Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-x4r87 Total loading time: 0 Render date: 2024-04-26T07:01:35.101Z Has data issue: false hasContentIssue false

11 - Satellite and Aircraft Remote Sensing

Published online by Cambridge University Press:  30 August 2017

R. J. Uncles
Affiliation:
Plymouth Marine Laboratory
S. B. Mitchell
Affiliation:
University of Portsmouth
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abdalati, W., Zwally, H. J., Bindschadler, R., et al., 2010. The ICESat-2 Laser Altimetry Mission, Proceedings of the IEEE 98, 735751.Google Scholar
Anderson, K., Gaston, K. J., 2013. Lightweight unmanned aerial vehicles will revolutionize spatial ecology. Frontiers in Ecology and the Environment 11, 138146.Google Scholar
Anger, C. D., Mah, S., Babey, S. K., 1994. Technological enhancements to the Compact Airborne Spectrographic Imager (CASI). First International Airborne Remote Sensing Conference and Exhibition. Strasbourg, France, 11–15 Sept. 1994. 205213.Google Scholar
Antoine, D., Morel, A., 1998. Relative importance of multiple scattering by air molecules and aerosols in forming the atmospheric path radiance in the visible and near-infrared parts of the spectrum. Applied Optics 37, 22452259.Google Scholar
Antoine, D., Morel, A., 1999. A multiple scattering algorithm for atmospheric correction of remotely-sensed ocean colour (MERIS instrument): principle and implementation for atmospheres carrying various aerosols including absorbing ones. International Journal of Remote Sensing 20, 18751916.Google Scholar
Atwell, B. H., McDonald, R. B., Bartolucci, L. A., 1971. Thermal mapping of streams from airborne radiometric scanning. Water Resources Bulletin 7, 228243.CrossRefGoogle Scholar
Bailey, S. W., Franz, B. A., Werdell, P. J., 2010. Estimations of near-infrared water-leaving reflectance for satellite ocean color data processing. Optics Express 18, 75217527.Google Scholar
Bale, A. J., Tocher, M. D., Weaver, R., Hudson, S. J., Aiken, J., 1994. Laboratory measurements of the spectral properties of estuarine suspended particles. Netherlands Journal of Aquatic Ecology 28, 237244.Google Scholar
Barale, V., Gade, M., 2008. Remote Sensing of the European Seas. New York: Springer.CrossRefGoogle Scholar
BBC, 2014. British Broadcasting Corporation, UK. www.bbc.co.uk/news/uk-england-norfolk-25322214 [accessed August 2016].Google Scholar
Belanger, S., Babin, M., Larouche, P., 2008. An empirical ocean color algorithm for estimating the contribution of chromophoric dissolved organic matter to total light absorption in optically complex waters. Journal of Geophysical Research 113 (C04027). doi:10.1029/2007JC004436.CrossRefGoogle Scholar
Berry, P. A. M., Garlick, J. D., Freeman, J. A., Mathers, E. L., 2005. Global inland water monitoring from multi-mission altimetry. Geophysical Research Letters 32 (L16401). doi:10.1029/2005GL022814.Google Scholar
Birkett, C. M., 1998. Contribution of the TOPEX NASA radar altimeter to the global monitoring of large rivers and wetlands. Water Resources Research 34, 12231239.Google Scholar
Borstadt, G. A., Edel, H. R., Gower, J. F. R., Hollinger, A. B., 1985. Analysis of test and flight data from the Fluorescence Line Imager. Canadian Special Publication of Fisheries and Aquatic Sciences 83, 38.Google Scholar
Brown, G. S., 1977. The average impulse response of a rough surface and its applications. IEEE Transactions on Antennas and Propagation, AP–25, 6774.CrossRefGoogle Scholar
Bukata, R. P., Bruton, J. E., Jerome, J. H., Jain, S., Zwick, H. H., 1981. Optical water quality model of Lake Ontario. 2: Determination of chlorophyll-a and suspended mineral concentrations of natural waters from submersible and low altitude optical sensors. Applied Optics 20, 17041714.CrossRefGoogle ScholarPubMed
Bukata, R. P., Jerome, J. H., Bruton, J. E., 1988. Particulate concentrations in Lake St. Clair as recorded by a shipborne multispectral optical monitoring system. Remote Sensing of Environment 25, 201229.Google Scholar
Callison, R. D., Blake, P., Anderson, J. M., 1987. The quantitative use of Airborne Thematic Mapper thermal infrared data. International Journal of Remote Sensing 8, 113126.CrossRefGoogle Scholar
Chelton, D. B., Ries, J. C., Haines, B. J., Fu, L-L., Callahan, P. S., 2001. Satellite altimetry. In: Fu, L.-L., Cazenave, A. (eds.), Satellite Altimetry and Earth Sciences: A Handbook of Techniques and Applications, Vol. 69. San Diego, CA: Academic Press, 1131.Google Scholar
Collins, M., Pattiaratchi, C., 1984. Identification of suspended sediment in coastal waters using airborne thematic mapper data. International Journal of Remote Sensing 5, 635657.CrossRefGoogle Scholar
Corson, M. R., Korwan, D. R., Lucke, R. L., Snyder, W. A., Davis, C. O., 2008. The Hyperspectral Imager for the Coastal Ocean (HICO) on the International Space Station. IEEE Proceedings of the International Geoscience and Remote Sensing Symposium, 978-1-4244-2808-3/08.Google Scholar
Crétaux, J-F., Jelinski, W., Calmant, S., et al., 2011. SOLS: A Lake database to monitor in near real time water level and storage variations from remote sensing data. Journal of Advances in Space Research 44 (9), 14971507. doi:10.1016/j.asr.2011.01.004.Google Scholar
Doerffer, R., Fischer, J., 1994. Concentrations of chlorophyll, suspended matter, and gelbstoff in Case II waters derived from satellite coastal zone color scanner data with inverse modeling methods. Journal of Geophysical Research 99, 74577466.Google Scholar
Doxaran, D., Castaing, P., Lavender, S. J., 2006. Monitoring the maximum turbidity zone and detecting fine-scale turbidity features in the Gironde estuary using high spatial resolution satellite sensor (SPOT HRV, Landsat ETM+) data. International Journal of Remote Sensing 27, 23032321.Google Scholar
Doxaran, D., Froidefond, J. M., Castaing, P., 2002. Remote-sensing reflectance of turbid sediment-dominated waters. Reduction of sediment type variations and changing illumination conditions effects by use of reflectance ratios. Applied Optics 42, 26232634.CrossRefGoogle Scholar
Eleveld, M. A., van der Wal, D., van Kessel, T., 2014. Estuarine suspended particulate matter concentrations from sun-synchronous satellite remote sensing: Tidal and meteorological effects and biases. Remote Sensing of Environment 143, 204215. doi:10.1016/j.rse.2013.12.019.Google Scholar
ESA, 2016. River & Lake. http://earth.esa.int/riverandlake/ [accessed August 2016].Google Scholar
Gao, B. C., Montes, M. K., Li, R. R., Dierssen, H. M., Davis, C. O., 2007. An atmospheric correction algorithm for remote sensing of bright coastal waters in MODIS land and ocean channels in the solar spectral region. IEEE Transactions on Geoscience and Remote Sensing 45, 18351843.Google Scholar
Gleason, A. C. R., Voss, K. J., Gordon, H. R., et al., 2012. Detailed validation of the bidirectional effect in various Case I and Case II waters. Optics Express 20, 76307645.Google Scholar
Gordon, H. R., 1978. Removal of atmospheric effects from satellite imagery of the oceans. Applied Optics 17, 16311636.Google Scholar
Gordon, H. R., 1994. Equivalence of the point and beam spread functions of scattering media: a formal demonstration. Applied Optics 33, 11201122.Google Scholar
Gordon, H. R., Brown, O. B., Jacobs, M. M., 1975. Computed relationships between the inherent and apparent optical properties of a flat homogeneous ocean. Applied Optics 14, 417427.Google Scholar
Gordon, H. R., Castano, D. J., 1987. Coastal Zone Color Scanner atmospheric correction algorithm: multiple scattering effects. Applied Optics 26, 21112122.Google Scholar
Gordon, H. R., Clark, D. K., Brown, J. W., Brown, O. B., Evans, R. H., Broenkow, W. W., 1983. Phytoplankton pigment concentrations in the Middle Atlantic Bight: Comparison of ship determinations and CZCS estimates. Applied Optics 22, 2036.CrossRefGoogle ScholarPubMed
Gordon, H. R., McCluney, W. R., 1975. Estimation of the depth of sunlight penetration in the sea for remote sensing. Applied Optics 14, 413416.Google Scholar
Gordon, H. R., Wang, M., 1994. Retrieval of water-leaving radiances and aerosol optical thickness over the oceans with SeaWiFS: A preliminary algorithm. Applied Optics 33, 443452.Google Scholar
Gower, J. F. R., Borstadt, G. A., 1990. Mapping of phytoplankton by solar-stimulated fluorescence using an imaging spectrometer. International Journal of Remote Sensing 11, 313320.Google Scholar
Gower, J., Doerffer, R., Borstad, G. A., 1999. Interpretation of the 685 nm peak in water-leaving radiance spectra in terms of fluorescence, absorption and scattering, and its observation by MERIS. International Journal of Remote Sensing 20, 17711786.Google Scholar
Gower, J., King, S., Borstad, G., Brown, L., 2005. Detection of intense plankton blooms using the 709 nm band of the MERIS imaging spectrometer. International Journal of Remote Sensing 26, 20052012.Google Scholar
Green, E. P., Mumby, P. J., Edwards, A. J., Clark, C. D., 1996. A review of remote sensing for the assessment and management of tropical coastal resources. Coastal Management 24, 140. doi:10.1080/08920759609362279.Google Scholar
Gregg, W. W., Carder, K. L., 1990. A simple spectral solar irradiance model for cloudless maritime atmospheres. Limnology and Oceanography 35, 16571675.Google Scholar
Hallikainen, M., Kainulainen, J., Seppanen, J., Hakkarainen, A., Rautiainen, K., 2010. Studies of radio frequency interference at L-band using an airborne 2-D interferometric radiometer. In: Geoscience and Remote Sensing Symposium (IGARSS), 2490–2491. doi:10.1109/IGARSS.2010.5651866.Google Scholar
Handcock, R. N., Torgersen, C. E., Cherkauer, K. A., Gillespie, A. R., Tockner, K., Faux, R. N., Tan, J., 2012. Thermal infrared remote sensing of water temperature in riverine landscapes. In: Carbonneau, P. E., Piegay, H. (eds.), Fluvial Remote Sensing for Science and Management. Chichester, UK: John Wiley & Sons Ltd, 85115.Google Scholar
Hanlon, B., Personal Communication. Pixalytics Ltd, 1 Davy Road, Plymouth Science Park, Plymouth, Devon PL6 8BX, UK.Google Scholar
Hedger, R. D., Malthus, T. J., Folkard, A. M., Atkinson, P. M., 2007. Spatial dynamics of estuarine water surface temperature from airborne remote sensing, Estuarine, Coastal and Shelf Science 71, 608615.Google Scholar
Hu, C., Muller-Karger, F. E., Andrefouet, S., Carder, K. L., 2001. Atmospheric correction and cross-calibration of LANDSAT-7/ETM+ imagery over aquatic environments: A multiplatform approach using SeaWiFS/MODIS. Remote Sensing of Environment 78, 99107.Google Scholar
HYDROWEB, 2016. Hydrology by altimetry. www.legos.obs-mip.fr/soa/hydrologie/hydroweb/Page_2.html [accessed August 2016].Google Scholar
IOCCG, 2000. Remote sensing of ocean colour in coastal, and other optically-complex, waters. In: Sathyendranath, S. (ed.), Reports of the International Ocean-Colour Coordinating Group (IOCCG), No. 3, Dartmouth, Canada.Google Scholar
IOCCG, 2006. Remote sensing of inherent optical properties: Fundamentals, tests of algorithms, and applications. In: Lee, Z. (ed.), Reports of the International Ocean-Colour Coordinating Group (IOCCG), No. 5, Dartmouth, Canada.Google Scholar
IOCCG, 2010. Atmospheric correction for remotely-sensed ocean-colour products. In: Wang, M. (ed.), Reports of the International Ocean-Colour Coordinating Group (IOCCG), No. 10, Dartmouth, Canada.Google Scholar
IOCCG, 2016. Ocean-colour sensors. www.ioccg.org/sensors_ioccg.html/ [accessed August 2016].Google Scholar
Itres, 2014. Imagers. www.itres.com//imagers/ [accessed August 2016].Google Scholar
Kneizys, F. X., et al., 1988. Atmospheric Transmittance/Radiance: Computer Code LOWTRAN-7. AFGL-TR, 88–0177 (Air Force Geophysics Lab., Hanscom AFB, MA 01731, USA).Google Scholar
Kuchinke, C. P., Gordon, H. R., Franz, B. A., 2009. Spectral optimization for constituent retrieval in Case 2 waters I: Implementation and performance. Remote Sensing of Environment 113, 610621.CrossRefGoogle Scholar
Lavender, S. J., Nagur, C. R. C., 2002. Mapping coastal waters with high resolution imagery: Atmospheric correction of multi-height airborne imagery. Journal of Optics A: Pure and Applied Optics 4, S50S55.Google Scholar
Lavender, S. L., Pinkerton, M. H., Moore, G. F., Aiken, J., Blondeau-Patissier, D., 2005. Modification to the atmospheric correction of SeaWiFS ocean colour images over turbid waters. Continental Shelf Research 25, 539555.Google Scholar
Lee, Z., Carder, K. L., Mobley, C. D., Steward, R. G., Patch, J. S., 1998. Hyperspectral remote sensing for shallow waters 1: A semianalytical model. Applied Optics 37, 63296338.CrossRefGoogle ScholarPubMed
Lee, Z., Carder, K. L., Mobley, C. D., Steward, R. G., Patch, J. S., 1999. Hyperspectral remote sensing for shallow waters 2: Deriving bottom depths and water properties by optimization. Applied Optics 38, 38313843.Google Scholar
Marmorino, G. O., Smith, G. B., 2008. Thermal remote sensing of estuarine spatial dynamics: Effects of bottom-generated vertical mixing. Estuarine, Coastal and Shelf Science 78, 587591.Google Scholar
Merchant, C. J., Filipiak, M. J., Le Borgne, P., Roquet, H., Autret, E., Piollé, J.-F., Lavender, S., 2008. Diurnal warm-layer events in the western Mediterranean and European shelf seas. Geophysical Research Letters 35 (L04601). doi:10.1029/2007GL033071.Google Scholar
Miller, R. L., del Castillo, C. E., McKee, B. A., 2005. Remote Sensing of Coastal Aquatic Environments. Dordrecht, The Netherlands: Springer.Google Scholar
Moore, G. F., Aiken, J., Lavender, S. J., 1999. The atmospheric correction of water colour and the quantitative retrieval of suspended particulate matter in Case II waters: application to MERIS. International Journal of Remote Sensing 20, 17131733.Google Scholar
Morel, A., 1974. Optical properties of pure seawater. In: Jerlov, N. G., Nielsen, S. E. (eds.), Optical aspects of Oceanography. London: Academic Press, 124.Google Scholar
Morel, A., Antoine, D., Gentili, B., 2002. Bidirectional reflectance of oceanic waters: Accounting for Raman emission and varying particle scattering phase function. Applied Optics 41, 62896306.Google Scholar
Morel, A., Gentili, B., 1996. Diffuse reflectance of oceanic waters. III. Implication of bidirectionality for the remote-sensing problem. Applied Optics 35, 48504862.Google Scholar
Mumby, P. J., Green, E. P., Edwards, A. J., Clark, C. D., 1999. The cost-effectiveness of remote sensing for tropical coastal resources assessment and management. Journal of Environmental Management 55, 157166.Google Scholar
Njoku, E. G., 2014. Encyclopedia of Remote Sensing. New York: Springer.Google Scholar
Novo, E. M. M., Hansom, J. D., Curran, P. J., 1989. The effect of sediment type on the relationship between reflectance and suspended sediment concentration. International Journal of Remote Sensing 10, 12831289. doi:10.1080/01431168908903967.Google Scholar
Palacios, S. L., Peterson, T. D., Kudela, R. M., 2009. Development of synthetic salinity from remote sensing for the Columbia River plume. Journal of Geophysical Research 114 (C00B05). doi:10.1029/2008JC004895.Google Scholar
Park, Y., Ruddick, K., 2005. Model of remote-sensing reflectance including bidirectional effects for Case 1 and Case 2 waters. Applied Optics 44, 12361249.Google Scholar
Pavelsky, T. M., Smith, L. C., 2009. Remote sensing of suspended sediment concentration, flow velocity, and lake recharge in the Peace-Athabasca Delta, Canada. Water Resources Research 45, W11417. doi:10.1029/2008WR007424.Google Scholar
Prieur, L., Sathyendranath, S., 1981. An optical classification of coastal and oceanic waters based on the specific spectral absorption curves of phytoplankton pigments dissolved organic matter and other particulate materials. Limnology and Oceanography 26, 671689.Google Scholar
RSACUoP, 2005. Implementation Test on the Application of Earth Observation and GIS Methods for Identifying Positions and Time-Dynamics of Low-Water Channels in Morecambe Bay. Remote Sensing Applications Consultants Ltd and University of Plymouth Final Report, BNSC Project Ref CPBL/002/00136C.Google Scholar
Raney, R. K., 1998. The Delay / Doppler Radar Altimeter. IEEE Transactions on Geoscience and Remote Sensing 36, 15781588.Google Scholar
Robinson, I. S., 2004. Measuring the Oceans from Space: The Principles and Methods of Satellite Oceanography. Berlin: Springer/Praxis Publishing.Google Scholar
Rosmorduc, V., Benveniste, J., Bronner, E., Dinardo, S., Lauret, O., Maheu, C., Milagro, M., Picot, N., 2011. Radar Altimetry Tutorial (eds. J. Benveniste and N. Picot). www.altimetry.info [accessed August 2016].Google Scholar
Ruddick, K., Ovidio, F., Rijkeboer, M., 2000. Atmospheric correction of SeaWiFS imagery for turbid coastal and inland waters. Applied Optics 39, 897912.Google Scholar
Ryu, J.-H., Han, H.-J., Cho, S., Park, Y.-J., Ahn, Y.-H., 2012. Overview of geostationary ocean color imager (GOCI) and GOCI data processing system (GDPS). Ocean Science Journal 47, 17385261.Google Scholar
Schiller, H., Doerffer, R., 1999. Neural network for emulation of an inverse model – operational derivation of Case II water properties from MERIS data. International Journal of Remote Sensing 20, 17351746.Google Scholar
Schroeder, T., Behnert, I., Schaale, M., Fischer, J., Doerffer, R., 2007. Atmospheric correction algorithm for MERIS above Case-2 waters. International Journal of Remote Sensing 28, 14691486.Google Scholar
Shanmugam, P., 2012. CAAS: An atmospheric correction algorithm for the remote sensing of complex waters. Annales Geophysicae 30, 203220. doi:10.5194/angeo-30-203-2012.Google Scholar
Shanmugam, P., Varunan, T., Nagendra Jaiganesh, S. N., Sahay, A., Chauhan, P., 2016. Optical assessment of colored dissolved organic matter and its related parameters in dynamic coastal water systems. Estuarine, Coastal and Shelf Science 175, 126145. http://dx.doi.org/10.1016/j.ecss.2016.03.020.CrossRefGoogle Scholar
Siegel, D. A., Maritorena, S., Nelson, N. B., Behrenfeld, M. J., 2005. Independence and interdependencies among global ocean color properties: Reassessing the bio-optical assumption. Journal of Geophysical Research 110 (C7), C07011.Google Scholar
Sterckx, S., Knaeps, E., Bollen, M., Trouw, K., Houthuys, R., 2007. Retrieval of suspended sediment from advanced hyperspectral sensor data in the Scheldt Estuary at different stages in the tidal cycle. Marine Geodesy 30, 97108. doi:10.1080/01490410701296341.Google Scholar
Stumpf, R. P., Arone, R. A., Gould, R. W., Ransibrahmanakul, V., 2003. A partially coupled ocean-atmosphere model for retrieval of water-leaving radiance from SeaWiFS in coastal waters. In: Hooker, S. B., Firestone, E. R. (eds.), SeaWiFS Postlaunch Technical Report Series, Vol. 22, chap. 9, NASA/TM-2003–206892. Greenbelt, MD: NASA Goddard Space Flight Center, 5159.Google Scholar
Stumpf, R. P., Pennock, J. R., 1989. Calibration of a general optical equation for remote sensing of suspended sediments in a moderately turbid estuary. Journal of Geophysical Research 94, (C10), 1436314371. doi:10.1029/JC094iC10p14363.Google Scholar
Tolk, B. L., Han, L., Rundquist, D. C., 2000. The impact of bottom brightness on spectral reflectance of suspended sediments. International Journal of Remote Sensing 21, 22592268. doi:10.1080/01431160050029558.Google Scholar
Torgersen, C. E., Faux, R. N., McIntosh, B. A., Poage, N. J., Norton, D. J., 2001. Airborne thermal remote sensing for water temperature assessment in rivers and streams. Remote Sensing of Environment 76, 386396.Google Scholar
Uncles, R. J., Morris, K. P., Stephens, J. A., Robinson, M.-C., Murphy, R. J., 1999. Aircraft and sea-truth observations of salinity and temperature within the Tweed Estuary and coastal-zone frontal system. International Journal of Remote Sensing 20, 609625.Google Scholar
Uncles, R. J., Stephens, J. A., Harris, C., 2015. Estuaries of southwest England: Salinity, suspended particulate matter, loss-on-ignition and morphology. Progress in Oceanography 137, Part B, 385408. http://dx.doi.org/10.1016/j.pocean.2015.04.030.Google Scholar
Voss, K. J., Chapin, A. L., 2005. Upwelling radiance distribution camera system, NURADS. Optics Express 13, 42504262.Google Scholar
Wang, M., 1999. Validation study of the SeaWiFS oxygen A-band absorption correction: Comparing the retrieved cloud optical thicknesses from SeaWiFS measurements. Applied Optics 38, 937944.Google Scholar
Wang, M., Shi, W., 2007. The NIR-SWIR combined atmospheric correction approach for MODIS ocean color data processing. Optics Express 15, 1572215733.Google Scholar
Wang, M., Son, S., Shi, W., 2009. Evaluation of MODIS SWIR and NIR–SWIR atmospheric correction algorithms using SeaBASS data. Remote Sensing of Environment 113, 635644.Google Scholar
Wdowinski, S., Kim, S. W., Amelung, F., Dixon, T. H., Miralles-Wilhelm, F., Sonenshein, R., 2008. Space-based detection of wetlands’ surface water level changes from L-band SAR interferometry. Remote Sensing of Environment 112, 681696.Google Scholar
Werdell, P. J., Franz, B. A., Bailey, S. W., 2010. Evaluation of shortwave infrared atmospheric correction for ocean color remote sensing of Chesapeake bay. Remote Sensing of Environment 114, 22382247.Google Scholar
Wilson, A. K., 1995. Airborne Remote Sensing Handbook. Natural Environment Research Council (NERC) Scientific Services, Swindon, UK.Google Scholar
Winker, D. M., Pelon, J. R., McCormick, M. P., 2003. The CALIPSO Mission: Spaceborne Lidar for Observation of Aerosols and Clouds. Proc. SPIE 4893, Lidar Remote Sensing for Industry and Environment Monitoring III, doi:10.1117/12.466539.Google Scholar
Woodhouse, I. H., 2006. Introduction to Microwave Remote Sensing. Boca Raton, FL: Taylor & Francis Group.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×