Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-r6qrq Total loading time: 0 Render date: 2024-04-27T03:28:19.363Z Has data issue: false hasContentIssue false

9 - Sediment Transport: Instrumentation and Methodologies

Published online by Cambridge University Press:  30 August 2017

R. J. Uncles
Affiliation:
Plymouth Marine Laboratory
S. B. Mitchell
Affiliation:
University of Portsmouth
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Amos, C. L., Bergamasco, A., Umgiesser, G., Cappucci, S., Cloutier, D., Flindt, M., Denat, L., Cristante, S., 2004. The stability of tidal flats in Venice lagoon – the results of in situ measurements using two benthic flumes. Journal of Marine Systems 51, 211242.Google Scholar
Amos, C. L., Grant, J., Daborn, G. R., Black, K., 1992. Sea Carousel – A benthic annular flume. Estuarine, Coastal and Shelf Science 34, 557577.Google Scholar
Amos, C. L., Sutherland, T. F., Zevenhuizen, J., 1996. The stability of sublittoral, fine-grained sediments in a subarctic estuary. Sedimentology 43, 119.Google Scholar
Andersen, T. J., 2001. The role of fecal pellets in sediment settling at an intertidal mudflat, the Danish Wadden Sea. In: McAnally, W. H., Mehta, A. J. (eds.), Coastal and Estuarine Fine Sediment Processes. Amsterdam: Elsevier, 387401.Google Scholar
Angarita-Jaimes, D., Ormsby, M., Chennaoui, M., Angarita-Jaimes, N., Towers, C., Jones, A., Towers, D., 2008. Optically efficient fluorescent tracers for multi-constituent PIV. Experiments in Fluids 45, 623631.Google Scholar
Ashley, G. M., 1990. Classification of large-scale subaqueous bedforms: A new look at an old problem. Journal of Sedimentary Petrology 60, 160172.Google Scholar
Bale, A. J., Widdows, J., Harris, C. B., Stephens, J. A., 2006. Measurements of the critical erosion threshold of surface sediments along the Tamar Estuary using a mini-annular flume. Continental Shelf Research 26, 12061216. doi:10.1016/j.csr.2006.04.003.Google Scholar
Bassoullet, P., Le Hir, P., Gouleau, D., Robert, S., 2000. Sediment transport over an intertidal mudflat: Field investigations and estimation of fluxes within the ‘Baie de Marennes-Oléron (France). Continental Shelf Research 20, 16351653.CrossRefGoogle Scholar
Bertin, X., Deshouilieres, A., Allard, J., Chaumillon, E., 2007. A new fluorescent tracers experiment improves understanding of sediment dynamics along the Arcay Sandspit (France). Geo-Marine Letters 27, 6369.Google Scholar
Black, K. S., 1989. The In Situ Measurement of Sediment Erodibility: A review. Unpubl. report submitted to ETSU, Department of Energy, Harwell, UK.Google Scholar
Black, K. S., 2012. Using Sediment Tracers to Map Sediment Transport Pathways. A Primer Document. Glasgow, UK: Partrac Ltd.Google Scholar
Black, K. S., Athey, S., Wilson, P., Evans, D., 2007. The use of particle tracking in sediment transport studies: A review. Geological Society of London Special pubs. 274, 7391.Google Scholar
Black, K. S., Black, K. D., 2014 Survey Report: Benthic Flume and Flow Velocity Measurements. Internal report to the Scottish Government DEPOMOD project initiative.Google Scholar
Black, K. S., Paterson, D. M., and Cramp, A. C., 1998 Sedimentary processes in the intertidal zone. Geological Society Special Publications No 139.Google Scholar
Black, K., Tolhurst, T., Paterson, D., Hagerthey, S., 2002. Working with natural cohesive sediments. Journal of Hydraulic Engineering 128, 17.Google Scholar
Brand, A., Lacy, J. R., Hsu, K., Hoover, D., Gladding, S., Stacey, M. T., 2010. Wind-enhanced resuspension in the shallow waters of South San Francisco Bay: Mechanisms and potential implications for cohesive sediment transport. Journal of Geophysical Research 115, C11024. doi:10.1029/2010JC006172.Google Scholar
Brown, E., Colling, A., Park, D., Phillips, J., Rothery, D., Wright, J., 1999. Waves, tides and shallow-water processes. The Open University (second edition). Oxford: Butterworth-Heinemann.Google Scholar
Burt, T. N., Game, A. C., 1985. The Carousel: Commissioning of a circular flume for sediment transport research. Hydraulics Research Limited, UK, Report SR 33.Google Scholar
Carrasco, A. R., Ferreira, O., Dias, J. A., 2013. Sediment transport measurements with tracers in very low-energy beaches. Earth Surface Processes and Landforms 38, 561569.Google Scholar
Cheong, H. N., Shankar, O. R., Radhakrishnan, R., Toh, A., 1993. Estimation of sand transport by use of tracers along a reclaimed shoreline at Singapore Changi Airport. Coastal Engineering 19, 311325.Google Scholar
Ciavola, P., Dias, N., Taborda, R., Ferreira, Ó. D., 1998. Fluorescent sands for measurements of longshore transport rates: A case study from Praia de Faro in southern Portugal. Geo-Marine Letters 18, 4957.Google Scholar
Ciavola, P., Taborda, R., Ferreira, O., Dias, J. A., 1997. Field measurements of longshore sand transport and control processes on a steep meso-tidal beach in Portugal. Journal of Coastal Research 13, 11191129.Google Scholar
Collins, M. B., Shimwell, S. J., Gao, S., Powell, H., Hewitson, C., Taylor, J. A., 1995. Water and sediment movement in the vicinity of linear sandbanks: The Norfolk Banks, southern North Sea. Marine Geology 123, 125142.Google Scholar
Courtois, G., Monaco, A., 1968. Radioactive methods for the quantitative determination of coastal drift rate. Marine Geology 7, 187211.Google Scholar
Crickmore, M. J., 1967. Measurement of sand transport in rivers with special reference to tracer methods. Sedimentology 8, 175228.Google Scholar
Crickmore, M. J., Lean, G. H., 1962. The measurement of sand transport by the time-integration method with radioactive tracers. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 270, 2747.Google Scholar
Cromey, C. J., Nickel, T. D., Black, K. D., Provost, P. G., Griffiths, C. R., 2002. Validation of a fish farm waste resuspension model by use of a particulate tracer discharged from a point source in a coastal environment. Estuaries 25, 916929.Google Scholar
Cronin, K., Devoy, R. J. D., Montserrat, F., 2011. Validation of modelled intertidal flat bed sediment transport using a simple tracer method. Journal of Coastal Research 64, 741745.Google Scholar
Davidson, J. 1958. Investigations of sand movement using radioactive sand. Lund University, Studies in Physical Geography A12, 69126.Google Scholar
Deloffre, J., Verney, R., Lafite, R., Lesueur, P., Lesourd, S., Cundy, A. B., 2007. Sedimentation on intertidal mudflats in the lower part of macrotidal estuaries: sedimentation rhythms and their preservation. Marine Geology 241, 1932.Google Scholar
Downing, A., Thorne, P. D., Vincent, C. E., 1995. Backscattering from a suspension in the near-field of a piston transducer. Journal of the Acoustical Society of America 97, 16141620.Google Scholar
Drapeau, G., Long, B., Kamphuis, W., 1991. Evaluation of radioactive sand tracers to measure longshore sediment transport rates. In: Proceeding of the 22nd International Conference on Coastal Engineering ASCE, 1991, New York, 27102723.Google Scholar
Droppo, I. G., 2001. Rethinking what constitutes suspended sediment. Hydrological Processes 15, 15511564.Google Scholar
Dyer, K.R., 1986. Coastal and Estuarine Sediment Dynamics. Chichester: John Wiley and Sons.Google Scholar
EchoLogger, 2016. 303, EchoLogger, Venture Center, Korea Aerospace University, Hwajeon-Dong, Deokyang-Gu, Goyang-Si, Kyounggi-Do, 412–791, Korea. www.echologger.com [accessed July 2016].Google Scholar
Emmett, W. W., 1980. A field calibration of the sediment-trapping characteristics of the Helley-Smith bedload sampler. US Geological Survey Professional Paper 1139. Washington, DC: US Government Printing Office. http://pubs.usgs.gov/pp/1139/report.pdf [accessed June 2016].Google Scholar
Engel, P., Lau, Y. L., 1980. Computation of bed load using bathymetric data. Journal of the Hydraulics Division, ASCE, HY 106, 369380.CrossRefGoogle Scholar
Engel, P., Lau, Y. L., 1981. Bed load discharge coefficient. Journal of the Hydraulics Division, ASCE, HY 107, 14451454.CrossRefGoogle Scholar
Esri, 2016. Esri, New York City, NY, 275 Seventh Avenue, 7th Floor, New York, NY 10001–6708, USA. www.esri.com [accessed July 2016].Google Scholar
Ferguson, R. I., Bloomer, D. J., Hoey, T. B., Werritty, A., 2002. Mobility of river tracer pebbles over different timescales. Water Resources Research 38, doi:10.1029/2001WR000254.Google Scholar
Foster, I. D. L., 2000. Tracers in Geomorphology. Chichester: John Wiley & Sons Ltd.Google Scholar
Franz, 2016. S.G. Frantz Company Inc., P.O. Box 1138, Trenton, New Jersey 08606, USA. www.sgfrantz.com/contact.htm [accessed July 2016].Google Scholar
Gartner, J. W., 2004. Estimating suspended solids concentrations from backscatter intensity measured by acoustic Doppler current profiler in San Francisco Bay, California. Marine Geology 211, 169187.Google Scholar
Golden Software, 2016. Golden Software LLC, 809 14th Street, Golden, CO 80401–1866, USA. www.goldensoftware.com [accessed July 2016].Google Scholar
Goud, M. R., Aubrey, D. G., 1985. Theoretical and observational estimates of nearshore bedload transport rates. Marine Geology 64, 91111.CrossRefGoogle Scholar
Guzman, G., Quinton, J. N., Nearing, M. A., Mabit, L., Gomez, J. A., 2013. Sediment tracers in water erosion studies: Current approaches and challenges. Journal of Soils and Sediments 13, 816833.Google Scholar
Harvey, R. W., George, L. H., Smith, R. L., Le Blanc, D. R., 1989. Transport of microspheres and indigenous bacteria through a sandy aquifer: Results of natural and forced-gradient tracer experiments. Environmental Science and Technology 23, 5156.Google Scholar
Hemminga, M. A., Cattrijsse, A., Wielemaker, A., 1996. Bedload and nearbed detritus transport in a tidal saltmarsh creek. Estuarine, Coastal and Shelf Science 42, 5562.Google Scholar
Hoitink, A. J. F., Hoekstra, P., 2005. Observations of suspended sediment from ADCP and OBS measurements in a mud-dominated environment. Coastal Engineering 52, 103118.Google Scholar
Ingle, J. C., 1966. The movement of beach sand – an analysis using fluorescent grains. In: Developments in Sedimentology, Vol. 5. Amsterdam: Elsevier, viiviii.Google Scholar
Inman, D. L., Chamberlain, T. K., 1959. Tracing beach sand movement with irradiated quartz, Journal of Geophysical Research 64, 4147. doi:10.1029/JZ064i001p00041.Google Scholar
Inman, D. L., Zampol, J. A., White, T. E., Hanes, D. M., Waldorf, B. W., Kastens, K. A., 1980. Field measurements of sand motion in the surf zone. Proc. 17th International Conf. on Coastal Eng., ASCE, Sydney. Vol. 2, New York: American Society of Civil Engineers, 12151234.Google Scholar
Joliffe, I. P., 1963. A study of sand movement on the Lowestoft sandbank using fluorescent tracers. Geographical Journal 129, 480493.Google Scholar
Kimoto, A., Nearing, M. A., Shipitalo, M. J., Polyakov, V. O., 2006. Multi-year tracking of sediment sources in a small agricultural watershed using rare earth elements. Earth Surface Processes and Landforms 31, 17631774.Google Scholar
King, C., 1951. Depth of disturbance of sand on sea beaches by waves. Journal of Sedimentary Petrology 21, 121140.Google Scholar
Kjerfve, B., 1979. Measurement and analysis of water current, temperature, salinity, and density. In: Dyer, K. R. (ed.), Estuarine Hydrography and Sedimentation. Cambridge, UK: Cambridge University Press, 186226.Google Scholar
Komar, P. D., 1969. The Longshore Transport of Sand on Beaches. Unpublished PhD thesis, University of California, San Diego, 142 pp.Google Scholar
Krezoski, J. R., 1989. Sediment reworking and transport in eastern Lake Superior: In situ rare earth element tracer studies. Great Lakes Research 15, 2633.Google Scholar
Laubel, A., Kronvang, B., Fjorback, C., Larsen, S. E., 2003. Time-integrated sediment sampling from a small lowland stream. In: Proceedings of the International Association of Theoretical and Applied Limnology 28, 14201424.Google Scholar
Lawler, D. M., West, J. R., Couperthwaite, J. S., Mitchell, S. B., 2001. Application of a novel automatic erosion and deposition monitoring system at a channel bank site on the tidal River Trent, U.K. Estuarine, Coastal and Shelf Science 53, 237247.Google Scholar
Leica, 2016. Leica Geosystems Ltd, Hexagon House, Michigan Drive, Tongwell, Milton Keynes MK15 8HT, UK. www.leica-geosystems.co.uk/en/Total-Stations-TPS_4207.htm [accessed June 2016].Google Scholar
Liu, P. L., Tian, J. L., Zhou, P. H., Yang, M. Y., Shi, H., 2004. Stable rare earth element tracers to evaluate soil erosion. Soil and Tillage Research 76, 147155.Google Scholar
Louisse, C. J., Akkerman, R. J., Suylen, J. M., 1986. A fluorescent tracer for cohesive sediment. In: International Conference on Measuring Techniques of Hydraulics Phenomena in Offshore, Coastal and Inland Waters, London, 9–11 April 1986, 367391.Google Scholar
Maa, J.P.-Y., Lee, C.-H., 1997. Variation of the resuspension coefficients in the lower Chesapeake Bay. Journal of Coastal Research 25, 6374.Google Scholar
Madsen, O. S., 1987. Use of tracers in sediment transport studies. Coastal Sediments 87, 424435.Google Scholar
Magal, E., Weisbrod, N., Yakirevich, A., Yechieli, Y., 2008. The use of fluorescent dyes as tracers in highly saline groundwater. Journal of Hydrology 358, 124133.Google Scholar
Mariotti, G., Fagherazzi, S., 2011. Asymmetric fluxes of water and sediments in a mesotidal mudflat channel. Continental Shelf Research 31, 2336. doi:10.1016/j.csr.2010.10.014.CrossRefGoogle Scholar
Marsh, J. K., Bale, A. J., Uncles, R. J., Dyer, K. R., 1991. A novel technique for the study of suspended particle behaviour in aquatic environments. In: Proc. Int. Conf. on Transport of Suspended Sediments and Its Mathematical Modelling, Florence, Italy: Publ. Int. Assoc. for Hydraulic Research, 665681.Google Scholar
Marsh, J. K., Bale, A. J., Uncles, R. J., Dyer, K. R., 1993. A particle tracing experiment in a small, shallow lake: Loe Pool, UK. In: McManus, J., Duck, R. W. (eds.), Geomorphology and Sedimentology of Lakes and Reservoirs. Chichester: John Wiley and Sons Ltd., 139153.Google Scholar
Masselink, G., Cointre, L., Williams, J. J., Blake, W., Gehrels, R. W., 2009. Tide-induced dune migration and sediment transport on an intertidal shoal in a shallow estuary in Devon, UK. Marine Geology 262, 8295.Google Scholar
Mathworks, 2016. The Mathworks. 1 Apple Hill Drive, Natick, MA 01760–2098, USA. www.mathworks.com [accessed July 2016].Google Scholar
McLaren, P., Hill, S. H., Bowles, D., 2007. Deriving transport pathways in a sediment trend analysis (STA). Sedimentary Geology 202, 482498.Google Scholar
Mehta, A. J., Parchure, T. M., 2002. Surface erosion of fine-grained sediment revisited. In: Winterwerp, J. C., Kranenburg, C. (eds.), Fine Sediment Dynamics in the Marine Environment. Proceedings in Marine Science 5, 5574.Google Scholar
Mehta, A. J., Partheniades, E., 1982. Resuspension of deposited cohesive sediment beds. In: Flemming, B. W., Delafontaine, M. T., Liebezeit, G. (eds.), Muddy Coast Dynamics and Resource Management, 18th Conference on Coastal Engineering, ASCE, 15691588.Google Scholar
Minor Salvatierra, M., Aliotta, S., Ginsberg, S. S., 2015. Morphology and dynamics of large subtidal dunes in Bahia Blanca Estuary, Argentina. Geomorphology 246, 168177. http://dx.doi.org/10.1016/j.geomorph.2015.05.037.Google Scholar
Nauw, J. J., Merckelbach, L. M., Ridderinkhof, H., van Aken, H. M., 2014. Long-term ferry-based observations of the suspended sediment fluxes through the Marsdiep inlet using acoustic Doppler current profilers. Journal of Sea Research 87, 1729. doi:10.1016/j.seares.2013.11.013.Google Scholar
NKE, 2016. 6 rue Gutenberg, ZI Kerandre, 56 700 Hennebont, France, www.nke-instrumentation.com [accessed July 2016].Google Scholar
Nowell, A. R. M., Jumars, P. A., Eckman, J. E., 1981. Effects of biological activity on the entrainment of marine sediments. Marine Geology 42, 133153.Google Scholar
Pedocchi, F., Martin, J., Garcia, M. H., 2008. Inexpensive fluorescent particles for large-scale experiments using particle image velocimetry. Experiments in Fluids 45, 183186.Google Scholar
Peirce, Y. J., Jarman, R. T., de Turville, C. M., 1970. An experimental study of silt scouring. Proceedings of the Institution of Civil Engineers 45, 231243. http://dx.doi.org/10.1680/iicep.1970.7155.Google Scholar
Perillo, G. M. E., Piccolo, M. C., 1998. Importance of grid-cell area in the estimation of estuarine residual fluxes. Estuaries 21, 1428. doi:10.2307/1352544.Google Scholar
Polyakov, V. O., Nearing, M. A., 2004. Rare earth element oxides for tracing sediment movement. Catena 55, 255276.Google Scholar
Pope, N. D., Widdows, J., Brinsley, M. D., 2006. Estimation of bed shear stress using the turbulent kinetic energy approach – A comparison of annular flume and field data. Continental Shelf Research 26, 959970. doi:10.1016/j.csr.2006.02.010.Google Scholar
Richardson, N. M., 1902. An experiment on the movements of a load of brickbats deposited on Chesil Beach. Proceedings of the Dorset Natural History Field Club 23, 123133.Google Scholar
Sarma, T. P., Iya, K. K., 1960. Preparation of artificial silt for tracer studies near Bombay Harbour. Journal Scientific Ind. Research India 19, 99101.Google Scholar
Schettini, C. A. F., Pereira, M. D., Siegle, E., Bruner de Miranda, L., Silva, M. P., 2013. Residual fluxes of suspended sediment in a tidally dominated tropical estuary. Continental Shelf Research 70, 2735. doi:10.1016/j.csr.2013.03.00.Google Scholar
Scoffin, T. P., 1968. An underwater flume. Journal of Sedimentary Petrology 38, 244246.Google Scholar
Sigurbjornsson, B., 1994. Use of Nuclear techniques in Food, Agriculture and Pest Control. Lecture 8 of the National Seminar on Nuclear Energy in Everyday Life, 28–29 June 1994, Cairo, Egypt. www.iaea.org/inis/collection/NCLCollectionStore/_Public/26/066/26066429.pdf?r=1 [accessed July 2016].Google Scholar
Silva, A., Taborda, R., Rodrigues, A., Duarte, J., Cascalho, J., 2007. Longshore drift estimation using fluorescent tracers: New insights from an experiment at Comporta Beach, Portugal. Marine Geology 240, 137150.Google Scholar
Smith, S. J., Marsh, J., Puckette, T., 2007. Analysis of fluorescent sediment tracer for evaluating nearshore placement of dredged material. In: Proceedings of the XVIII World Dredging Congress (von Newman Printing, Bryan), 2, 1345–1358.Google Scholar
Solan, M., Wigham, B. D., Hudson, I. R., Coulon, C. H., Norling, K., Nilsson, H. C., Rosenberg, R., 2004. In situ quantification of bioturbation using time-lapse fluorescent sediment profile imaging (f-SPI), luminophore tracers and model simulation. Marine Ecology Progress Series 271, 112.Google Scholar
Spencer, K. L., Suzuki, K., Hillier, S., 2011. The development of rare earth element-labelled potassium-depleted clays for use as cohesive sediment tracers in aquatic environments. Journal of Soils and Sediments 11, 10521061.Google Scholar
Tanaka, S., Yamamoto, K., Ito, H., Arisawa, T., Tagaki, T., 1998. Field investigation on sediment transport into the submarine canyon in the Fuji coast with new type tracers. Coastal Engineering 20, 31513164.Google Scholar
Tauro, F., Aureli, M., Porfiri, M., Grimaldi, S., 2010. Characterization of buoyant fluorescent particles for field observations of water flows. Sensors 10, 1151211529. doi:10.3390/s101211512.Google Scholar
Thompson, C., Couceiro, F., Fones, G. R., Helsby, R., Amos, C. L., Black, K., Parker, E. R., Greenwood, N., Statham, P. J., Kelly-Gerreyn, B., 2011. In situ flume measurements of resuspension in the North Sea. Estuarine, Coastal and Shelf Science 94, 7788.Google Scholar
Thompson, R. C., Olsen, Y., Mitchell, R. P., Davis, A., Rowland, S. J., John, A. W. G., McGonigle, D., Russel, A. E., 2004. Lost at sea: where is all the plastic? Science 304, 838. doi:10.1126/science.1094559.Google Scholar
Tudhorpe, A. W., Scoffin, T. P., 1987. A device to deposit tracer sediment evenly on the deep sea bed. Journal of Sedimentary Petrology 57, 761762.Google Scholar
Uncles, R. J., Elliott, R. C. A., Weston, S. A., 1985a. Dispersion of salt and suspended sediment in a partly mixed estuary. Estuaries 8, 256269. doi:10.2307/1351486.CrossRefGoogle Scholar
Uncles, R. J., Elliott, R. C. A., Weston, S. A., 1985b. Observed fluxes of water, salt and suspended sediment in a partly mixed estuary. Estuarine, Coastal and Shelf Science 20, 147167. doi:10.1016/0272-7714(85)90035-6.Google Scholar
Uncles, R. J., Stephens, J. A., Harris, C., 2013. Towards predicting the influence of freshwater abstractions on the hydrodynamics and sediment transport of a small, strongly tidal estuary: The Devonshire Avon. Ocean & Coastal Management 79, 8396.Google Scholar
Van den Eynde, D., 2004. Interpretation of tracer experiments with fine-grained dredging material at the Belgian Continental Shelf by the use of numerical models. Journal of Marine Systems 48, 171189.Google Scholar
Van Rijn, L. C., 1993. Principles of Sediment Transport in Rivers, Estuaries and Coastal Seas. Amsterdam: Aqua Publishers.Google Scholar
Ventura, E., Nearing, M. A., Amore, E., Norton, L. D., 2002. The study of detachment and deposition on a hillslope using a magnetic tracer. Catena 48, 149161.Google Scholar
Vernon, J., 1963. Fluorescent Sand Tracer Tests, Zuniga Shoal, San Diego, California. Los Angeles: University of Southern California.Google Scholar
Vila-Concejo, A., Ferreira, O., Ciavola, P., Matias, A., Dias, J., 2004. Tracer studies on the updrift margin of a complex inlet system. Marine Geology 208, 4372.Google Scholar
Wang, J. F., Stein, A., Gao, B. B., Ge, Y., 2012. A review of spatial sampling. Spatial Statistics 2, 114.Google Scholar
Webster, R., 1999. Sampling, estimating and understanding soil pollution. In: Gomez-Hernández, J., Soares, A., Froidevaux, R. (eds.), Geostatistics for Environmental Applications. Quantitative Geology and Geostatistics. Dordrecht: Kluwer Academic Publishers, 155166.Google Scholar
White, T. E., 1987. Nearshore Sand Transport. Unpublished PhD Thesis. University of California, San Diego.Google Scholar
White, T. E., 1998. Status of measurement techniques for coastal sediment transport. Coastal Engineering 35, 1745.Google Scholar
White, T. E., Inman, D. L., 1989. Measuring longshore transport with tracers. In: Seymour, R. J. (ed.), Nearshore Sediment Transport. New York: Plenum Publishers, 287312.Google Scholar
Widdows, J., Brinsley, M. D., Bowley, N., Barrett, C., 1998. A benthic annular flume for in situ measurement of suspension feeding/biodeposition rates and erosion potential of intertidal cohesive sediments. Estuarine, Coastal and Shelf Science 46, 2738. doi:10.1006/ecss.1997.0259.Google Scholar
Wu, J., Wang, Y., Cheng, H., 2009. Bedforms and bed material transport pathways in the Changjiang (Yangtze) Estuary. Geomorphology 104, 175184. doi:10.1016/j.geomorph.2008.08.011.Google Scholar
Young, R. A., 1977. Seaflume: A device for in situ studies of threshold erosion velocity and erosional behaviour of undisturbed marine muds. Marine Geology 23, M11M18.Google Scholar
Zhang, X. C., Nearing, M. A., Polyakov, V. O., Friedrich, J. M. 2003. Using rare earth oxide tracers for studying soil erosion dynamics. Soil Science Society of America Journal 67, 279288.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×