Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-zzh7m Total loading time: 0 Render date: 2024-04-26T04:23:21.004Z Has data issue: false hasContentIssue false

12 - Ambophily and “super generalism” in Ceratonia siliqua (Fabaceae) pollination

Published online by Cambridge University Press:  05 January 2012

Get access

Summary

Introduction

Since ancient times, the evergreen carob tree Ceratonia siliqua L. (Fabaceae: Caesalpinoideae) has been grown in most countries of the Mediterranean basin for its edible seed pots, which are an important crop (von Hasselberg 2000). It has been used historically as feed for domesticated animals (sometimes referred to as “locust beans”), and the current cultivars of the carob tree were probably selected by the Arabs (Ramón-Laca and Mabberley 2004). Carob seed pots were also used to supplement the human diet (e.g. known as “St. John’s bread”) and its products are used even nowadays in many ways (e.g. as thickening agents). Carob trees were traditionally interplanted with olives, grapes, almonds, and barley in low-intensity farming systems in most carob-producing countries (Battle and Tous 1997). The carob tree is a large, sclerophyllous tree of the Mediterranean evergreen maquis (von Hasselberg 2000; Zohary and Orshan 1959). The tree is usually dioecious (hermaphrodites occur rarely: Zohary 1972: 32; Tucker 1992) and produces many-flowered catkin-like inflorescences (von Hasselberg 2000; Battle and Tous 1997; Feinbrun-Dothan and Danin 1998: 294) with strongly reduced flowers. The pentamerous flowers of both sexes are 6–12 mm long, yellowish–green, apetalous and consist merely of sexual organs (von Haselberg et al. 2004). Male flowers have five stamens and an abortive pistil, whereas female flowers have abortive staminodia and a fully developed pistil formed of a single carpel (Tucker 1992). The oval, two-lobed stigma is about 2.5 × 2.3 mm in size (von Hasselberg 2000), peltate, wet, and covered by verrucate papillae (Tucker 1992). The floral nectar produced is exposed (Battle and Tous 1997) on the broad hypogynous disk (Polhill et al. 1981) and therefore easily accessible for flower-visiting insects. The strongly scented inflorescences (Custodio et al. 2004, 2006), usually bearing 20–50 single flowers, arise as short lateral racemes mainly on branches (cauliflorous flowering) and on the trunk (ramiflorous flowering) (von Haselberg et al. 2004). The prolonged flowering season is mainly from September to December, which is regarded as a harsh pollination environment due to climatic conditions, a low diversity of potential pollinators, and a low number of individuals (Dafni 1986).

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Amirav, A.Dagan, S. 1997 A direct sample introduction device for mass spectrometry studies and GC–MS analysisEuropean Journal of Mass Spectrometry 3 105CrossRefGoogle Scholar
Anderson, A. B.Overal, W. L. 1988 Pollination ecology of forest-dominant palm ( Mart.) in Northern BrazilBiotropica 20 192CrossRefGoogle Scholar
Andersson, S. 2003 Antennal responses to floral scents in the butterflies , (Nymphalidae), and (Pieridae)Chemoecology 13 13CrossRefGoogle Scholar
Arista, M.Ortiz, P.Talavera, S. 1999 Apical pattern of fruit production in the racemes of (Leguminosae:Caesalpinioideae): role of pollinatorsAmerican Journal of Botany 86 1708CrossRefGoogle ScholarPubMed
Ashman, T.-L.Cole, D. H.Bradburn, M.Blaney, B.Raguso, R. A. 2005 Scent of a male: the role of floral volatiles in pollination of a gender dimorphic plantEcology 86 2099CrossRefGoogle Scholar
Bandera, M. C. delaTraveset, A. 2006 Breeding system and spatial variation in the pollination ecology of the heterocarpic (Thymelaeaceae)Plant Systematics and Evolution 257 9CrossRefGoogle Scholar
Battle, I.Tous, J. 1997 Carob tree: Ceratonia siliqua L. Promoting the Conservation and Use of Under-Utilized and Neglected CropsRomePlant Genetic Resource Institute, Gatersleben/ InternationalGoogle Scholar
Berry, P. E.Calvo, R. N. 1989 Wind pollination, self-incoptability, and altitunal shift in pollination system in the high Andean genus (Asteraceae)Americam Journal of Botany 76 1602CrossRefGoogle Scholar
Brodmann, J.Twele, R.Francke, W.Holzler, G.Zhang, Q. H.Ayasse, M. 2008 Orchids mimic green-leaf volatiles to attract prey-hunting wasps for pollinationCurrent Biology 18 740CrossRefGoogle ScholarPubMed
Bullock, S. H. 1994 Wind pollination of neotropical dioecious treesBiotropica 26 172CrossRefGoogle Scholar
Clinebell, R. RCrowe, A.Gregory, D. P.Hoch, P. C. 2004 Pollination ecology of and (Onagraceae, Tribe Onagreae) in western Texas, USAAnnals of the Missouri Botanical Garden 91 369Google Scholar
Corbet, S. A. 1978 A bee’s view of nectarBee World 59 25CrossRefGoogle Scholar
Cox, P. A. 1991 Abiotic pollination: an evolutionary escape for animal-pollinated angiospermsPhilosophical Transactions of the Royal Society Series B 333 217CrossRefGoogle Scholar
Culley, T. M.Weller, S. G.Sakai, A. K. 2002 The evolution of wind pollination in angiospermsTrends in Ecology and Evolution 17 361CrossRefGoogle Scholar
Custódio, L.Nogueira, J. M. F.Romano, A. 2004 Sex and developmental stage of carob flowers affects composition of volatilesJournal of Horticultural Science and Biotechnology 75 689CrossRefGoogle Scholar
Custódio, L.Serra, H.Nogueira, J. M. F.Gonçalves, S.Romano, A. 2006 Analysis of the volatiles emitted by whole flowers and isolated flower organs of the carob tree using HS–SPME–GC/MSJournal of Chemical Ecology 32 929CrossRefGoogle ScholarPubMed
Dafni, A. 1986 Autumnal and winter pollination adaptations under Mediterranean conditionsBocconea 5 171Google Scholar
Dafni, A.Dukas, R. 1986 Wind and insect pollination in (L.) Bak. (Liliaceae)Plant Systematics and Evolution 152 1CrossRefGoogle Scholar
Dötterl, S.Vereecken, N. 2010 The chemical ecology and evolution of bee–flower interactions: a review and perspectivesCanadian Journal of Zoology 88 668CrossRefGoogle Scholar
Dötterl, S.Wolfe, L. M.Jürgens, A. 2005 Qualitative and quantitative analyses of flower scent in Phytochemistry 66 203CrossRefGoogle Scholar
Douglas, D. A. 1997 Pollination, capsule damage, and production of seeds in (Salicaceae), an Alaskan glacial river gravel bar willowCanadian Journal of Botany 75 1182CrossRefGoogle Scholar
Du, Y-J.Poppy, G. M.Powell, W.Pickett, J. A.Wadhams, L. J.Woodcock, C. M. 1998 Identification of semiochemicals released during aphid feeding that attract parasitoid Journal of Chemical Ecology 24 1355CrossRefGoogle Scholar
Duan, Y. W.Zhang, T. F.He, Y. P.Liu, J. Q. 2009 Insect and wind pollinartion of an alpine biennial (Ranunculaceae)Plant Biology 11 796CrossRefGoogle Scholar
Endress, P. K. 1994 Diversity and Evolutionary Biology of Tropical flowersCambridge, UKCambridge University PressGoogle Scholar
Feinbrun-Dothan, N.Danin, A. 1998 Analytical Flora of the Land of IsraelJerusalem, IsraelCANA Publishing House LtdGoogle Scholar
Frati, F.Chamberlain, K.Birkett, M.Dufour, S.Mayon, P.Woodcock, C.Wadhams, L.Pickett, J.Salerno, G.Conti, E.Bin, F. 2009 - interactions: induced plant volatiles and sex pheromone enhancementJournal of Chemical Ecology 35 201CrossRefGoogle ScholarPubMed
Friedmann, J.Barrett, S. C. H. 2009 A phylogenetic analysis of the evolution of wind pollination in the angiospermsInternational Journal of Plant Sciences 169 49CrossRefGoogle Scholar
Gómez, J. M.Zamora, R.Hódaz, J. D.Carcía, D. 1996 Experimental study of pollination by ants in Mediterranean high mountain and arid habitatsOecologia 105 236CrossRefGoogle ScholarPubMed
Goodwillie, C. 1999 Wind pollination and reproductive assurance in (Polemoniaceae), a self-incompatible annualAmerican Journal of Botany 86 948CrossRefGoogle Scholar
Goor, A. 1965 Encyclopaedia Hebraica Vol. 17Tel Aviv, IsraelMassaadaGoogle Scholar
Gordin, A.Amirav, A. 2000 SnifProbe: new method and device for vapor and gas samplingJournal of Chromatography A 903 155CrossRefGoogle ScholarPubMed
Guédot, C.Landolt, P. J.Smithhisler, C. L. 2008 Odorants of the flowers of butterfly bush, , as possible attractants of pest species of mothsFlorida Entomologist 91 576Google Scholar
Gulías, J.Traveset, A.Mus, M.Riera, N. 2004 Critical stages in the recruiment process of Annals of Botany 93 723CrossRefGoogle Scholar
Han, B. Y.Chen, Z. M. 2002 Composition of the volatiles from intact and mechanically pierced tea aphid-tea shoot complexes and their attraction to natural enemies of the tea aphidAgricultural and Food Chemistry 50 2571CrossRefGoogle ScholarPubMed
von Haselberg, C. D. 2000
von Haselberg, C. D.Lüdders, P.Stösser, R. 2004 Pollen tube growth, fertilization and ovule longevity in the carob tree ( L.)Journal of Applied Botany-Angewandte Botanik 78 32Google Scholar
Hatanaka, A. 1993 The biogeneration of green odor by green leavesPhytochemistry 34 1201CrossRefGoogle Scholar
Heil, M. 2008 Insect defence via tritrophic interactionsNew Phytologist 178 41CrossRefGoogle ScholarPubMed
Heinrich, B. 1975 Energetics of pollinationAnnual Review of Ecology and Systematics 6 139CrossRefGoogle Scholar
Hillcoat, D.Lewis, G.Verdcourt, B. 1980 A new species of (Leguminosae, Caesalpiniodieae) from Arabia and the Somali RepublicKew Bulletin 35 261CrossRefGoogle Scholar
James, D. G. 2003 Field evaluation of herbivore-induced plant volatiles as attractants for beneficial insects: methyl salicylate and the green lacewing Journal of Chemical Ecology 29 1601CrossRefGoogle ScholarPubMed
James, D. G. 2006 Methyl salicylate is a field attractant for the goldeneyed lacewing, Biocontrol Science and Technology 16 107CrossRefGoogle Scholar
James, D. G.Castle, S. C.Grassiwitz, T.Reyna, V. 2005
Jürgens, ADötterl, S. 2004 Chemical composition of pollen volatiles in Ranunculaceae: genera-specific profiles in , , , , , and speciesAmerican Journal of Botany 91 1969CrossRefGoogle Scholar
Karrenberg, S.Kollman, J.Edwards, P. J. 2002 Pollen vectors and inflorescence morphology in four species of Plant Systematics and Evolution 235 181CrossRefGoogle Scholar
Knudsen, J. T.Eriksson, R.Gershenzon, J.Ståhl, B. 2006 Diversity and distribution of floral scentThe Botanical Review 72 1CrossRefGoogle Scholar
Kravchenko, V. D.Figiger, M.Mosser, J.Muller, G. C. 2006 The Noctuinae of Israel (Lepidoptera:Noctuidae)SHILP Revista de Lepideptorologia 34 353Google Scholar
Linskens, H. F.Scholten, W. 1980 The flower of carobPortugaliae Acta Biologica 16 95Google Scholar
Mahy, G.de Sloover, J.Jacquemart, A. L. 1998 The generalist pollination system and reproductive success of in the Upper ArdenneCanadian Journal of Botany 76 1843CrossRefGoogle Scholar
Meeuse, A. D. J. 1978 The Pollination of Flowers by InsectsRichards, A. J.London, UKAcademic PressGoogle Scholar
Meeuse, A. D. J.de Meijer, A. H.Mohr, O. W. P.Wellinga, S. M. 1990 Entomophily in the diecious gymnosperm Frusk (= C.A. Mey), with some notes on C. A. Mey. III. Further anthecological studies and relative importance of entomophyliIsrael Journal of Botany 39 113Google Scholar
Molleman, F.Drukker, B.Blommers, L. 1997 A trap for monitoring pear psylla predators using dispenser with the synomone methyl salicylateProceedings in Experimental and Applied Entomology 8 177Google Scholar
Ortiz, P.Arista, M.Traveset, S. 1996 Distance-independent fruit: set pattern in dioecious population of . (Casalpiniaceae)Flora 194 277CrossRefGoogle Scholar
Passos De Carvalho, J. 1988 Carob pollination aspectsActas del II Symposium Internacional Sobre la Garrofa255Google Scholar
Peeters, L.Totland, Ø 1999 Wind to insect pollination ratio and floral traits in five alpine speciesCanadian Journal of Botany 77 556CrossRefGoogle Scholar
Piechulla, B.Pott, M. B. 2003 Plant scents: mediators of inter- and intraorganismic communicationPlanta 217 687CrossRefGoogle ScholarPubMed
Polhill, R. M.Raven, P. H.Stirton, C. H. 1981 Advances in Legume Systematics, Vol. 1Kew, UKRoyal Botanic GardensGoogle Scholar
Principi, M. M.Canard, C. 1984 Series Entomologica 27Canard, M. Y.Séméria, T. R.The Hague, The NetherlandsDr. W. Junk PublishersGoogle Scholar
Ramon-Lacca, L.Mabberley, D. J. 2004 The ecological status of carob-tree (, Legumonosae) in the MediterraneanBotanical Journal of the Linnean Society 144 431CrossRefGoogle Scholar
Raguso, R. A.Pellmyr, O. 1998 Dynamic headspace analysis of floral volatiles: a comparison of methodsOikos 81 238CrossRefGoogle Scholar
Raguso, R. A.Pichersky, E. 1999 New perspectives in pollination biology: floral fragrances. A day in the life of a linalool molecule: chemical communication in a plant–pollinator system. Part 1: linalool biosynthesis in the flowering plantsPlant Species Biology 14 95CrossRefGoogle Scholar
Raguso, R. A.Light, D. M.Pichersky, E. 1996 Electroantennogram responses of (Sphingidae:Lepidoptera) to volatile compounds from (Onagraceae) and other moth-pollinated flowersJournal of Chemical Ecology 22 1735CrossRefGoogle ScholarPubMed
Regal, P. J. 1982 Pollinationby wind and animals: ecology of geographic pattersAnnual Review of Ecology 13 497CrossRefGoogle Scholar
Reddy, G. V. P. 2002 Plant volatiles mediate orientaion and plant preference of Stephens (Neuroptera: Chrysopidae)Biological Control 25 49CrossRefGoogle Scholar
Retana, J.Ramoneda, J.Garcia del Pino, F. 1990 Importancia del los insectos en la polinización del algarroboBoletίn de Sanidad Vegetal Plagas 16 143Google Scholar
Retana, J.Ramoneda, J.Garcia del Pino, F.Bosch, J. 1994 Flowering phenology of carob, L. (Cesalpinaceae)Journal of Horticultural Science 69 97CrossRefGoogle Scholar
Sacchi, C. F.Price, P. M. 1988 Pollination of the arroyo willow, : role of insects and windAmerican Journal of Botany 75 1387CrossRefGoogle Scholar
Scariot, A. O.Lleras, A.Hay, J. D. 1991 Reproductive biology of the palm in Central BrazilBiotropica 23 12CrossRefGoogle Scholar
Shi-Jing, L.Zhang, D. X.Lin, L.Chen, Z. Y. 2000 Pollination ecology of (Leguminosae:Caesalpinioideaea)Acta Botanica 46 271Google Scholar
Silberbauer, L.Yee, M.del Soccoro, A.Wratten, S.Griegg, S.Bowie, M. 2004 Pollen grains as markers to track the movements of generalist predatory insects in agroecosystemsInternational Journal of Pest Management 50 165CrossRefGoogle Scholar
Suda, D. Y.Cunningham, R. T. 1970 captured in plastic traps containing methyl eugenolJournal of Economic Entomology 63 1706CrossRefGoogle Scholar
Totland, ØSottocornola, M. 2001 Pollen limitation of reproductive success in two sympatric alpine willows (Salicaceae) with contrasting pollination strategiesAmerican Journal of Botany 88 1011CrossRefGoogle ScholarPubMed
Tous, J.Battle, I. 1990 El algarroboMadrid, SpainEdiciones Mundi-PresGoogle Scholar
Tucker, S. C. 1992 The development basis for sexual expression in Ceratonia siliqua (Leguminosae: Cassieae)American Journal of Botany 78 318CrossRefGoogle Scholar
Tucker, S. C. 1992 The developmental basis of sexual expression in (Leguminosae:Cassieae)American Journal of Botany 79 318CrossRefGoogle Scholar
Umeya, K.Hirao, J. 1975 Attraction of the Jackfruit Fly, F. (Diptera: Tephritidae) and lacewing, Applied Entomology and Zoology 10 60CrossRefGoogle Scholar
Villenave, J.Duetsch, B.Lode, T.Rat-Morris, E. 2006 Pollen preference of the species (Neuroptra:Chrysopidae) occuring in the crop environment in western FranceEuropean Journal of Entomology 103 771CrossRefGoogle Scholar
Vroege, P. W.Stelleman, P. 1990 Insect and wind pollination in L. and LIsrael Journal of Botany 39 125Google Scholar
Wager, B. R.Breed, M. D. 2000 Does honeybee sting alarm pheromone give orientation information to defensive bees?Annals of the Entomological Society of America 93 1329CrossRefGoogle Scholar
Webster, B.Gezan, S.Bruce, T.Hardie, J.Pickett, J. 2010 Between plant and diurnal variation in quantities and ratios of volatile compounds emitted by plantsPhytochemistry 71 81CrossRefGoogle ScholarPubMed
Waisel, Y.Ganor, E.Glikman, M.Epstein, V.Brenner, S. 1997 Seasonal distribution of airborne pollen in the coastal main of IsraelAerobiologia 13 127CrossRefGoogle Scholar
Weller, S. G.Sakai, A. K.Rankin, A. E.Golonka, A.Kutcher, B.Ashby, K. E. 1998 Dioecy and evolution of pollnation systems in and (Caryophyllaceae:Alsinoideae) in the Hawaiian IslandsAmerican Journal of Botany 85 1377CrossRefGoogle ScholarPubMed
Whitehead, D. R. 1968 Wind pollination in angiosperms: evolution and environment considerationsEvolution 23 28CrossRefGoogle Scholar
Yela, J. L.Herrera, C. M. 1993 Seasonality and lifecycles of woody plant-feeding noctuid moths Lepidoptera:Noctuidae) in Mediterranean habitatsEcological Entomology 18 259CrossRefGoogle Scholar
Zhang, Q.-H.Schneidmiller, R. G.Hoover, D. R.Young., K.Welshons, D. O.Margaryan, A.Aldrich, J. F.Chauhan, K. R. 2006 Male-produced pheromones in the green lacewing Journal of Chemical Ecology 32 2163CrossRefGoogle ScholarPubMed
Zohary, M. 1972 Flora Palaestina Vol. 2Jerusalem, IsraelThe Israel Academy of Science and HumanitiesGoogle Scholar
Zohary, M.Orshan, G. 1959 The maquis of in IsraelPalestine Journal of Botany 8 385Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×