Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-x5gtn Total loading time: 0 Render date: 2024-05-01T14:46:30.270Z Has data issue: false hasContentIssue false

4 - Temperature, Salinity, Density and Current Measurements and Analysis

Published online by Cambridge University Press:  30 August 2017

R. J. Uncles
Affiliation:
Plymouth Marine Laboratory
S. B. Mitchell
Affiliation:
University of Portsmouth
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

ACT, 2007a. State of technology for in situ measurements of salinity using conductivity-temperature sensors, Workshop proceedings, Alliance for Coastal Technologies, ACT-07-05.Google Scholar
ACT, 2007b. Towed vehicles: Undulating platforms as tools for mapping coastal processes and water quality assessment, Workshop proceedings, Alliance for Coastal Technologies, ACT-07-01.Google Scholar
ACT, 2009. Performance verification statement for the JFE ALEC CTW and CTW-FS salinity sensor, Alliance for Coastal Technologies, ACT-VS06-09. UMCES Technical Report Series: Ref No. [UMCES] CBL 09–033.Google Scholar
Andersen, C., Smith, P. C., 1989. Oceanographic observations on the Scotian Shelf during CASP. Atmosphere-Ocean 27, 130156.CrossRefGoogle Scholar
Arnott, K., Valle-Levinson, A., Chant, R., Li, M., 2012. Temporal variability of dissipation from channel to channel slope in a coastal plain estuary. Physics of Estuaries and Coastal Seas Conference. New York, NY.Google Scholar
Baker, D. J., 1981. Ocean instruments and experiment design. In: Warren, B. A. and Wunsch, C. (eds.), Evolution of Physical Oceanography. Cambridge, MA: MIT Press, 396433.Google Scholar
Baker, D.J., 2007. Ocean instruments and experiment design. In: Warren, B. A. and Wunsch, C. (eds.), RES.12–000 Evolution of Physical Oceanography, Spring 2007. (MIT OpenCourseWare, Cambridge, MA: Massachusetts Institute of Technology). [online] Available at: http://ocw.mit.edu/resources/res-12-000-evolution-of-physical-oceanography-spring-2007/part-3/ (Accessed April 2016).Google Scholar
Balfour, C. A., Howarth, M. J., Jones, D. S., Doyle, T., 2013. The design and development of an Irish Sea passenger-ferry-based oceanographic measurement system. Journal of Atmospheric and Oceanic Technology 30, 12261239.CrossRefGoogle Scholar
Barrick, D. E., 1972. First order theory and analysis of MF/HF/VHF scatter from the sea. IEEE Transactions on Antennas and Propagation AP-20, 210.Google Scholar
Barrick, D. E., 1977. The ocean wave height nondirectional spectrum from inversion of the HF sea-echo Doppler spectrum. Remote Sensing of Environment 6, 201227.Google Scholar
Bell, P. S., 1999. Shallow water bathymetry derived from an analysis of X-band marine radar images of waves. Coastal Engineering 37, 513527.Google Scholar
Bell, P. S., Lawrence, J., Norris, J. V., 2012. Determining currents from marine radar data in an extreme current environment at a tidal energy test site. Geoscience and Remote Sensing Symposium (IGARSS), 2012 IEEE International, 7647–7650.Google Scholar
Binding, C. E., Bowers, D. G., 2003. Measuring the salinity of the Clyde Sea from remotely sensed ocean colour. Estuarine, Coastal and Shelf Science 57, 605611.CrossRefGoogle Scholar
Bolaños, R., Brown, J. M., Amoudry, L. O., Souza, A. J., 2013. Tidal, riverine and wind influences on the circulation of a macrotidal estuary. Journal of Physical Oceanography 43, 2950.Google Scholar
Bowden, K. F., Fairbairn, L. A., 1956. Measurements of turbulent fluctuations and Reynolds stresses in a tidal current. Proceedings of the Royal Society of London A237, 422438.Google Scholar
Brown, N. L., Hamon, B. V., 1961. An inductive salinometer. Deep-Sea Research 8, 6575.Google Scholar
Brown, N. L., 1974. A precision CTD microprofiler. In Ocean 74 Record, 1974 IEEE Conference on Engineering in the Ocean Environment, IEEE Publication 74 CHO 873–0 OEC, Institute of Electrical and Electronics Engineers, New York, 2, 270278. doi:10.1109/OCEANS.1974.1161443Google Scholar
Burchard, H., Hetland, R. D., 2010. Quantifying the contributions of tidal straining and gravitational circulation to residual circulation in periodically stratified tidal estuaries. Journal of Physical Oceanography 40, 12431262.Google Scholar
Buijsman, M. C., Ridderinkhof, H., 2008. Variability of secondary currents in a weakly stratified tidal inlet with low curvature. Continental Shelf Research 28, 17111723.Google Scholar
Candela, J., Beardsley, R. C., Limeburner, R., 1992. Separation of tidal and subtidal currents in ship-mounted acoustic Doppler current profiler observations. Journal of Geophysical Research 97, 769788.Google Scholar
Carrillo, L., Souza, A. J., Hill, A. E., Brown, J., Ferdinand, L., Candela, J., 2005. Detiding ADCP data in a highly variable shelf sea. Journal of Atmospheric and Oceanic Technology 22, 8497.CrossRefGoogle Scholar
Crombie, D. D., 1955. Doppler spectrum of sea echo at 13.56 Mc./s. Nature 175, 681682.CrossRefGoogle Scholar
Deacon, E. L., 1959. The measurements of turbulent transfer in the lower atmosphere. Advances in Geophysics 6, New York: Academic Press, 211228.Google Scholar
Grant, W. D., Williams, A. J., Glenn, S. M., 1984. Bottom stress estimates and their prediction on the northern continental shelf during CODE-1: The importance of wave current interaction. Journal of Physical Oceanography 14, 506527.Google Scholar
Hamon, B. V., 1955. A temperature-salinity-depth recorder. Journal du Conseil 21, 7273.Google Scholar
Hamon, B. V., 1956. A portable temperature-chlorinity bridge for estuarine investigations and seawater analysis. Journal of Scientific Instruments 33, 329333.Google Scholar
Hamon, B. V., Brown, N. L., 1958. A temperature-chlorinity-depth recorder for use at sea. Journal of Scientific Instruments 35, 452458.Google Scholar
Hansen, D. V., Rattray, M., 1965. Gravitational circulation in straits and estuaries. Journal of Marine Research 23, 104122.Google Scholar
Harlan, J. A., Georges, T. M., 1997. Observations of Hurricane Hortense with two over-the-horizon radars. Geophysical Research Letters 24, 32413244.Google Scholar
Hill, A. E., Durazo, R., Smeed, D., 1994. Observations of a cyclonic gyre in the Irish Sea. Continental Shelf Research 14, 479490.Google Scholar
Horiuchi, T., Wolk, F., Macoun, P., 2010. Long-term stability of a new conductivity-temperature sensor tested on the VENUS cabled observatory. Proc. OCEANS ‘10 Conference, Sydney, NSW, Australia: IEEE, 14.Google Scholar
Holden, G. J., Wyatt, L. R., 1992. Extraction of sea state in shallow water using HF radar. IEEE Proceedings Radar Signal Processing 139, 175181.CrossRefGoogle Scholar
Howarth, M. J., Souza, A. J., 2005. Reynolds stress observations in continental shelf seas. Deep Sea Research II 52, 10751086.CrossRefGoogle Scholar
Huntley, D. A., 1988. A modified inertial dissipation method for estimating seabed stresses at low Reynolds numbers, with application to wave/current boundary layer measurements. Journal of Physical Oceanography 18, 339346.Google Scholar
Jacobsen, A. W., 1948. An instrument for recording continuously the salinity, temperature, and depth of sea water. Transactions of the American Institute of Electrical Engineers 67, 714722.Google Scholar
Johannessen, O. M., 1986. Brief overview of the physical oceanography. In: The Nordic Seas (chapter 4), New York: Springer Verlag, 103127.Google Scholar
Johannessen, J. A., Svendsen, E., Sandven, S., Johanessen, O. M., Lygre, K., 1989. Three dimensional structure of mesoscale eddies in the Norwegian Coastal Current. Journal of Physical Oceanography 19, 319.Google Scholar
Johannessen, J. A., Shuchmann, R., Johannessen, O. M., Davidson, K. L., Lyzenga, D. R., 1991. Synthetic aperture radar imaging of upper ocean circulation features and wind fronts. Journal of Geophysical Research 96, 1041110422.Google Scholar
Johannessen, J. A., Røed, L. P., Johannessen, O. M., Evensen, G., Hackett, B., Petterson, L. H., Haugan, P. M., Sandven, S., Shuchman, R., 1993. Monitoring and modeling of the marine coastal environment. Photogrammetric Engineering and Remote Sensing 59, 351361.Google Scholar
Johannessen, J. A., Digranes, G., Espedal, H., Johannessen, O. M., Samuel, P., Browne, D., Vachon, P., 1994. SAR Ocean Feature Catalogue. Noordwijk, The Netherlands: Publications Division, ESTEC, ESA-SP-1174, ISBN 92-9092-133-1.Google Scholar
Johannessen, J. A., Shuchman, R. A., Digranes, G., Wackerman, C., Johannessen, O. M., Lyzenga, D., 1996. Coastal ocean fronts and eddies imaged with ERS-1 SAR. Journal of Geophysical Research 101, C3, 66516667.Google Scholar
Johannessen, O. M., Pettersson, L. H., Bjørgo, E., Espedal, H., Evensen, G., Hamre, T., Jenkins, A., Korsbakken, E., Samuel, P., Sandven, S., 1997. A review of the possible applications of earth observation data within EuroGOOS. In: Stel, J., Behrens, H. W. A., Borst, J. C., Droppert, L. J., van der Meulen, J. P. (eds.), Operational Oceanography – The Challenge for European Cooperation, Proceedings of the 1st International Conference on EuroGOOS. Amsterdam: Elsevier, 192205. ISBN 0–444-82892-3.Google Scholar
Joordens, J. C. A., Souza, A. J., Visser, A. W., 2001. The influence of tidal straining and wind on suspended matter and phytoplankton dynamics in the Rhine outflow region. Continental Shelf Research 21, 301325.Google Scholar
Kerr, Y. H., 1998. The SMOS (Soil Moisture and Ocean Salinity) Mission: MIRAS on RAMSES. A proposal to the call for Earth Explorer Opportunity Mission. Proposal, CESBIO, Toulouse (France).Google Scholar
Kidwell, K. B., comp. and ed., 1995, NOAA Polar Orbiter Data (TIROS-N, NOAA-6, NOAA-7, NOAA-8, NOAA-9, NOAA-10, NOAA-11, NOAA-12, and NOAA-14) Users Guide. Washington, DC: NOAA/NESDIS.Google Scholar
Lagerloef, G. S. E., Swift, C. T., LeVine, D. M., 1995. Sea surface salinity: the next remote sensing challenge. Oceanography 8, 4450.Google Scholar
Lerner, R. M., Hollinger, J. P., 1977. Analysis of 1.4GHz radiometric measurements from Skylab. Remote Sensing of Environment 6, 251269.Google Scholar
Lhermitte, R. M., 1968. Turbulent air motion as observed by Doppler radar. Proceedings 13th Conference Radar Meteorology, American. Meteorological Society, 498–503.Google Scholar
Lipa, B. J., Barrick, D. E., 1986. Extraction of sea state from HF radar sea echo: Mathematical theory and modelling. Radio Science 21, 81100.Google Scholar
Lohrmann, A., Hackett, B., Røed, L. P., 1990. High resolution measurements of turbulence, velocity and stress using pulse-to-pulse coherent sonar. Journal of Atmospheric and Oceanic Technology 7, 1937.Google Scholar
Lohrmann, A., Cabrera, R., Gelfenbaum, G., Haines, J., 1995. Direct measurements of Reynolds stress with an acoustic Doppler Velocimeter. Proceedings of the IEEE 5th Working Conference on Current Measurements, 205–210.Google Scholar
Lu, Y., Lueck, R. G., 1999. Using a broadband ADCP in a tidal channel. Part II: Turbulence. Journal of Atmospheric and Oceanic Technology 16, 15681579.2.0.CO;2>CrossRefGoogle Scholar
Lwiza, K. M. M., Bowers, D. G., Simpson, J. H., 1991. Residual and tidal flow at a tidal mixing front in the North Sea. Continental Shelf Research 11, 13791395.Google Scholar
Lyzenga, D. R., 1991. Synthetic aperture radar imaging of ocean circulation features and wind fronts. Journal of Geophysical Research 96, 1041110422.Google Scholar
Miller, J. L, Goodberlet, M. A., Zaitzeff, J. B., 1998. Airborne salinity mapper makes debut in coastal zone. Earth and Space Science News 79, 173177.Google Scholar
Moller, D., Frasier, S. J., Porter, D. L., McIntosh, R. E., 1998. Radar-derived interferometric surface currents and their relationship to subsurface current structure. Journal of Geophysical Research 103, C6, 1283912852.Google Scholar
Nikora, V., Goring, D., 1999. On the relationship between Kolmogorov’s and generalized structure functions in the inertial subrange of developed turbulence. Journal of Physics A: Mathematical and General 32, 49634969.Google Scholar
O’Donnell, J., Dam, H. G., Bohlen, W. F., Fitzgerald, W., Gay, P. S., Houk, A. E., Cohen, D. C., Howard-Strobel, M. M., 2008. Intermittent ventilation in the hypoxic zone of western Long Island Sound during the summer of 2004. Journal of Geophysical Research 113, C9, C09025. doi:10.1029/2007JC004716Google Scholar
Pettersson, L. H., 1990. Application of Remote Sensing to Fisheries, Vol. 1. Technical Report EUR 12867 EN, Commission of the European Communities. Joint Research Centre, Ispra, Italy.Google Scholar
Prandle, D., 1991. A new view of near-shore dynamics based on H.F. radar. Progress in Oceanography 27, 403438.CrossRefGoogle Scholar
RDI, 1996. Acoustic Doppler Current Profiler Principles of Operation – A Practical Primer, San Diego: RDI.Google Scholar
Rippeth, T. P., Williams, E., Simpson, J. H., 2002. Reynolds stress and turbulent energy production in a tidal channel. Journal of Physical Oceanography 32, 12421251.Google Scholar
Reul, N., Saux-Picart, S., Chapron, B., Vandemark, D., Tournadre, J., Salisbury, J., 2009. Demonstration of ocean surface salinity microwave measurements from space using AMSR-E data over the Amazon plume. Geophysical Research Letters 36, L13607. doi:10.1029/2009GL038860.Google Scholar
Sea-Bird Scientific, 2017. 13431 NE 20th Street, Bellevue, Washington 98005, USA (www.seabird.com).Google Scholar
Schmidt, R. W., 2008. Salinity in Argo. Oceanography 21, 5667.Google Scholar
Shay, L. K., Graber, H. C., Ross, D. B., Chemi, L., Peters, N., Hargrove, J., Vakkayil, R., Chamberlain, L., 1993. Measurement of ocean surface currents using an H.F. Radar during HIRES-2. Technical Report 93–007, Rosentiel School of Marine and Atmospheric Sciences, University of Miami.Google Scholar
Shemer, L., Marom, M., Markman, D., 1993. Estimates of currents in the nearshore ocean region using interferometric synthetic aperture radar. Journal of Geophysical Research 98, C4, 70017010.Google Scholar
Simpson, J. H., Bos, W. G., Schirmer, F., Souza, A. J., Rippeth, T. P., Jones, S. E., Hydes, D., 1993. Periodic stratification in the Rhine ROFI Freshwater influence Tidal mixing Periodic stratification Coastal region in the North Sea. Oceanologica Acta 16, 2332.Google Scholar
Souza, A. J., Simpson, J. H., Schirmer, F., 1997. Circulation in the Rhine ROFI. Journal of Marine Research 55, 277292.Google Scholar
Souza, A.J., Alvarez, L.G., Dickey, T., 2004. Tidally induced turbulence and suspended sediment. Geophysical Research Letters 31, L20309. doi:10.1029/2004GL021186Google Scholar
Souza, A. J., Howarth, M. J., 2005. Estimates of Reynolds stress in a highly energetic shelf sea. Ocean Dynamics 55, 490498. doi:10.1007/s10236-005-0012-7Google Scholar
Souza, A. J., Bolaños, R., Wolf, J., Prandle, D., 2011. Measurement technologies: Measure what, where, why, and how? Reference Module in Earth Systems and Environmental Sciences: Treatise on Estuarine and Coastal Science 2, 361394. doi:10.1016/B978-0–12-374711-2.00215–1.Google Scholar
Stacey, M. T., Monismith, S. G., Burau, J. R., 1999. Measurement of Reynolds stress profiles in unstratified tidal flow. Journal of Geophysical Research 104, C5, 1093310949.Google Scholar
Stanev, E. V., 1994. Assimilation of sea surface temperature data in a numerical ocean circulation model. A study of the water mass formation. In: eds. Brasseur, P. P., Nihoul, J. C. J. Data Assimilation: Tools for Modelling the Ocean in a Global Change Perspective, Vol. I19, Berlin: Springer, NATO ASI, 3358.Google Scholar
Sverdrup, H. U., Johnson, M. W., Fleming, R. H., 1942. The Oceans: Their Physics, Chemistry, and General Biology. Englewood Cliffs, NJ: Prentice Hall.Google Scholar
Teledyne RD Instruments, 2016. Teledyne RD Instruments, San Diego Facility, 14020 Stowe Drive, Poway, CA, USA. http://rdinstruments.com [accessed August 2016].Google Scholar
Tennekes, H., Lumley, J. L., 1972. A First Course in Turbulence. Cambridge, MA: MIT Press.Google Scholar
Weber, B. L., Barrick, D. E., 1977. On the non-linear theory for gravity waves on the ocean’s surface. Part I: Derivations. Journal of Physical Oceanography 7, 310.Google Scholar
Wiles, P. J, Rippeth, T. P., Simpson, J. H., Hendicks, P. J., 2006. A novel technique for measuring the rate of turbulence dissipation in the marine environment. Geophysical Research Letters 33, L21608, doi:10.1029/2006GL027050.Google Scholar
Wilson, T. C., Lwiza, K. M. M., Allen, G. L., 1997. Performance comparison of RDI ADCPS: broadband versus narrowband. In: Oceans ‘97 MTS/IEEE Conference Proceedings, Washington, DC: IEEE, Vol. 1, 120125.Google Scholar
Wolf, J., Bell, P. S., 2001. Waves at Holderness from X-band radar. Coastal Engineering 43, 247263.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×