed
Peterson, K. J., Cameron, R. A. & Davidson, E. H. 1997. Set-aside cells in maximal indirect development: evolutionary and developmental significance. BioEssays 19, 623–631.CrossRefGoogle ScholarPubMed
Peterson, K. J., McPeek, M. A. & Evans, D. A. D. 2005. Tempo and mode of early animal evolution: inferences from rocks, Hox, and molecular clocks. Paleobiology 31, 36–55.CrossRefGoogle Scholar
Pigliucci, M. 2005. Expanding evolution. Nature 435, 565–566.CrossRefGoogle Scholar
Raff, R. A. 2000. Evo-devo: the evolution of a new discipline. Nature Reviews Genetics 1, 74–79.CrossRefGoogle ScholarPubMed
Ransick, A., Cameron, R. A. & Davidson, E. H. 1996. Postembryonic segregation of the germ line in sea urchins in relation to indirect development. Proceedings of the National Academy of Sciences USA 93, 6759–6763.CrossRefGoogle ScholarPubMed
Reif, W.-E., Junker, T. & Hossfeld, U. 2000. The synthetic theory of evolution: general problems and the German contribution to the synthesis. Theory in Biosciences 119, 41–91.CrossRefGoogle Scholar
Richards, E. J. 2006. Inherited epigenetic variation – revisiting soft inheritance. Nature Reviews Genetics 7, 395–400.CrossRefGoogle ScholarPubMed
Richardson, M. 2003. A naturalist's evo-devo. Nature Genetics 34, 351.CrossRefGoogle Scholar
Richardson, M. K., Minelli, A. & Coates, M. I. 1999. Some problems with typological thinking in evolution and development. Evolution & Development 1, 5–7.CrossRefGoogle ScholarPubMed
Ridley, M. 2002. Natural selection: an overview. In Pagel, M. (ed.) Encyclopedia of Evolution. New York: Oxford University Press, pp. 797–804.Google Scholar
Rieppel, O. 2006. ‘Type’ in morphology and phylogeny. Journal of Morphology 267, 528–535.CrossRefGoogle ScholarPubMed
Robert, J. S., Hall, B. K. & Olson, W. M. 2001. Bridging the gap between developmental systems theory and evolutionary developmental biology. BioEssays 23, 954–962.CrossRefGoogle ScholarPubMed
Rudel, D. & Sommer, R. J. 2003. The evolution of developmental mechanisms. Developmental Biology 264, 15–37.CrossRefGoogle ScholarPubMed
Ryan, F. P. 2006. Genomic creativity and natural selection: a modern synthesis. Biological Journal of the Linnean Society 88, 655–672.CrossRefGoogle Scholar
Scholtz, G. 2004. Baupläne versus ground patterns, phyla versus monophyla: aspects of patterns and processes in evolutionary developmental biology. In Scholtz, G. (ed.) Evolutionary Developmental Biology of Crustacea. Crustacean Issues 15. Lisse: Balkema, pp. 3–16.Google Scholar
Seo, H.-C., Edvardsen, R. B., Maeland, A. D.et al. 2004. Hox cluster disintegration with persistent anteroposterior order of expression in Oikopleura dioica. Nature 431, 67–71.CrossRefGoogle ScholarPubMed
Shapiro, M. D., Bell, M. A. & Kingsley, J. S. 2006. Parallel genetic origins of pelvic reduction in vertebrates. Proceedings of the National Academy of Sciences of the USA 103, 13753–13758.CrossRefGoogle ScholarPubMed
Simpson, P. 2002. Evolution of development in closely related species of flies and worms. Nature Reviews Genetics 3, 1–11.CrossRefGoogle ScholarPubMed
Sniegowski, P. D. & Murphy, H. A. 2006. Evolvability. Current Biology 16, R831–R834.CrossRefGoogle ScholarPubMed
Sommer, R. J. 2005. Genomic platforms for “evo-devo”. Current Genomics 6, 569–570.CrossRefGoogle Scholar
Stoltzfus, A. 2006. Mutationism and the dual causation of evolutionary change. Evolution & Development 8, 304–317.CrossRefGoogle ScholarPubMed
Tanaka, M., Hale, L. A., Amores, A.et al. 2005. Developmental genetic basis for the evolution of pelvic fin loss in the pufferfish Takifugu rubripes. Developmental Biology 281, 227–239.CrossRefGoogle ScholarPubMed
Valentine, J. W. 2004. On the Origin of Phyla. Chicago: The University of Chicago Press.Google Scholar
Valentine, J. W. & May, C. L. 1996. Hierarchies in biology and paleontology. Paleobiology 22, 23–33.CrossRefGoogle Scholar
Vermeij, G. J. 2004. Nature: An Economic History. Princeton: Princeton University Press.Google Scholar
Vrba, E. S. & Gould, S. J. 1986. The hierarchical expansion of sorting and selection: sorting and selection cannot be equated. Paleobiology 12, 217–228.CrossRefGoogle Scholar
Wagner, G. P. 2000. What is the promise of developmental evolution? Part I: why is developmental biology necessary to explain evolutionary innovations?Journal of Experimental Zoology B (Molecular and Developmental Evolution) 288, 95–98.3.0.CO;2-5>CrossRefGoogle ScholarPubMed
Wagner, G. P. 2001. What is the promise of developmental evolution? Part II: a causal explanation of evolutionary innovations may be impossible. Journal of Experimental Zoology B (Molecular and Developmental Evolution) 291, 305–309.CrossRefGoogle ScholarPubMed
Wagner, G. P., Chiu, C.-H. & Laublicher, M. 2000. Developmental evolution as a mechanistic science: the inference from developmental mechanisms to evolutionary processes. American Zoologist 40, 819–831.Google Scholar
Wagner, G. P. & Larsson, H. C. E. 2003. What is the promise of developmental evolution? III. The crucible of developmental evolution. Journal of Experimental Zoology B (Molecular and Developmental Evolution) 300, 1–4.Google ScholarPubMed
Wilkins, A. S. 2002. The Evolution of Developmental Pathways. Sunderland: Sinauer Associates Inc.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×