Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-5wvtr Total loading time: 0 Render date: 2024-07-19T23:20:03.166Z Has data issue: false hasContentIssue false

1 - Introduction

Published online by Cambridge University Press:  05 June 2012

Jin Xiong
Affiliation:
Texas A & M University
Get access

Summary

Quantitation and quantitative tools are indispensable in modern biology. Most biological research involves application of some type of mathematical, statistical, or computational tools to help synthesize recorded data and integrate various types of information in the process of answering a particular biological question. For example, enumeration and statistics are required for assessing everyday laboratory experiments, such as making serial dilutions of a solution or counting bacterial colonies, phage plaques, or trees and animals in the natural environment. A classic example in the history of genetics is by Gregor Mendel and Thomas Morgan, who, by simply counting genetic variations of plants and fruit flies, were able to discover the principles of genetic inheritance. More dedicated use of quantitative tools may involve using calculus to predict the growth rate of a human population or to establish a kinetic model for enzyme catalysis. For very sophisticated uses of quantitative tools, one may find application of the “game theory” to model animal behavior and evolution, or the use of millions of nonlinear partial differential equations to model cardiac blood flow. Whether the application is simple or complex, subtle or explicit, it is clear that mathematical and computational tools have become an integral part of modern-day biological research. However, none of these examples of quantitative tool use in biology could be considered to be part of bioinformatics, which is also quantitative in nature.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Attwood, T. K., and Miller, C. J. 2002. Progress in bioinformatics and the importance of being earnest. Biotechnol. Annu. Rev. 8:1–54CrossRefGoogle ScholarPubMed
Golding, G. B. 2003. DNA and the revolution of molecular evolution, computational biology, and bioinformatics. Genome 46:930–5CrossRefGoogle Scholar
Goodman, N. 2002. Biological data becomes computer literature: New advances in bioinformatics. Curr. Opin. Biotechnol. 13:68–71CrossRefGoogle Scholar
Hagen, J. B. 2000. The origin of bioinformatics. Nat. Rev. Genetics 1:231–6CrossRefGoogle Scholar
Kanehisa, M., and Bork, P. 2003. Bioinformatics in the post-sequence era. Nat. Genet. 33 Suppl:305–10CrossRefGoogle ScholarPubMed
Kim, J. H. 2002. Bioinformatics and genomic medicine. Genet. Med. 4 Suppl:62S–5SCrossRefGoogle Scholar
Luscombe, N. M., Greenbaum, D., and Gerstein, M. 2001. What is bioinformatics? A proposed definition and overview of the field. Methods Inf. Med. 40:346–58CrossRefGoogle Scholar
Ouzounis, C. A., and Valencia, A. 2003. Early bioinformatics: The birth of a discipline – A personal view. Bioinformatics 19:2176–90CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Introduction
  • Jin Xiong, Texas A & M University
  • Book: Essential Bioinformatics
  • Online publication: 05 June 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511806087.002
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Introduction
  • Jin Xiong, Texas A & M University
  • Book: Essential Bioinformatics
  • Online publication: 05 June 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511806087.002
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Introduction
  • Jin Xiong, Texas A & M University
  • Book: Essential Bioinformatics
  • Online publication: 05 June 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511806087.002
Available formats
×