Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-zzh7m Total loading time: 0 Render date: 2024-04-26T20:33:02.564Z Has data issue: false hasContentIssue false

4 - The Evolution of Vertebrate Dermal Jaw Bones in the Light of Maxillate Placoderms

Published online by Cambridge University Press:  31 December 2018

Zerina Johanson
Affiliation:
Natural History Museum, London
Charlie Underwood
Affiliation:
Birkbeck, University of London
Martha Richter
Affiliation:
Natural History Museum, London
Get access

Summary

Dermal skeletal components near the oral cavity, or dermal jaw bones, contribute to the integrated jaw structure from the beginning of gnathostome evolutionary history and have evolved to be the exclusive skeletal elements of the jaw in mammals, including humans. The morphological variations and modifications of these dermal jaw bones are pivotal in assessing their homology and reconstructing the evolutionary relationship of gnathostome groups. The recent discoveries of maxillate placoderms present unique insights into the evolution of osteichthyan dermal jaw bones, previously considered to be an autapomorphy of the Osteichthyes. Here we briefly review the dermal jaw bones in major gnathostome groups, with focus on taxa close to the transition from stem- to crown-group gnathostomes, i.e., various placoderm subgroups (including antiarchs, arthrodires, ptyctodonts, rhenanids) and basal osteichthyans. In particular, we present a detailed description of the dermal jaw components in the two maxillate placoderms, Entelognathus and Qilinyu. In light of the new morphological data and the comparison between these conditions, we propose the homology between the maxillate placoderm dermal jaw bones and arthrodire gnathal elements. Based on a review of character combinations in gnathostome subgroups, we also propose a possible evolutionary sequence of dermal jaw bones in early jawed vertebrates and demonstrate that the parasphenoid underwent substantial parallelism in placoderms and osteichthyans. We suggest that the inner position of gnathal plates in arthrodires might be secondary. The dermal jaw bones of eubrachythoracid arthrodires show adaptations comparable to those in osteichthyans, in addition to the better-known convergence of ptyctodonts and holocephalans.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahlberg, PE. 1991. A re-examination of sarcopterygian interrelationships, with special reference to the Porolepiformes. Zool J Linn Soc 103:241287 .Google Scholar
Anderson, PSL, Westneat, MW. 2007. Feeding mechanics and bite force modelling of the skull of Dunkleosteus terrelli, an ancient apex predator. Biol Lett 3:7780.Google Scholar
Anderson, PSL, Westneat, MW. 2009. A biomechanical model of feeding kinematics for Dunkleosteus terrelli (Arthrodira, Placodermi). Paleobiology 35:251269.Google Scholar
Andrews, SM, Long, JA, Ahlberg, PE, Barwick, R, Campbell, KSW. 2005. The structure of the sarcopterygian Onychodus jandemarrai n. sp. from Gogo, Western Australia: With a functional interpretation of the skeleton. Trans R Soc Edinb 96:197307.Google Scholar
Botella, H, Blom, H, Dorka, M, Ahlberg, PE, Janvier, P. 2007. Jaws and teeth of the earliest bony fishes. Nature 448:583586.Google Scholar
Brazeau, MD. 2009. The braincase and jaws of a Devonian ‘acanthodian’ and modern gnathostome origins. Nature 457:305308.Google Scholar
Brazeau, MD. 2012. A revision of the anatomy of the Early Devonian jawed vertebrate Ptomacanthus anglicus Miles. Palaeontology 55:355367.Google Scholar
Burrow, CJ. 2006. Placoderm fauna from the Connemarra Formation (late Lochkovian, Early Devonian), central New South Wales, Australia. Alcheringa Spec Iss 1:5988.Google Scholar
Burrow, CJ, Hu, Y-Z, Young, G. 2016. Placoderms and the evolutionary origin of teeth: A comment on Rücklin and Donoghue (2015). Biol Lett 12:20160159.Google Scholar
Cappetta, H. 1987. Chondrichthyes II, Mesozoic and Cenozoic Elasmobranchii. Stuttgart and New York: Gustav Fischer Verlag.Google Scholar
Carr, RK, Johanson, Z, Ritchie, A. 2009. The phyllolepid placoderm Cowralepis mclachlani: Insights into the evolution of feeding mechanisms in jawed vertebrates. J Morph 270:775804.Google Scholar
Chen, D-L, Blom, H, Sanchez, S, Tafforeau, P, Ahlberg, PE. 2016. The stem osteichthyan Andreolepis and the origin of tooth replacement. Nature 539:237241.Google Scholar
Chen, D-L, Blom, H, Sanchez, S, Tafforeau, P, Marss, T, Ahlberg, PE. 2017. Development of cyclic shedding teeth from semi-shedding teeth: the inner dental arcade of the stem osteichthyan Lophosteus. R Soc Open Sci 4:161084.Google Scholar
Cloutier, R. 1996. The primitive actinistian Miguashaia bureaui Schultze (Sarcopterygii). In: Schultze, H-P, Cloutier, R, editors. Devonian Fishes and Plants of Miguasha, Quebec, Canada. München: Verlag Dr. Freidrich Pfeil. pp. 227247.Google Scholar
Couly, G, Creuzet, S, Bennaceur, S, Vincent, C, Le Douarin, NM. 2002. Interactions between Hox-negative cephalic neural crest cells and the foregut endoderm in patterning the facial skeleton in the vertebrate head. Development 129:10611073.Google Scholar
Davis, SP, Finarelli, JA, Coates, MI. 2012. Acanthodes and shark-like conditions in the last common ancestor of modern gnathostomes. Nature 486:247250.Google Scholar
De Iuliis, G, Pulerà, D. 2007. The Dissection of Vertebrates: A Laboratory Manual. New York: Academic Press. 352 p.Google Scholar
Dean, B. 1909. Studies on fossil fishes (sharks, chimaeroids and arthrodires). Mem Amer Mus Nat Hist 9:212287.Google Scholar
Dennis-Bryan, K. 1987. A new species of eastmanosteid arthrodire (Pisces: Placodermi) from Gogo, Western Australia. Zool J Linn Soc 90:164.Google Scholar
Dennis-Bryan, K. 1995. Some comments on the placoderm parasphenoid. Bull Mus natl d’Hist natur, Paris 4e sér, Sec C 17:127142.Google Scholar
Didier, DA. 1995. Phylogenetic systematics of extant chimaeroid fishes (Holocephali, Chimaeroidei). Amer Mus Novit 3119:186.Google Scholar
Downs, JP, Donoghue, PCJ. 2009. Skeletal histology of Bothriolepis canadensis (Placodermi, Antiarchi) and evolution of the skeleton at the origin of jawed vertebrates. J Morph 270:13641380.Google Scholar
Dupret, V, Sanchez, S, Goujet, D, Ahlberg, PE. 2017. The internal cranial anatomy of Romundina stellina Ørvig, 1975 (Vertebrata, Placodermi, Acanthothoraci) and the origin of jawed vertebrates – Anatomical atlas of a primitive gnathostome. PLoS ONE 12:e0171241.Google Scholar
Dupret, V, Sanchez, S, Goujet, D, Tafforeau, P, Ahlberg, PE. 2014. A primitive placoderm sheds light on the origin of the jawed vertebrate face. Nature 507:500503.Google Scholar
Dupret, V, Zhu, M. 2008. The earliest phyllolepid (Placodermi, Arthrodira) from the late Lochkovian (Early Devonian) of Yunnan (South China). Geol Mag 145:257278.Google Scholar
Dupret, V, Zhu, M, Wang, J-Q. 2009. The morphology of Yujiangolepis liujingensis (Placodermi, Arthrodira) from the Pragian of Guangxi (South China) and its phylogenetic significance. Zool J Linn Soc 157:7082.Google Scholar
Dutel, H, Herrel, A, Clément, G, Herbin, M. 2013. A reevaluation of the anatomy of the jaw-closing system in the extant coelacanth Latimeria chalumnae. Naturwissenschaften 100:10071022.Google Scholar
Forey, PL. 1980. Latimeria: a paradoxical fish. Proc R Soc London Ser B Biol Sci 208:369384.Google Scholar
Forey, PL, Ahlberg, PE, Luksevics, E, Zupins, I. 2000. A new coelacanth from the Middle Devonian of Latvia. J Vert Paleo 20:243252.Google Scholar
Gai, Z-K, Donoghue, PCJ, Zhu, M, Janvier, P, Stampanoni, M. 2011. Fossil jawless fish from China foreshadows early jawed vertebrate anatomy. Nature 476:324327.Google Scholar
Gai, Z-K, Zhu, M. 2012. The origin of the vertebrate jaw: Intersection between developmental biology-based model and fossil evidence. Chinese Sci Bull 57:38193828.Google Scholar
Gans, C, Northcutt, RG. 1983. Neural crest and the origin of the vertebrates: A new head. Science 220:268274.CrossRefGoogle ScholarPubMed
Gardiner, BG. 1984a. The relationship of placoderms. J Vert Paleo 4:379395.Google Scholar
Gardiner, BG. 1984b. The relationships of the palaeoniscid fishes, a review based on new specimens of Mimia and Moythomasia from the Upper Devonian of Western Australia. Bull British Mus (Nat Hist), Geol 37:173428.Google Scholar
Gardiner, BG, Schaeffer, B. 1989. Interrelationships of lower actinopterygian fishes. Zool J Linn Soc 97:135187.Google Scholar
Giles, S, Friedman, M, Brazeau, MD. 2015. Osteichthyan-like cranial conditions in an Early Devonian stem gnathostome. Nature 520:8285.Google Scholar
Goodrich, ES. 1930. Studies on the Structure and Development of Vertebrates. London: Macmillan.Google Scholar
Goujet, DF, Young, GC. 2004. Placoderm anatomy and phylogeny: New insights. In: Arratia, G, Wilson, MVH, Cloutier, R, editors. Recent Advances in the Origin and Early Radiation of Vertebrates. München: Verlag Dr. Friedrich Pfeil. pp. 109126.Google Scholar
Gross, W. 1962. Neuuntersuchung der Stensiöellida (Arthrodira, Unterdevon). Notiz Landesan Bodenforsch 90:4886.Google Scholar
Gross, W. 1963. Gemuendina stuertzi Traquair. Notiz Landesan Bodenforsch 91:3673.Google Scholar
Hemmings, S. 1978. The Old Red Sandstone antiarchs of Scotland: Pterichthyodes and Microbrachius. Palaeontogr Soc Monogr 131:164.Google Scholar
Hu, Y-Z, Lu, J, Young, GC. 2017. New findings in a 400 million-year-old Devonian placoderm shed light on jaw structure and function in basal gnathostomes. Sci Rep 7:7813.Google Scholar
Jarvik, E. 1954. On the visceral skeleton in Eusthenopteron with a discussion of the parasphenoid and palatoquadrate in fishes. Kungl Svenska Vetenskaps Handl 5:1104.Google Scholar
Jarvik, E. 1972. Middle and Upper Devonian Porolepiformes from East Greenland with special reference to Glyptolepis groenlandica n. sp., and a discussion on the structure of the head in the Porolepiformes. Meddel Grønl 187:1307.Google Scholar
Jarvik, E. 1980a. Basic Structure and Evolution of Vertebrates, Volume 1. London: Academic Press.Google Scholar
Jarvik, E. 1980b. Basic Structure and Evolution of Vertebrates, Volume 2. London: Academic Press.Google Scholar
Johanson, Z. 1997. New Remigolepis (Placodermi; Antiarchi) from Canowindra, New South Wales, Australia. Geol Mag 134:813846.Google Scholar
Johanson, Z, Smith, MM. 2005. Origin and evolution of gnathostome dentitions: A question of teeth and pharyngeal denticles in placoderms. Biol Rev 80:303345.Google Scholar
Johanson, Z, Trinajstic, K, Klug, C. 2014. Fossilized ontogenies: The contribution of placoderm ontogeny to our understanding of the evolution of early gnathostomes. Palaeontology 57:505516.Google Scholar
Kardong, KV. 2015. Vertebrates: Comparative Anatomy, Function, Evolution, 7th edition. New York: McGraw–Hill Education. 816 p.Google Scholar
Khonsari, RH, Seppala, M, Pradel, A, Dutel, H, Clément, G, Lebedev, O, Ghafoor, S, Rothova, M, Tucker, A, Maisey, J, Fan, C-M, Kawasaki, M, Ohazama, A, Tafforeau, P, Franco, B, Helms, J, Haycraft, CJ, David, A, Janvier, P, Cobourne, MT, Sharpe, PT. 2013. The buccohypophyseal canal is an ancestral vertebrate trait maintained by modulation in sonic hedgehog signaling. BMC Biol 11:115.Google Scholar
King, B, Qiao, T, Lee, MSY, Zhu, M, Long, JA. 2016. Bayesian morphological clock methods resurrect placoderm monophyly and reveal rapid early evolution in jawed vertebrates. Syst Biol 66:599516.Google Scholar
Kuratani, S. 2012. Evolution of the vertebrate jaw from developmental perspectives. Evol Dev 14:7692.Google Scholar
Lelièvre, H, Janvier, P, Janjou, D, Halawani, M. 1995. Nefudina qalibahensis nov. gen., nov. sp. un rhenanide (Vertebrata, Placodermi) du Dévonien inférieur de la Formation Jauf (Emsien) d’Arabie Saoudite. Geobios MS 18:109115.Google Scholar
Long, JA. 1988. Campbellodus sp. (Placodermi: Ptyctodontida) from the Upper Devonian Napier Range, Canning Basin. Rec West Austral Mus 14:141144.Google Scholar
Long, JA, Mark-Kurik, E, Johanson, Z, Lee, MS, Young, GC, Zhu, M, Ahlberg, PE, Newman, M, Jones, R, Blaauwen, JD, Choo, B, Trinajstic, K. 2015. Copulation in antiarch placoderms and the origin of gnathostome internal fertilization. Nature 517:196199.Google Scholar
Lu, J, Zhu, M. 2010. An onychodont fish (Osteichthyes, Sarcopterygii) from the Early Devonian of China, and the evolution of the Onychodontiformes. Proc R Soc B Biol Sci 277:293299.Google Scholar
Lu, J, Zhu, M, Ahlberg, PE, Qiao, T, Zhu, Y-A, Zhao, W-J, Jia, L-T. 2016. A Devonian predatory fish provides insights into the early evolution of modern sarcopterygians. Sci Adv 2:e1600154.Google Scholar
Mark-Kurik, E. 1985. Actinolepis spinosa n. sp. (Arthrodira) from the Early Devonian of Latvia. J Vert Paleo 5:287292.Google Scholar
Miles, RS. 1967. Observations on the ptyctodont fish, Rhamphodopsis Watson. Zool J Linn Soc 47:99120.Google Scholar
Miles, RS. 1973a. Articulated acanthodian fishes from the Old Red Sandstone of England, with a review of the structure and evolution of the acanthodian shoulder-girdle. Bull Brit Mus (Nat Hist), Geol 24:111213.Google Scholar
Miles, RS. 1973b. Relationships of acanthodians. In: Greenwood, PH, Miles, RS, Patterson, C, editors. Interrelationships of Fishes. London: Academic Press. pp. 63103.Google Scholar
Miles, RS. 1977. Dipnoan (lungfish) skulls and the relationships of the group: A study based on new species from the Devonian of Australia. Zool J Linn Soc 61 1328.Google Scholar
Miyashita, T. 2016. Fishing for jaws in early vertebrate evolution: A new hypothesis of mandibular confinement. Biol Rev 91:611657.Google Scholar
Nelson, GJ. 1970. Pharyngeal denticles (placoid scales) of sharks, with notes on the dermal skeleton of vertebrates. Am Mus Novit 2415:126.Google Scholar
Ørvig, T. 1973. Acanthodian dentition and its bearing on the relationships of the group. Palaeontog Abt A 143:119150.Google Scholar
Ørvig, T. 1980a. Histologic studies of ostracoderms, placoderms and fossil elasmobranchs 3. Structure and growth of gnathalia of certain arthrodires. Zool Scripta 9:141159.Google Scholar
Ørvig, T. 1980b. Histologic studies of ostracoderms, placoderms and fossil elasmobranchs 4. Ptyctodontid tooth plates and their bearing on holocephalan ancestry: The condition of Ctenurella and Ptyctodus. Zool Scripta 9:219239.Google Scholar
Patterson, C. 1982. Morphology and interrelationships of primitive actinopterygian fishes. Am Zool 22:241259.Google Scholar
Patterson, C. 1992. Interpretation of the toothplates of chimaeroid fishes. Zool J Linn Soc 106:3361.Google Scholar
Pradel, A, Maisey, JG, Tafforeau, P, Janvier, P. 2009. An enigmatic gnathostome vertebrate skull from the Middle Devonian of Bolivia. Acta Zool 90:123133.Google Scholar
Purnell, M. 2002. Feeding in extinct jawless heterostracan fishes and testing scenarios of early vertebrate evolution. Proc R Soc Lond B Biol Sci 269:8388.Google Scholar
Qiao, T, King, B, Long, JA, Ahlberg, PE, Zhu, M. 2016. Early gnathostome phylogeny revisited: Multiple method consensus. PLoS ONE 11:e0163157.Google Scholar
Qiao, T, Zhu, M. 2009. A new tooth-plated lungfish from the Middle Devonian of Yunnan, China, and its phylogenetic relationships. Acta Zool 90:236252.Google Scholar
Qiao, T, Zhu, M. 2010. Cranial morphology of the Silurian sarcopterygian Guiyu oneiros (Gnathostomata: Osteichthyes). Sci China Earth Sci 53:18361848.CrossRefGoogle Scholar
Ramsay, JB, Wilga, CD, Tapanila, L, Pruitt, J, Pradel, A, Schlader, R, Didier, DA. 2014. Eating with a saw for a jaw: Functional morphology of the jaws and tooth-whorl in Helicoprion davisii. J Morph 276:4764.CrossRefGoogle ScholarPubMed
Ritchie, A. 2004. A new genus and two new species of groenlandaspidid arthrodire (Pisces: Placodermi) from the Early–Middle Devonian Mulga Downs Group of western New South Wales, Australia. Fossils Strata 50:5681.Google Scholar
Ritchie, A. 2005. Cowralepis, a new genus of phyllolepid fish (Pisces, Placodermi) from the Late Middle Devonian of New South Wales, Australia. Proc Linn Soc 126:215259.Google Scholar
Ritchie, A, Gilbert-Tomlinson, J. 1977. First Ordovician vertebrates from the Southern Hemisphere. Alcheringa 1:351368.Google Scholar
Romer, AS, Parsons, TS. 1986. The Vertebrate Body, 6th edition. Philadelphia: W.B. Saunders.Google Scholar
Rücklin, M, Donoghue, PC. 2015. Romundina and the evolutionary origin of teeth. Biol Lett 11:20150326.Google Scholar
Rücklin, M, Donoghue, PCJ, Cunningham, JA, Marone, F, Stampanoni, M. 2014. Developmental paleobiology of the vertebrate skeleton. J Paleo 88:676683.Google Scholar
Rücklin, M, Donoghue, PCJ, Johanson, Z, Trinajstic, K, Marone, F, Stampanoni, M. 2012. Development of teeth and jaws in the earliest jawed vertebrates. Nature 491:748751.Google Scholar
Santagati, F, Rijli, FM. 2003. Cranial neural crest and the building of the vertebrate head. Nature Rev Neurosci 4:806.Google Scholar
Schaeffer, B. 1975. Comments on the origin and basic radiation of the gnathostome fishes with particular reference to the feeding mechanism. In: Lehman, JP, editor. Problèmes actuels de Paléontologie-Evolution des Vertébrés. Paris: Colloques Internationaux du Centre National de la Recherche Scientifique. pp. 101109.Google Scholar
Schaeffer, B, Rosen, DE. 1961. Major adaptive levels in the evolution of the actinopterygian feeding mechanism. Amer Zool 1:187204.Google Scholar
Schaeffer, B, Williams, M. 1977. Relationships of fossil and living elasmobranchs. Amer Zool 17:293302.Google Scholar
Shigetani, Y, Sugahara, F, Kawakami, Y, Murakami, Y, Hirano, S, Kuratani, S. 2002. Heterotopic shift of epithelial-mesenchymal interactions in vertebrate jaw evolution. Science 296:13161319.Google Scholar
Smith, MM, Chang, M-M. 1990. The dentition of Diabolepis speratus Chang and Yu, with further consideration of its relationships and the primitive dipnoan dentition. J Vert Paleo 10:420433.Google Scholar
Smith, MM, Clark, B, Goujet, D, Johanson, Z, Smith, A. 2017. Evolutionary origins of teeth in jawed vertebrates: Conflicting data from acanthothoracid dental plates (‘Placodermi’). Palaeontology 60:829836.Google Scholar
Smith, MM, Coates, MI. 2000. Evolutionary origins of teeth and jaws: developmental models and phylogenetic patterns. In: Teaford, M, Smith, M, Ferguson, M, editors. Development, Function and Evolution of Teeth. Cambridge: Cambridge University Press. pp. 133151.Google Scholar
Smith, MM, Johanson, Z. 2011. The dipnoan dentition: A unique adaptation with a longstanding evolutionary record. In: Jørgensen, JM, Joss, J, editors. The Biology of Lungfishes. Enfield: CRC Press. pp. 219241.Google Scholar
Smith, MM, Johanson, Z. 2015. Origin of the vertebrate dentition: Teeth transform jaws into a biting force. In: Dial, KP, Shubin, NH, Brainerd, EL, editors. Great Transformations in Vertebrate Evolution. Chicago: University of Chicago Press. pp. 129.Google Scholar
Square, T, Jandzik, D, Romasek, M, Cerny, R, Medeiros, DM. 2017. The origin and diversification of the developmental mechanisms that pattern the vertebrate head skeleton. Dev Biol 427:219229.Google Scholar
Stahl, BJ. 1999. Chondrichthyes III. Holocephali. Handbook of Paleoichthyology 4:1164.Google Scholar
Stensiö, EA. 1931. Upper Devonian vertebrates from East Greenland collected by the Danish Greenland expeditions in 1929 and 1930. Meddel Grønl 86:1212.Google Scholar
Stensiö, EA. 1948. On the Placodermi of the Upper Devonian of East Greenland. II. Antiarchi: subfamily Bothriolepinae. With an attempt at a revision of the previously described species of that family. Meddel Grønl 139:1622.Google Scholar
Stensiö, EA. 1963. Anatomical studies on the arthrodiran head. I. Preface, geological and geographical distribution, the organization of the head in the Dolichothoraci, Coccosteomorphi and Pachyosteomorphi. Taxonomic appendix. Kungl Svenska Vetenskaps Handl 9:1419.Google Scholar
Stensiö, EA. 1964. Les Cyclostomes fossiles ou Ostracodermes. In: Piveteau, J, editor. Traité de Paléontologie, Volume 4, Part 1. Paris: Masson. pp. 96382.Google Scholar
Stensiö, E. 1969. Elasmobranchiomorphi Placodermata Arthrodires. In: Piveteau, J, editor. Traité de Paléontologie. Paris: Masson. pp. 71692.Google Scholar
Tapanila, L, Pruitt, J, Pradel, A, Wilga, CD, Ramsay, JB, Schlader, R, Didier, DA. 2013. Jaws for a spiral-tooth whorl: CT images reveal novel adaptation and phylogeny in fossil Helicoprion. Biol Lett 9:14.Google Scholar
Van der Brugghen, W, Janvier, P. 1993. Denticles in thelodonts. Nature 364:107.Google Scholar
Vaškaninová, V, Ahlberg, PE. 2017. Unique diversity of acanthothoracid placoderms (basal jawed vertebrates) in the Early Devonian of the Prague Basin, Czech Republic: A new look at Radotina and Holopetalichthys. PLoS ONE 12:e0174794.Google Scholar
Watson, DMS. 1937. The acanthodian fishes. Phil Trans R Soc London, Ser B 228:49146.Google Scholar
Westneat, MW. 2006. Skull biomechanics and suction feeding in fishes. In: Shadwick, MW, Lauder, GV, editors. Fish Biomechanics. Boston: Elsevier. pp. 51102.Google Scholar
Westoll, TS. 1962. Ptyctodontid fishes and the ancestry of Holocephali. Nature 194:949952.Google Scholar
Williams, ME. 2001. Tooth retention in cladodont sharks: With a comparison between primitive grasping and swallowing, and modern cutting and gouging feeding mechanisms. J Vert Paleo 21:214226.Google Scholar
Young, GC. 1984. Reconstruction of the jaws and braincase in the Devonian placoderm fish Bothriolepis. Palaeontology 27:635661.Google Scholar
Young, GC. 1986. The relationships of placoderm fishes. Zool J Linn Soc 88:157.Google Scholar
Young, GC. 1990. New antiarchs (Devonian placoderm fishes) from Queensland, with comments on placoderm phylogeny and biogeography. Mem Queensland Mus 28:3550.Google Scholar
Young, GC. 2010. Placoderms (armored fish): Dominant vertebrates of the Devonian period. Ann Rev Earth Planet Sci 38:523550.Google Scholar
Young, GC, Lelièvre, H, Goujet, D. 2001. Primitive jaw structure in an articulated brachythoracid arthrodire (placoderm fish; Early Devonian) from southeastern Australia. J Vert Paleo 21:670678.Google Scholar
Young, GC, Zhang, G-R. 1996. New information on the morphology of yunnanolepid antiarchs (placoderm fishes) from the Early Devonian of South China. J Vert Paleo 16:623641.Google Scholar
Zhang, G-R. 1978. The antiarchs from the Early Devonian of Yunnan. Vert PalAsiatica 16:147186.Google Scholar
Zhang, M-M. 1980. Preliminary note on a Lower Devonian antiarch from Yunnan, China. Vert PalAsiatica 18:179190.Google Scholar
Zhu, M. 1996. The phylogeny of the Antiarcha (Placodermi, Pisces), with the description of Early Devonian antiarchs from Qujing, Yunnan, China. Bull Mus natl d’Hist nat 18:233347.Google Scholar
Zhu, M, Ahlberg, PE, Pan, Z-H, Zhu, Y-A, Qiao, T, Zhao, W-J, Jia, L-T, Lu, J. 2016. A Silurian maxillate placoderm illuminates jaw evolution. Science 354:334336.Google Scholar
Zhu, M, Yu, X-B, Ahlberg, PE, Choo, B, Lu, J, Qiao, T, Qu, Q-M, Zhao, W-J, Jia, L-T, Blom, H, Zhu, Y-A. 2013. A Silurian placoderm with osteichthyan-like marginal jaw bones. Nature 502:188193.Google Scholar
Zhu, M, Zhao, W-J, Jia, L-T, Lu, J, Qiao, T, Qu, Q-M. 2009. The oldest articulated osteichthyan reveals mosaic gnathostome characters. Nature 458:469474.Google Scholar
Zhu, Y-A, Zhu, M. 2013. A redescription of Kiangyousteus yohii (Arthrodira: Eubrachythoraci) from the Middle Devonian of China, with remarks on the systematics of the Eubrachythoraci. Zool J Linn Soc:798–819.Google Scholar
Zhu, Y-A, Zhu, M, Wang, J-Q. 2016. Redescription of Yinostius major (Arthrodira: Heterostiidae) from the Lower Devonian of China, and the interrelationships of Brachythoraci. Zool J Linn Soc 176:806834.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×