Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-vpsfw Total loading time: 0 Render date: 2024-07-18T22:13:19.598Z Has data issue: false hasContentIssue false

12 - Chiroptera

from Part IV - Archonta

Published online by Cambridge University Press:  07 September 2010

Christine M. Janis
Affiliation:
Brown University, Rhode Island
Gregg F. Gunnell
Affiliation:
University of Michigan, Ann Arbor
Mark D. Uhen
Affiliation:
University of Alabama, Birmingham
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allen, H. E. (1862). Descriptions of two species of Vespertilionidae and some remarks on the genus Antrozous. Proceedings of the Academy of Natural Sciences of Philadelphia, 14, 246–8.Google Scholar
Allen, H. E. (1865). On a new genus of Vespertilionidae. Proceedings of the Academy of Natural Sciences of Philadelphia, 17, 173–5.Google Scholar
Altenbach, J. S. (1979). Locomotor morphology of the vampire bat, Desmodus rotundus. American Society of MammalogistsSpecial Publication 6, 1–137. Washington, DC: American Society of Mammalogists.Google Scholar
Álvarez, Y., Juste, B. J., Tabares, E., et al. (1999). Molecular phylogeny and morphological homoplasy in fruitbats. Molecular Biology and Evolution, 16, 1061–7.CrossRefGoogle ScholarPubMed
Archibald, J. D. (1999). Divergence times of eutherian mammals. Science, 285, 2031a.CrossRefGoogle Scholar
Arroyo-Cabrales, J. (1992). Sinopsis de los murciélagos fósiles de México. Revista de la Sociedad Mexicana de Paleontologia, 5, 1–14.Google Scholar
Baker, R. J., Hoofer, S. R., Porter, C. A., and Van, Bussche R. A. (2003). Diversification among New World leaf-nosed bats: an evolutionary hypothesis and classification inferred from digenomic congruence of DNA sequence. OccasionalPapers of the Museum of Texas Technical University, 230, 1–32.Google Scholar
Beard, K. C., Sigé, B., and Krishtalka, L. (1992). A primitive vespertilionoid bat from the early Eocene of central Wyoming. Comptes Rendus de l'Académie des Sciences, Paris, 314, 735–41.Google Scholar
>Bloch,, J. I. and Bowen,, G. J. (2001). Paleocene–Eocene microvertebrates in freshwater limestones of the Willwood Formation, Clarks Fork Basin, Wyoming. In Eocene Biodiversity: Unusual Occurrences and Rarely Sampled Habitats, ed. Gunnell, G. F., pp. 95–129. New York: Kluwer Academic/Plenum.Google Scholar
Blumenbach, J. F. (1779–1780). Handbuch der Naturgeschichte. Göttingen: Johann Christian Dieterich.Google Scholar
Borkhausen, M. B. (1797). Deutsche Fauna, Vol. 1: Säugethiere und Vogel. Frankfurt.
Brown, R. W. (1959). A bat and some plants from the upper Oligocene of Oregon. Journal of Paleontology, 33, 125–9.Google Scholar
Cope, E. D. (1880). The badlands of the Wind River and their fauna. American Naturalist, 14, 745–8.
Corner, R. G. (1976). An early Valentinian vertebrate local fauna from southern Webster County, Nebraska. M.Sc. Thesis, University of Nebraska, Lincoln.
Cuvier, F. (1832). Essai de classification naturelle des Vespertilions, et description de plusieurs espèces de ce genre. Nouvelles Annales du Museum d'Histoire Naturelle, Paris, 1, 1–20.
Czaplewski, N. J. (1991). Miocene bats from the lower Valentine Formation of northeastern Nebraska. Journal of Mammalogy, 72, 715–22.CrossRefGoogle Scholar
Czaplewski, N. J. (1993a). Pizonyx wheeleri Dalquest and Patrick (Mammalia: Chiroptera) from the Miocene of Texas referred to the genus Antrozous H. Allen. Journal of Vertebrate Paleontology, 13, 378–80.CrossRefGoogle Scholar
Czaplewski, N. J. (1993b). Late Tertiary bats (Mammalia, Chiroptera) from the southwestern United States. The Southwestern Naturalist, 38, 111–18.CrossRefGoogle Scholar
Czaplewski,, N. J. (1997). Chiroptera. In Vertebrate Paleontology in the Neotropics: The Miocene Fauna of La Venta, Colombia, ed. Kay, R. F., Madden, R. H., Cifelli, R. L., and Flynn, J. J., pp. 410–31. Washington, DC: Smithsonian Institution Press.Google Scholar
Czaplewski, N. J. and Morgan, G. S. (2000a). A new vespertilionid bat (Mammalia: Chiroptera) from the Early Miocene (Hemingfordian) of Florida, USA. Journal of Vertebrate Paleontology, 20, 736–42.CrossRefGoogle Scholar
Czaplewski, N. J., and Morgan, G. S. (2000b). Faunal evolution of Tertiary bats in North America, with emphasis on Florida. Journal of Vertebrate Paleontology, 20(suppl. to no. 3), p. 37A.Google Scholar
Czaplewski, N. J., Bailey, B. E., and Corner, R. G. (1999). Tertiary bats (Mammalia: Chiroptera) from northern Nebraska. Transactions of the Nebraska Academy of Sciences, 25, 83–93.Google Scholar
Czaplewski, N. J., Krejca, J., and Millar, T. E. (2003a). Late Quaternary bats from Cebada Cave, Chiquibul Cave System, Belize. CaribbeanJournal of Science, 39, 23–33.Google Scholar
Czaplewski, N. J., Morgan, G. S., and Naeher, T. (2003b). Molossid bats from the late Tertiary of Florida with a review of the Tertiary Molossidae of North America. Acta Chiropterologica, 5, 61–74.CrossRefGoogle Scholar
Czaplewski, N. J., Takai, M., Naeher, T. M., Shigehara, N., and Setoguchi, T. (2003c). Additional bats from the Middle Miocene La Venta fauna of Colombia. Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 27, 263–82.Google Scholar
Dalquest, W. W. (1975). Vertebrate fossils from the Blanco local fauna of Texas. Occasional Papers of the Museum of Texas Technical University, 30, 1–52.Google Scholar
Dalquest, W. W. (1978). Early Blancan mammals of the Beck Ranch Local Fauna of Texas. Journal of Mammalogy, 59, 269–98.CrossRefGoogle Scholar
Dalquest, W. W. (1983). Mammals of the Coffee Ranch Local Fauna Hemphillian of Texas. The Pearce–Sellards Series, Texas Memorial Museum, 38, 1–41.Google Scholar
Dalquest, W. W. and Patrick, D. B. (1989). Small mammals from the early and medial Hemphillian of Texas, with descriptions of a new bat and gopher. Journal of Vertebrate Paleontology, 9, 78–88.CrossRefGoogle Scholar
Eizirik, E., Murphy, W. J., and O'Brien, S. J. (2001). Molecular dating and biogeography of the early placental mammal radiation. Journal of Heredity, 92, 212–19.CrossRefGoogle ScholarPubMed
Emry, R. J. (1973). Stratigraphy and preliminary biostratigraphy of the Flagstaff Rim area, Natrona County, Wyoming. Smithsonian Contributions to Paleobiology, 18, 1–43.CrossRefGoogle Scholar
Emry, R. J. (1990). Mammals of the Bridgerian (middle Eocene) Elderberry Canyon Local Fauna of eastern Nevada. [In Dawn of the Age of Mammals in the Northern Part of the Rocky Mountain Interior, North America, ed. Bown, T. M. and Rose, K. D..] Geological Society of America, Special Paper, 243, 197–210.CrossRefGoogle Scholar
Foote, M., Hunter, J. P., Janis, C. M., and Sepkoski, J. J. Jr. (1999a). Evolutionary and preservational constraints on origins of biologic groups: divergence times of eutherian mammals. Science, 283, 1310–13.CrossRefGoogle Scholar
Foote, M., Hunter, J. P., Janis, C. M., and Sepkoski, J. J. Jr. (1999b). Divergence times of eutherian mammals. Science, 285, 2031a.Google Scholar
Gabunia, L. K. and Gabunia, V. J. (1987). On the first find of fossil bats (Chiroptera) in the Paleogene of the USSR. Bulletin of the Academy of Sciences of the Georgian SSR, 126, 197–200.Google Scholar
Galbreath, E. C. (1962). A new myotid bat from the middle Oligocene of northeastern Colorado. Transactions of the Kansas Academy of Science, 65, 448–51.CrossRefGoogle Scholar
Saint-Hilaire, Geoffroy É. (1810). Sur les Phyllostomes et les Mégadermes, deux genres de la famille des chauve-souris. Annales Muséum National d'Histoire Naturelle, Paris, 15, 157–98Google Scholar
Saint-Hilaire, Geoffroy É. (1818). Description de l'Egypte. Histoire naturelle. Description des mammiféres qui se trouvent en Egypte. Paris, 2, 99–135.
Gervais,, P. (1856). Deuxième mémoire. Documents zoologiques pour servir à la monographie des chéiroptères Sud-Américains. In Mammifères, ed. Gervais, F. L. P. pp. 25–88. [In Animaux Nouveaux ou Rares Recueillis pendant L'expédition dans les Parties Centrales de l'Amérique du Sud, de Rio de Janeiro à Lima, et de Lima au Parà; Exécutée par Ordre du Gouvernement Français pendant les Années 1843 à 1847, sous la Direction du Comte Francis de Castelnau, ed. Castelnau, F., Vol. 1, pp. 1--116. Paris: P. Bertrand.]Google Scholar
Gingerich, P. D. (1987). Early Eocene bats (Mammalia, Chiroptera) and other vertebrates in freshwater limestones of the Willwood Formation, Clark's Fork Basin, Wyoming. Contributions from the Museum of Paleontology, University of Michigan, 27, 275–320.Google Scholar
Göbbel, L. (2000). The external nasal cartilages in Chiroptera: significance for intraordinal relationships. Journal of Mammalian Evolution, 7, 167–201.CrossRefGoogle Scholar
Grande, L. (1984). Paleontology of the Green River Formation, With a Review of the Fish Fauna (2nd edn). Geological Survey of Wyoming Bulletin, 63, 1–333.Google Scholar
Gray, J. E. (1821). On the natural arrangement of vertebrose animals. London Medical Repository, Monthly Journal, and Review, 15, 296–311.
Gray, J. E. (1825). Outline of an attempt at the disposition of the Mammalia into tribes and families with a list of the genera apparently appertaining to each tribe. Annals of Philosophy, New Series, 10(26 of whole series), 337–44.Google Scholar
Gray, J. E. (1831). Descriptions of some new genera and species of bats. The Zoological MiscellanyLondon, 1, 37–8.Google Scholar
Gray, J. E. (1866). Synopsis of the genera of the Vespertilionidae and Noctilionidae. Annals and Magazine of Natural History, Series 3, 17, 89–93.
Gunnell, G. F. (ed.) (2001). Eocene Biodiversity: Unusual Occurrences and Rarely Sampled Habitats. New York: Kluwer Academic/Plenum.CrossRefGoogle Scholar
Gunnell, G. F. (2003). New primitive microbat (Chiroptera) from the Green River Formation (upper Lower Eocene), Fossil Basin, southwestern Wyoming. Journal of Vertebrate Paleontology, 23(suppl. to no. 3), p. 58A.Google Scholar
Hall, E. R. (1930). A new genus of bat from the later Tertiary of Nevada. University of California Publications, Bulletin of the Department of Geological Sciences, 19, 319–20.Google Scholar
Hand, S., Novacek, M., Godthelp, H., and Archer, M. (1994). First Eocene bat from Australia. Journal of Vertebrate Paleontology, 14, 375–81.CrossRefGoogle Scholar
Harrison, J. A. (1978). Mammals of the Wolf Ranch Local Fauna, Pliocene of the San Pedro Valley, Arizona. Occasional Papers of the Museum of Natural History, University of Kansas, 73, 1–18.Google Scholar
Hedges, S. B. and Kumar, S. (1999). Divergence times of eutherian mammals. Science, 285, 2031a.Google Scholar
Hibbard, C. W. (1950). Mammals of the Rexroad Formation from Fox Canyon, Meade County, Kansas. Contributions from the Museum of Paleontology, University of Michigan, 8, 113–192.Google Scholar
Hoofer, S. R., and Van, Bussche R. A. (2003). Molecular phylogenetics of the chiropteran family Vespertilionidae. Acta Chiropterologica, 5(suppl.), 1–63.CrossRefGoogle Scholar
Hooker, J. J. (1996). A primitive emballonurid bat (Chiroptera, Mammalia) from the earliest Eocene of England. [In Paléobiologie et Évolution des Mammifères Paléogenes: Volume Jubilaire en Hommage à Donald E. Russell, ed. Godinot, M. and Gingerich, P. D..] Palaeovertebrata, 25, 287–300.Google Scholar
Hooker, J. J. (2001). Tarsals of the extinct insectivoran family Nyctitheriidae (Mammalia): evidence for archontan relationships. Zoological Journal of the Linnean Society, 132, 501–29.CrossRefGoogle Scholar
Hutcheon, J. M. and Garland, T. Jr. (2004). Are megabats big?Journal of Mammalian Evolution, 11, 257–77.CrossRefGoogle Scholar
Hutcheon, J. M. and Kirsch, J. A. W. (2004). Camping in a different tree: results of molecular systematic studies of bats using DNA–DNA hybridization. Journal of Mammalian Evolution, 11, 17–47.CrossRefGoogle Scholar
Hutcheon, J. M., Kirsch, J. A. W., and Pettigrew, J. D. (1998). Base-compositional biases and the bat problem. III. The question of microchiropteran monophyly. Philosophical Transactions of the Royal Society of London, B, 353, 607–17.CrossRefGoogle ScholarPubMed
Hutchison, J. H. (1968). Fossil Talpidae (Insectivora, Mammalia) from the later Tertiary of Oregon. Bulletin of the Museum of Natural History, the University of Oregon, 11, 1–117.Google Scholar
Hutchison, J. H. and Lindsay, E. H.. (1974). The Hemingfordian mammal fauna of the Vedder Locality, Branch Canyon Formation, Santa Barbara County, California. Part 1: Insectivora, Chiroptera, Lagomorpha, and Rodentia (Sciuridae). PaleoBios, 15, 1–19.Google Scholar
James, G. T. (1963). Paleontology and nonmarine stratigraphy of the Cuyama Valley badlands, California. Part I. Geology, faunal interpretations, and systematic descriptions of Chiroptera, Insectivora, and Rodentia. University of California Publications in Geological Sciences, 4, 1–154.Google Scholar
Jepsen, G. L. (1966). Early Eocene bat from Wyoming. Science, 154, 1333–9.CrossRefGoogle ScholarPubMed
Jepsen,, G. L. (1970). Bat origins and evolution. In Biology of Bats, Vol. I, ed. Wimsatt, W. A., pp. 1–64. New York: Academic Press.Google Scholar
Jones, K. E., Purvis, A., MacLarnon, A., Bininda-Emonds, O. R. P., and Simmons, N. B. (2002). A phylogenetic supertree of the bats (Mammalia: Chiroptera). Biological Reviews, 77, 223–59.CrossRefGoogle Scholar
Kaup, J. J. (1829). Skizzirte Entwickelungs-Geschichte und Natürliches System der Europäischen Thierwelt. Darmstadt, Leipzig: C. W. Leske.Google Scholar
Kennedy, M., Paterson, A. M., Morales, J. C., et al. (1999). The long and short of it: branch lengths and the problem of placing the New Zealand short-tailed bat, Mystacina. Molecular Phylogenetics and Evolution, 13, 405–16.CrossRefGoogle Scholar
Kirsch, J. A. W., Flannery, T. F., Springer, M. S., and Lapointe, F.-J. (1995). Phylogeny of the Pteropodidae (Mammalia: Chiroptera) based on DNA hybridization, with evidence for bat monophyly. Australian Journal of Zoology, 43, 395–428.CrossRefGoogle Scholar
Kirsch, J. A. W., Hutcheon, J. M., Byrnes, D. G. P., and Lloyd, B. D. (1998). Affinities and historical zoogeography of the New Zealand short-tailed bat, Mystacina tuberculata Gray 1843, inferred from DNA-hybridization comparisons. Journal of Mammalian Evolution, 5, 33–64.CrossRefGoogle Scholar
Koopman, K. F. (1994). Chiroptera: systematics. In Handbook of Zoology, Vol. VIII: Mammalia, Part 60. New York: Walter de Gruyter.Google Scholar
Koopman,, K. F. and MacIntyre,, G. T. (1980). Phylogenetic analysis of chiropteran dentition. In Proceedings of the Fifth International Bat Research Conference, ed. Wilson, D. E. and Gardner, A. L., pp. 279–88. Lubbock, TX: Texas Technical Press.Google Scholar
Kumar, S. and Hedges, S. B. (1998). A molecular timescale for vertebrate evolution. Nature, 392, 917–20.CrossRefGoogle ScholarPubMed
Kurtén, B. and Anderson, E. (1980). The Pleistocene Mammals of North America. New York: Columbia University Press.Google Scholar
Lapointe, F.-J., Baron, G., and Legendre, P. (1999). Encephalization, adaptation and evolution of Chiroptera: a statistical analysis with further evidence for bat monophyly. Brain, Behavior and Evolution, 54, 119–26.CrossRefGoogle ScholarPubMed
Lapointe, F.-J., Kirsch, J. A. W., and Hutcheon, J. M. (1999). Total evidence, consensus, and bat phylogeny: a distance-based approach. Molecular Phylogenetics and Evolution, 11, 55–66.CrossRefGoogle ScholarPubMed
Lawrence, B. (1943). Miocene bat remains from Florida, with notes on the generic characters of the humerus of bats. Journal of Mammalogy, 24, 356–69.CrossRefGoogle Scholar
LeConte,, J. (1831). Lasionycteris. In The Animal Kingdom Arranged in Conformity with Its Organization by the Baron Cuvier; Translated from the French with Notes and Additions, Vol. 1, ed. McMurtrie, H., p. 431. New York: Carvill.Google Scholar
LeConte, J. (1856). Observations on the North American species of bats. Proceedings of the Academy of Natural Sciences of Philadelphia, 7, 431–8.Google Scholar
Legendre, S. (1984). Étude odontologique des représentants actuels du groupe Tadarida (Chiroptera, Molossidae). Implications phylogéniques, systématiques et zoogéographiques. Revue Suisse de Zoologie, 91, 399–442.CrossRefGoogle Scholar
Legendre, S. (1985). Molossidés (Mammalia, Chiroptera) cénozoiques de l'Ancien et du Nouveau Monde; statut systématique; intégration phylogénique de données. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen, 170, 205–27.Google Scholar
Legendre, S. and Sigé, B. (1983). La place du “Vespertilion de Montmartre” dans l'histoire des chiroptères molossidés. In Actes du Symposium Paléontologique Georges Cuvier, ed. Buffetaut, E., Mazin, J. M., and Salmon, E., pp. 347–61. Montbéliard.Google Scholar
Lesson, R. P. (1827). Manuel de Mammalogie, ou Histoire Naturelle des Mammifères. Paris: Roret.CrossRefGoogle Scholar
Lin, Y.-H. and Penny, D. (2001). Implications for bat evolution from two new complete mitochondrial genomes. Molecular Biology and Evolution, 18, 684–8.CrossRefGoogle ScholarPubMed
Lindsay, E. H. and Jacobs, L. L. (1985). Pliocene small mammal fossils from Chihuahua, Mexico. Universidad Nacional Autónoma de México, Instituto de Geología, Paleontología Mexicana, 51, 1–53.Google Scholar
Liu, F.-G. R., Miyamoto, M. M., Freire, N. P., et al. (2001). Molecular and morphological supertrees for eutherian (placental) mammals. Science, 291, 1786–9.CrossRefGoogle ScholarPubMed
Madsen, O., Scally, M., Douady, C. J., et al. (2001). Parallel adaptive radiations in two major clades of placental mammals. Nature, 409, 610–14.CrossRefGoogle ScholarPubMed
Maina, J. N. (2000). What it takes to fly: the structural and functional respiratory refinements in birds and bats. Journal of Experimental Biology, 203, 3045–64.Google ScholarPubMed
Marsh, O. C. (1872a). Preliminary description of new Tertiary mammals. Part I. American Journal of Science and Arts (third series), 4, 122–8.Google Scholar
Marsh, O. C. (1872b). Preliminary description of new Tertiary mammals. Parts II, III, and IV. American Journal of Science and Arts (third series), 4, 202–24.Google Scholar
Matthew, W. D. (1917). A Paleocene bat. Bulletin of the American Museum of Natural History, 37, 569–71.Google Scholar
McKenna, M. C. and Bell, S. K. (1997). Classification of Mammals Above the Species Level. New York: Columbia University Press.Google Scholar
McKenna, M. C., Robinson, P., and Taylor, D. W. (1962). Notes on Eocene Mammalia and Mollusca from Tabernacle Butte, Wyoming. American Museum Novitates, 2102, 1–33.Google Scholar
Menu, H. (1984). Revision du statut de Pipistrellus subflavus (F. Cuvier, 1832). Proposition d'un taxon générique nouveau: Perimyotis nov. gen. Mammalia, 48, 409–16.CrossRefGoogle Scholar
Menu, H. (1985). Morphotypes dentaires actuels et fossiles des chiroptères vespertilioninés Ie partie: Étude des morphologies dentaires. Palaeovertebrata, 15, 71–128.Google Scholar
Menu, H. and Sigé, B. (1971). Nyctalodontie et myotodontie, importants caractères de grades évolutifs chez les chiroptères entomophages. Comptes Rendus de Séances de l'Académie des Sciences, 272, 1735–8.Google Scholar
Merriam, C. H. (1890). Descriptions of a new species of Molossus from California (Molossus californicus). North American Fauna, 4, 31–2.CrossRef
Miller, G. S. Jr. (1906). Twelve new genera of bats. Proceedings of the Biological Society of Washington, 19, 83–6.Google Scholar
(1907). The families and genera of bats. Bulletin of the United States National Museum, 57, 1–282.
Miyamoto, M. M., Porter, C. A., and Goodman, M. (2000). c-myc gene sequences and the phylogeny of bats and other eutherian mammals. Systematic Biology, 49, 501–14.CrossRefGoogle ScholarPubMed
Morgan, G. S. (1989). New bats from the Oligocene and Miocene of Florida, and the origins of the Neotropical chiropteran fauna. Journal of Vertebrate Paleontology, 9(suppl. to no. 3), p. 33A.Google Scholar
Morgan, G. S. (1991). Neotropical Chiroptera from the Pliocene and Pleistocene of Florida. Bulletin of the American Museum of Natural History, 206, 176–213.Google Scholar
Morgan, G. S. and Czaplewski, N. J. (2000). A new bat in the Neotropical family Natalidae from the early Miocene (Hemingfordian) Thomas Farm Local Fauna, Florida. Journal of Vertebrate Paleontology, 20(suppl. to no. 3), p. 59A.Google Scholar
Morgan, G. S. and Czaplewski, N. J. (2003). A new bat in the Neotropical family Natalidae from the early Miocene of Florida. Journal of Mammalogy, 84, 729–52.2.0.CO;2>CrossRefGoogle Scholar
Morgan, G. S. and Hulbert, R. C. Jr. (1995). Overview of the geology and vertebrate biochronology of the Leisey Shell Pit local fauna, Hillsborough County, Florida. Bulletin of the Florida Museum of Natural History, 37, 1–92.Google Scholar
Morgan, G. S. and Ridgway, R. B. (1987). Late Pliocene (late Blancan) vertebrates from the St. Petersburg Times site, Pinellas County, Florida, with a brief review of Florida Blancan faunas. Papers in Florida Paleontology, 1, 1–22.Google Scholar
Morgan, G. S., Linares, O. J., and Ray, C. E. (1988). New species of fossil vampire bats (Mammalia: Chiroptera: Desmodontidae) from Florida and Venezuela. Proceedings of the Biological Society of Washington, 101, 912–28.Google Scholar
Müller, P. L. S. (1776). Mit Einer Ausführlichen Erklärung Ausgefertiget. Des Ritters Carl von Linné. Vollständigen Natursystems Supplements und Register-ban Üaller Sechs Theile Oder Classen des Thierreichs, pp. 3–34. Nurnberg: G. N. Raspe.Google Scholar
Murphy, W. J., Eizirik, E., Johnson, W. E., et al. (2001a). Molecular phylogenetics and the origins of placental mammals. Nature, 409, 614–18.CrossRefGoogle Scholar
Murphy, W. J., Eizirik, E., O'Brien, S. J., et al. (2001b). Resolution of the early placental radiation using Bayesian phylogenetics. Science, 294, 2348–51.CrossRefGoogle Scholar
Nikaido, M., Kawai, K., Cao, Y., et al. (2001). Maximum likelihood analysis of the complete mitochondrial genomes of eutherians and a reevaluation of the phylogeny of bats and insectivores. Journal of Molecular Evolution, 53, 508–16.CrossRefGoogle Scholar
Novacek,, M. J. (1982). Information for molecular studies from anatomical and fossil evidence on higher eutherian phylogeny. In Macromolecular Sequences in Systematic and Evolutionary Biology, ed. Goodman, M., pp. 3–41. New York: Plenum Press.Google Scholar
Novacek, M. J. (1985). Evidence for echolocation in the oldest known bats. Nature, 315, 140–1.CrossRefGoogle ScholarPubMed
Novacek, M. J. (1987). Auditory features and affinities of the Eocene bats Icaronycteris and Palaeochiropteryx (Microchiroptera, incertae sedis). American Museum Novitates, 2877, 1–18.Google Scholar
Novacek, M. J. (1991). Aspects of the morphology of the cochlea in microchiropteran bats: an investigation of character transformation. Bulletin of the American Museum of Natural History, 206, 84–99.Google Scholar
Ostrander, G. E. (1983). New early Oligocene (Chadronian) mammals from the Raben Ranch local fauna, northwest Nebraska. Journal of Paleontology, 57, 128–39.Google Scholar
Ostrander, G. E. (1985). Correlation of the Early Oligocene (Chadronian) in northwestern Nebraska. Dakoterra. South Dakota School of Mines and Technology, 2, 205–31.Google Scholar
Ostrander, G. E. (1987). The early Oligocene (Chadronian) Raben Ranch local fauna, northwest Nebraska: Marsupialia, Insectivora, Dermoptera, Chiroptera, and Primates. Dakoterra, South Dakota School of Mines and Technology, 3, 92–104.Google Scholar
Palisot, Beauvois A. M. F. J. (1796). Catalogue Raisonne du Muséum, de Mr. C. W. Peale. Philadelphia, PA: S. H. Smith, Parent.Google Scholar
Paula, Couto C. (1956). Une chauve-souris fossile des argiles feuilletées Pléistocènes de Tremembé, État de Sao Paulo (Brésil). Actes IV Congrès Internationale Quaternaire, 1, 343–7.Google Scholar
Peters, W. C. H. (1865). Über die zu den Vampyri gehörigen Fleder thiere und uber die naturliche stellung der Gattung Antrozous. Monatsberichte der Königlich Preussischen Akademie der Wissenschaften zu Berlin, 1865, 503–24.Google Scholar
Pettigrew, J. D. (1986). Flying primates? Megabats have the advanced pathway from eye to midbrain. Science, 231, 1304–6.CrossRefGoogle Scholar
Pumo, D. E., Finamore, P. S., Franek, W. R., et al. (1998). Complete mitochondrial genome of a Neotropical fruit bat, Artibeus jamaicensis, and a new hypothesis of the relationships of bats to other eutherian mammals. Journal of Molecular Evolution, 47, 709–17.CrossRefGoogle Scholar
Rafinesque, C. S. (1814). Précis des Découvertes et Travaux Somiologiques de Mr. C. S. Rafinesque Schmaltz entre 1800 et 1814 ou Choix Raisonné de ses Principales Découvertes en Zoologie et en Botanique, pour Servir d'Introduction à ses Ouvrages Futurs. Palerme, Royale Typographie Militaire, aux dépens de l'auteur, 1814. [Alternatively, same author and year, Principes Fondamentaux de Somologie, ou les Loix de la Nomenclature et de la Classification de l'Empire Organique ou des Animaux et des Végétaux: Contenant les Régles Essentielles de l'Art de leur Imposer des Noms Immutables et de les Classer Méthodiquement. Palerme, De l'imprimerie de Franc. Abate, aux dépens de l'auteur, 1814.]Google Scholar
Rafinesque, C. S. (1820). Annals of Nature; or Annual Synopsis of New Genera and Species of Animals, Plants, &c., Discovered in North America. First annual number, for 1820. Lexington, KY: T. Smith.Google Scholar
Revilliod, P. (1919). L'état actuel de nos connaissances sur les Chiroptères fossiles (Note préliminaire). Comptes Rendus Société des Physique et Histoire Naturelle Genève, 36, 93–6.Google Scholar
Rich, T. H., Vickers-Rich, P., and Flannery, T. F. (1999). Divergence times of eutherian mammals. Science, 285, 2031a.Google Scholar
Scally, M., Madsen, O., Douady, C. J., et al. (2002). Molecular evidence for the major clades of placental mammals. Journal of Mammalian Evolution, 8, 239–77.CrossRefGoogle Scholar
Schinz, H. R. (1821). In Das Thierreich Eingetheilt nach dem Bau der Thiere als Grundlage ihrer Naturgeschichte und der Vergleichenden Anatomie von dem Herrn Ritter von Cuvier. Vol. 1, Säugethiere und Vogel. Stuttgart: J. G. Cotta'schen Buchhandlung.Google Scholar
Schutt, W. A. Jr. and Simmons, N. B. (1998). Morphology and homology of the chiropteran calcar, with comments on the phylogenetic relationships of Archaeopteropus. Journal of Mammalian Evolution, 5, 1–32.CrossRefGoogle Scholar
Schwartz, J. H. and Krishtalka, L. (1977). Revision of Picrodontidae (Primates, Plesiadapiformes): dental homologies and relationships. Annals of the Carnegie Museum, 46, 55–70.Google Scholar
Sears, K., Behringer, R., and Niswander, L. (2004). The development of powered flight in Chiroptera: the morphological and genetic evolution of bat wing digits. Journal of Vertebrate Paleontology, 24(suppl. to no. 3), p. 111A.Google Scholar
Sigé, B. (1974). Données nouvelles sur le genre Stehlinia (Vespertilionoidea, Chiroptera) du Paléogène d'Europe. Palaeovertebrata, 6, 253–72.Google Scholar
Sigé, B. (1997). Les remplissages karstiques polyphasés (Éocène, Oligocène, Pliocène) de Saint-Maximin (phosphorites du Gard) et leur apport à la connaissance des faunes européenes, notamment pour l'Éocène moyen (MP 13). 3: Systématique: euthériens entomophages. [In Actes du Congrès BiochroM'97, ed. Aguilar, J.-P, Legendre, S., and Michaux, J..] Mémoires et Travaux de l'Institut de Montpellier de l'École Pratique des Hautes Études, 21, 737–50.Google Scholar
Sigé, B. and Legendre, S. (1983). L'histoire des peuplements de chiroptères du bassin méditerranéen: l'apport comparé des remplissages karstiques et des dépôts fluviolacustres. Mémoires de Biospéologie, 10, 207–24.Google Scholar
Simmons,, N. B. (1993a). The importance of methods: archontan phylogeny and cladistic analysis of morphological data. In Primates and Their Relatives in Phylogenetic Perspective, ed. MacPhee, R. D. E., pp. 1–61. New York: Plenum Press.Google Scholar
Simmons, N. B. (1993b). Morphology, function, and phylogenetic significance of pubic nipples in bats (Mammalia: Chiroptera). American Museum Novitates 3077, 1–37.Google Scholar
Simmons, N. B. (1994). The case for chiropteran monophyly. American Museum Novitates 3103, 1–54.Google Scholar
Simmons, N. B. (1995). Bat relationships and the origin of flight. Symposia of the Zoological Society of London, 67, 27–43.Google Scholar
Simmons,, N. B. (1998). A reappraisal of interfamilial relationships of bats. In Bat Biology and Conservation, ed. Kunz, T. H. and Racey, P. A., pp. 3–26. Washington, DC: Smithsonian Institution Press.Google Scholar
Simmons,, N. B. (2000). Bat phylogeny: an evolutionary context for comparative studies. In Ontogeny, Functional Ecology, and Evolution of Bats, ed. Adams, R. A. and Pedersen, S. C., pp. 9–58. Cambridge, UK: Cambridge University Press.Google Scholar
Simmons,, N. B. (2005). Chiroptera. In The Rise of Placental Mammals. Origins and Relationships of the Major Extant Clades, ed. Rose, K. D. and Archibald, J. D., pp. 159--74. Baltimore, MD: Johns Hopkins University Press.Google Scholar
Simmons, N. B. and Geisler, J. H. (1998). Phylogenetic relationships of Icaronycteris, Archaeonycteris, Hassianycteris, and Palaeochiropteryx to extant bat lineages, with comments on the evolution of echolocation and foraging strategies in Microchiroptera. Bulletin of the American Museum of Natural History, 235, 1–182.Google Scholar
Simmons, N. B. and Quinn, T. H. (1994). Evolution of the digital locking mechanism in bats and dermopterans: a phylogenetic perspective. Journal of Mammalian Evolution, 2, 231–54.CrossRefGoogle Scholar
Simmons, N. B., Novacek, M. J., and Baker, R. J. (1991). Approaches, methods, and the future of the chiropteran monophyly controversy: a reply to J. D. Pettigrew. Systematic Zoology, 40, 239–43.CrossRefGoogle Scholar
Slaughter,, B. H. (1970). Evolutionary trends of chiropteran dentitions. In About Bats: A Chiropteran Symposium, ed. Slaughter, B. H. and Walton, D. W., pp. 51–83. Dallas, TX: Southern Methodist University Press.Google Scholar
Smith, J. D. (1972). Systematics of the chiropteran family Mormoopidae. University of Kansas Museum of Natural History, Miscellaneous Publication, 56, 1–132.Google Scholar
Smith, T. (1995). Présence du genre Wyonycteris (Mammalia, Lipotyphla) à la limite Paléocène-Éocène en Europe. Comptes Rendus de l'Académie des Sciences, Paris, 321, 923–30.Google Scholar
Speakman, J. R. (2001). The evolution of flight and echolocation in bats: another leap in the dark. Mammal Review, 31, 111–30.CrossRefGoogle Scholar
Springer, M. S., Teeling, E. C., and Stanhope, M. J. (2001a). External nasal cartilages in bats: evidence for microchiropteran monophyly?Journal of Mammalian Evolution, 8, 231–6.CrossRefGoogle Scholar
Springer, M. S., Teeling, E. C., Madsen, O., Stanhope, M. J., and Jong, W. W. (2001b). Integrated fossil and molecular data reconstruct bat echolocation. Proceedings of the National Academy of Sciences, USA, 98, 6241–6.CrossRefGoogle Scholar
Stadelmann, B., Herrera, L. G., Arroyo-Cabrales, J., et al. (2004). Molecular systematics of the fishing bat Myotis (Pizonyx) vivesi. Journal of Mammalogy, 85, 133–9.2.0.CO;2>CrossRefGoogle Scholar
Stirton, R. A. (1931). A new genus of the family Vespertilionidae from the San Pedro Pliocene of Arizona. University of California Publications, Bulletin of the Department of Geological Sciences, 20, 27–30.Google Scholar
Storch,, G. (2001). Paleobiological implications of the Messel mammalian assemblage. In Eocene Biodiversity Unusual Occurrences and Rarely Sampled Habitats, ed. Gunnell, G. F., pp. 215–35. New York: Kluwer Academic/Plenum.Google Scholar
Storch, G., Sigé, B., and Habersetzer, J. (2002). Tachypteron franzeni n. gen., n. sp., earliest emballonurid bat from the Middle Eocene of Messel (Mammalia, Chiroptera). Paläontologische Zeitschrift, 76, 189–99.CrossRefGoogle Scholar
Storer, J. E. (1984). Mammals of the Swift Current Creek local fauna (Eocene: Uintan), Saskatchewan. Natural History Contributions (Saskatchewan Culture and Recreation), 7, 1–158.Google Scholar
Storer,, J. E. (1995). Small mammals of the Lac Pelletier lower fauna, Duchesnean, of Saskatchewan, Canada: insectivores and insectivore-like groups, a plagiomenid, a microsyopid and Chiroptera. In Vertebrate Fossils and the Evolution of Scientific Concepts. A Tribute to L. Beverly Halstead, ed. Sarjeant, W. A. S., pp. 595–615. London: Gordon and Breach.Google Scholar
Sutton, J. F. and Genoways, H. H. (1974). A new vespertilionine bat from the Barstovian deposits of Montana. Occasional Papers of the Museum of Texas Technical University, 20, 1–8.Google Scholar
Szalay, F. S. (1968). The Picrodontidae, a family of early primates. American Museum Novitates, 2329, 1–55.Google Scholar
Teeling, E. C., Scally, M., Kao, D. J., et al. (2000). Molecular evidence regarding the origin of echolocation and flight in bats. Nature, 403, 188–92.CrossRefGoogle ScholarPubMed
Teeling, E., Madsen, O., Van, Bussche R. A., et al. (2002). Microbat paraphyly and the convergent evolution of a key innovation in Old World rhinolophoid microbats. Proceedings of the National Academy of Sciences, USA, 99, 1431–6.CrossRefGoogle ScholarPubMed
Teeling, E. C., Springer, M. S., Madsen, O., et al. (2005). A molecular phylogeny for bats illuminates biogeography and the fossil record. Science, 307, 580–4.CrossRefGoogle ScholarPubMed
Thewissen, J. G. M. and Smith, G. R. (1987). Vespertilionid bats (Chiroptera, Mammalia) from the Pliocene of Idaho. Contributions from the Museum of Paleontology, University of Michigan, 27, 237–45.Google Scholar
Tomida, Y. (1994). Phylogenetic reconstruction of fossil mammals based on the cheek tooth morphology. Honyurui Kagaku (Mammalian Science), 34, 19–29.Google Scholar
Van, Bussche R. A. and Hoofer, S. R. (2000). Further evidence for inclusion of the New Zealand short-tailed bat (Mystacina tuberculata) within Noctilionoidea. Journal of Mammalogy, 81, 865–74.Google Scholar
Van, Bussche R. A., and Hoofer, S. R. (2001). Evaluating monophyly of Nataloidea (Chiroptera) with mitochondrial DNA sequences. Journal of Mammalogy, 82, 320–7.Google Scholar
(2004). Phylogenetic relationships among Recent chiropteran families and the importance of choosing appropriate out-group taxa. Journal of Mammalogy, 85, 321–30.2.0.CO;2>CrossRef
Van, Valen L. (1979). The evolution of bats. Evolutionary Theory, 4, 103–21.Google Scholar
Vaughan, T. A. (1959). Functional morphology of three bats: Eumops, Myotis, and Macrotus. University of Kansas Publications, Museum of Natural History, 12, 1–153.Google Scholar
Vaughan, T. A. (1970). Adaptations for flight in bats. In About Bats: A Chiropteran Symposium, ed. Slaughter, B. H. and Walton, D. W., pp. 127–43. Dallas, TX: Southern Methodist University Press.Google Scholar
Webb, S. D. and Perrigo, S. C.. (1984). Late Cenozoic vertebrates from Honduras and El Salvador. Journal of Vertebrate Paleontology, 4, 237–54.CrossRefGoogle Scholar
Wetterer, A. L., Brockman, M. V., and Simmons, N. B. (2000). Phylogeny of phyllostomid bats (Mammalia: Chiroptera): data from diverse morphological systems, sex chromosomes, and restriction sites. Bulletin of the American Museum of Natural History, 248, 1–200.2.0.CO;2>CrossRefGoogle Scholar
White, J. A. (1969). Late Cenozoic bats (subfamily Nyctophylinae) from the Anza-Borrego Desert of California. University of Kansas Museum of Natural History Miscellaneous Publications, 51, 275–82.Google Scholar
Wible, J. R. and Novacek, M. J. (1988). Cranial evidence for the monophyletic origin of bats. American Museum Novitates, 2911, 1–19.Google Scholar
Wied-Neuwied, , Prinz, M. A. zu (1826). Beiträge zur Naturgeschichte von Brasilien. Verzeichniss der Amphibien, Säugethiere, und Vögel, welche auf einer Reise Zwischen dem 13ten und dem 23sten Grade südlicher Breite im östlichen Brasilien beobachtet wurden. II. Abteilung Mammalia Säugethiere, Weimar, 2, 1–620.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×