Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-7drxs Total loading time: 0 Render date: 2024-07-20T23:32:18.374Z Has data issue: false hasContentIssue false

4 - Selection: dynamic aspects

Published online by Cambridge University Press:  18 December 2009

Brian Charlesworth
Affiliation:
University of Chicago
Get access

Summary

Introduction

This chapter is concerned primarily with the analysis of the process of gene frequency change under selection in age-structured populations, in particular with the question: to what extent can this process be understood in terms of fixed parameters which characterise individual genotypes, analogous to the fitnesses of genotypes in discrete-generation models? The first investigation of the problem of the dynamics of selection in the context of age-structured populations was that of Norton (1928). (According to Haldane (1927a), Norton started work on the problem as early as 1910 and had established his results by 1922.) He studied the case of a single diallelic locus with time-independent and density-independent demographic parameters for each genotype, with no sex-differences, using the continuous-time equivalents of equations (3.14). He showed that the long-term results of selection (whether one of a pair of alleles is fixed or a polymorphism is maintained) are completely predicted by the relationships between the intrinsic rates of increase of the three genotypes, in the same way that the outcome of selection can be predicted from the genotypic fitnesses in the discrete-generation case. Haldane (1927a) established some approximate results for the rates of spread of rare dominant and recessive genes in slowly growing populations, and concluded that selection proceeded in much the same way as in the discrete-generation case. Both Haldane and Norton based their work on equations which explicitly incorporated the characteristics of age-structured populations, in contrast to the approach of Fisher (1930, 1941) who used differential equations to describe gene frequency change with continuous-time models but did not derive these from more basic equations.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×