Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-cjp7w Total loading time: 0 Render date: 2024-06-23T11:09:39.390Z Has data issue: false hasContentIssue false

11 - Determinants of lizard escape performance: decision, motivation, ability, and opportunity

from Part III - Related behaviors and other factors influencing escape

Published online by Cambridge University Press:  05 June 2015

William E. Cooper, Jr
Affiliation:
Indiana University–Purdue University, Indianapolis
Daniel T. Blumstein
Affiliation:
University of California, Los Angeles
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Escaping From Predators
An Integrative View of Escape Decisions
, pp. 287 - 321
Publisher: Cambridge University Press
Print publication year: 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adams, B. (1985). The thermal-dependence of muscle membrane constants in 2 iguanid lizards (Dipsosaurus dorsalis, Sceloporus occidentalis). Federation Proceedings, 44, 13771377.Google Scholar
Aerts, P., Van Damme, R., Vanhooydonck, B., Zaaf, A. & Herrel, A. (2000). Lizard locomotion: How morphology meets ecology. Netherlands Journal of Zoology, 50, 261277.Google Scholar
Alexander, R. M. (1977). Allometry of the limbs of antelopes (Bovidae). Journal of Zoology, 183, 125146.Google Scholar
Allen, V., Elsey, R. M., Jones, N., Wright, J. & Hutchinson, J. R. (2010). Functional specialization and ontogenetic scaling of limb anatomy in Alligator mississippiensis. Journal of Anatomy, 216, 423445.Google Scholar
Arnold, S. J. (1983). Morphology, performance and fitness. American Zoologist, 23, 347361.Google Scholar
Astley, H. C., Abbott, E. M., Azizi, E., Marsh, R. L. & Roberts, T. J. (2013). Chasing maximal performance: a cautionary tale from the celebrated jumping frogs of Calaveras County. Journal of Experimental Biology, 216, 39473953.Google Scholar
Autumn, K. & Peattie, A. M. (2002). Mechanisms of adhesion in geckos. Integrative and Comparative Biology, 42, 10811090.Google Scholar
Autumn, K., Liang, Y. A., Hsieh, S. T., et al. (2000). Adhesive force of a single gecko foot-hair. Nature, 405, 681685.Google Scholar
Autumn, K., Hsieh, S. T., Dudek, D. M., et al. (2006). Dynamics of geckos running vertically. Journal of Experimental Biology, 209, 260272.Google Scholar
Bauer, A. M. & Russell, A. P. (1991). Pedal specializations in dune-dwelling geckos. Journal of Arid Environments, 20, 4362.Google Scholar
Beck, R. C. (1978). Motivation: Theories and Principles. Englewood Cliffs: Prentice-Hall, Inc.Google Scholar
Bellairs, A. d. A. (1970). The Life of Reptiles. New York: Universe Books.Google Scholar
Bellairs, A. d. A. & Bryant, S. V. (1985). Autotomy and regeneration in reptiles. In Gans, C. & Billett, F. (eds.) Biology of the Reptilia. New York: John Wiley and Sons, 15, 301410.Google Scholar
Bennett, A. F. & Huey, R. B. (1990). Studying the evolution of physiological performance. In Futuyma, D. J. & Antonovics, J. (eds.) Oxford Surveys in Evolutionary Biology, Vol. 6. Oxford: Oxford University Press, pp. 251284.Google Scholar
Bergmann, P. J., Meyers, J. J. & Irschick, D. J. (2009). Directional evolution of stockiness coevolves with ecology and locomotion in lizards. Evolution, 63, 215.Google Scholar
Biewener, A. A. (1998). Muscle function in vivo: A comparison of muscles used for elastic energy savings versus muscles used to generate mechanical power. American Zoologist, 38, 703717.Google Scholar
Biewener, A. A. & Roberts, T. J. (2000). Muscle and tendon contributions to force, work, and elastic energy savings: a comparative perspective. Exercise and Sport Sciences Reviews, 28, 99107.Google Scholar
Birn-Jeffery, A. & Higham, T. E. (2014). The scaling of uphill and downhill locomotion in legged animals. Integrative and Comparative Biology, 54, 11591172.Google Scholar
Bonine, K. E. & Garland, T. Jr. (1999). Sprint performance of phrynosomatid lizards, measured on a high-speed treadmill, correlates with hindlimb length. Journal of Zoology, 248, 255265.Google Scholar
Bonine, K. E., Gleeson, T. T. & Garland, T. Jr. (2001). Comparative analysis of fiber-type composition in the iliofibularis muscle of phrynosomatid lizards (Squamata). Journal of Morphology, 250, 265280.Google Scholar
Bonine, K. E., Gleeson, T. T. & Garland, T. Jr. (2005). Muscle fiber-type variation in lizards (Squamata) and phylogenetic reconstruction of hypothesized ancestral states. Journal of Experimental Biology, 208, 45294547.Google Scholar
Brainerd, E. L. & Owerkowicz, T. (2006). Functional morphology and evolution of aspiration breathing in tetrapods. Respiratory Physiology & Neurobiology, 154, 7388.Google Scholar
Brainerd, E. L. & Patek, S. N. (1998). Vertebral column morphology, C-start curvature, and the evolution of mechanical defenses in tetraodontiform fishes. Copeia, 1998, 971984.Google Scholar
Brodie, E. D. III. (1989). Behavioral modification as a means of reducing the cost of reproduction. American Naturalist, 134, 225238.Google Scholar
Bulova, S. J. (1994). Ecological correlates of population and individual variation in antipredator behavior of two species of desert lizards. Copeia, 1994, 980992.Google Scholar
Careau, V. & Garland, T. Jr. (2012). Performance, personality, and energetics: Correlation, causation, and mechanism. Physiological and Biochemical Zoology, 85, 543571.Google Scholar
Careau, V., Wolak, M. E., Carter, P. A. & Garland, T. Jr. (2013). Limits to behavioral evolution: The quantitative genetics of a complex trait under directional selection. Evolution, 67, 31023119.Google Scholar
Carothers, J. H. (1986). An experimental confirmation of morphological adaptation: Toe fringes in the sand-dwelling lizard Uma scoparia. Evolution, 40, 871874.Google Scholar
Carrier, D. R. (1991). Conflict in the hypaxial musculo-skeletal system: Documenting an evolutionary constraint. American Zoologist, 31, 644654.Google Scholar
Carrier, D. R. (1996). Ontogenetic limits on locomotor performance. Physiological Zoology, 69, 467488.Google Scholar
Cartmill, M. (1985). Climbing. In Hildebrand, M., Bramble, D. M., Liem, K. F. & Wake, D. B. (eds.) Functional Vertebrate Morphology. Cambridge: Harvard University Press, pp. 7388.Google Scholar
Christian, A. & Garland, T. Jr. (1996). Scaling of limb proportions in monitor lizards (Squamata: Varanidae). Journal of Herpetology, 30, 219230.Google Scholar
Clark, D. R. Jr. (1971). The strategy of tail-autotomy in the ground skink, Lygosoma laterale. Journal of Experimental Zoology, 176, 295302.Google Scholar
Clemente, C. J., Withers, P. C., Thompson, G., & Loyd, D. (2013). Lizard tricks: Overcoming conflicting requirements of speed versus climbing ability by altering biomechanics of the lizard stride. Journal of Experimental Biology, 216, 38543862.Google Scholar
Collar, D. C., Schulte, J. A. II, & Losos, J. B. (2011). Evolution of extreme body size disparity in monitor lizards (Varanus). Evolution, 65, 26642680.Google Scholar
Collins, C. E., Russell, A. P. & Higham, T. E. (2015). Subdigital adhesive pad morphology varies in relation to structural habitat use in the Namib Day Gecko, Rhoptropus afer. Functional Ecology. 29, 6677.Google Scholar
Collins, C. E., Self, J. D., Anderson, R. A. & McBrayer, L. D. (2013). Rock-dwelling lizards exhibit less sensitivity of sprint speed to increases in substrate rugosity. Zoology, 116, 151158.Google Scholar
Coombs, W. P. Jr. (1978). Theoretical aspects of cursorial adaptations in dinosaurs. Quarterly Review of Biology, 53, 393418.Google Scholar
Cooper, W. E. Jr. (2000). Effect of temperature on escape behaviour by an ectothermic vertebrate, the keeled earless lizard (Holbrookia propinqua). Behaviour, 137, 12991315.Google Scholar
Cooper, W. E. Jr. (2008). Visual monitoring of predators: Occurrence, cost and benefit for escape. Animal Behaviour, 76, 13651372.Google Scholar
Cooper, W. E. Jr. & Frederick, W. G. (2007). Optimal flight initiation distance. Journal of Theoretical Biology, 244, 5967.Google Scholar
Cooper, W. E. Jr. & Vitt, L. J. (1991). Influence of detectability and ability to escape on natural selection of conspicuous autonomous defenses. Canadian Journal of Zoology, 69, 757764.Google Scholar
Cooper, W. E. Jr. & Wilson, D. S. (2007). Beyond optimal escape theory: Microhabitats as well as predation risk affect escape and refuge use by the phrynosomatid lizard Sceloporus virgatus. Behaviour, 144, 12351254.Google Scholar
Cooper, W. E. Jr., Vitt, L. J., Hedges, R. & Huey, R. B. (1990). Locomotor impairment and defense in gravid lizards (Eumeces laticeps): Behavioral shift in activity may offset costs of reproduction in an active forager. Behavioral Ecology and Sociobiology, 27, 153157.Google Scholar
Cooper, W. E. Jr., Pyron, R. A. & Garland, T. Jr. (2014). Island tameness: Living on islands reduces flight initiation distance. Proceedings of the Royal Society B, 281, 20133019.Google Scholar
Crowley, S. R. (1985a). Thermal sensitivity of sprint-running in the lizard Sceloporus undulatus: support for a conservative view of thermal physiology. Oecologia, 66, 219225.Google Scholar
Crowley, S. R. (1985b). Insensitivity to desiccation of sprint running performance in the lizard, Sceloporus undulatus. Journal of Herpetology, 19, 171174.Google Scholar
Crowley, S. R. & Pietruszka, R. D. (1983). Aggressiveness and vocalization in the leopard lizard. (Gambelia wislizennii): The influence of temperature. Animal Behaviour, 31, 10551060.Google Scholar
Daley, M. A. & Biewener, A. A. (2003). Muscle force-length dynamics during level versus incline locomotion: A comparison of in vivo performance of two guinea fowl ankle extensors. Journal of Experimental Biology, 206, 29412958.Google Scholar
Daniels, C. B. (1983). Running: An escape strategy enhanced by autotomy. Herpetologica, 39, 162165.Google Scholar
Daniels, C. B., Flaherty, S. P. & Simbotwe, M. P. (1986). Tail size and effectiveness of autotomy in a lizard. Journal of Herpetology, 20, 9396.Google Scholar
Dickinson, M. H., Farley, C. T., Full, R. J., et al. (2000). How animals move: An integrative view. Science, 288, 100106.Google Scholar
Djawdan, M. (1993). Locomotor performance of bipedal and quadrupedal heteromyid rodents. Functional Ecology, 7, 195202.Google Scholar
Farley, C. & Emshwiller, M. (1996). Efficiency of uphill locomotion in nocturnal and diurnal lizards. Journal of Experimental Biology, 199, 587592.Google Scholar
Farmer, C. G. & Carrier, D. R. (2000a). Pelvic aspiration in the American alligator (Alligator mississippiensis). Journal of Experimental Biology, 203, 16791687.Google Scholar
Farmer, C. G. & Carrier, D. R. (2000b). Ventilation and gas exchange during treadmill locomotion in the American alligator (Alligator mississippiensis). Journal of Experimental Biology, 203, 16711678.Google Scholar
Feder, M. E., Garland, T. Jr., Marden, J. H. & Zera, A. J. (2010). Locomotion in response to shifting climate zones: Not so fast. Annual Review of Physiology, 72, 167190.Google Scholar
Fitts, R. H., McDonald, K. S. & Schluter, J. M. (1991). The determinants of skeletal muscle force and power: Their adaptability with changes in activity pattern. Journal of Biomechanics, 24, 111122.Google Scholar
Foster, K. L. & Higham, T. E. (2012). How fore- and hindlimb function changes with incline and perch diameter in the green anole, Anolis carolinensis. Journal of Experimental Biology, 215, 22882300.Google Scholar
Foster, K. L. & Higham, T. E. (2014). Context-dependent changes in motor control and kinematics during locomotion: Modulation and decoupling. Proceedings of the Royal Society B, 281, 20133331.Google Scholar
Gans, C. & de Vree, F. (1987). Functional bases of fiber length and angulation in muscle. Journal of Morphology, 192, 6385.Google Scholar
Garland, T. Jr. (1985). Ontogenetic and individual variation in size, shape and speed in the Australian agamid lizard Amphibolurus nuchalis. Journal of Zoology, 207, 425439.Google Scholar
Garland, T. Jr. (1993). Locomotor performance and activity metabolism of Cnemidophorus tigris in relation to natural behaviors. In Wright, J. W. & Vitt, L. J. (eds.) Biology of Whiptail Lizards (Genus Cnemidophorus). Norman: Oklahoma Museum of Natural History, pp. 163210.Google Scholar
Garland, T. Jr. (1994). Phylogenetic analyses of lizard endurance capacity in relation to body size and body temperature. In Vitt, L. J. & Pianka, E. R. (eds.) Lizard Ecology: Historical and Experimental Perspectives. Princeton: Princeton University Press, pp. 237259.Google Scholar
Garland, T. Jr. (2014). Quick guide: Trade-offs. Current Biology, 24, R60R61.Google Scholar
Garland, T. Jr. & Adolph, S. C. (1991). Physiological differentiation of vertebrate populations. Annual Review of Ecology and Systematics, 22, 193228.Google Scholar
Garland, T. Jr. & Else, P. L. (1987). Seasonal, sexual, and individual variation in endurance and activity metabolism in lizards. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 252, R439R449.Google Scholar
Garland, T. Jr. & Janis, C. M. (1993). Does metatarsal/femur ratio predict maximal running speed in cursorial mammals? Journal of Zoology, 229, 133151.Google Scholar
Garland, T. Jr. & Losos, J. B. (1994). Ecological morphology of locomotor performance in squamate reptiles. In Wainwright, P. C. & Reilly, S. M. (eds.) Ecological Morphology: Integrative Organismal Biology. Chicago: University of Chicago Press, pp. 240302.Google Scholar
Garland, T. Jr., Kelly, S. A., Malisch, J. L. et al. (2011). How to run far: Multiple solutions and sex-specific responses to selective breeding for high voluntary activity levels. Proceedings of the Royal Society B: Biological Sciences, 278, 574581.Google Scholar
Gilbert, E. A. B., Payne, S. L. & Vickaryous, M. K. (2013). The anatomy and histology of caudal autotomy and regeneration in lizards. Physiological & Biochemical Zoology, 86, 631644.Google Scholar
Gillis, G. B., Bonvini, L. A. & Irschick, D. J. (2009). Losing stability: Tail loss and jumping in the arboreal lizard Anolis carolinensis. Journal of Experimental Biology, 212, 604609.Google Scholar
Gillis, G. B., Kuo, C.-Y. & Irschick, D. J. (2013). The impact of tail loss on stability during jumping in green anoles (Anolis carolinensis). Physiological & Biochemical Zoology, 86, 680689.Google Scholar
Gilman, C. A. & Irschick, D. J. (2013). Foils of flexion: The effects of perch compliance on lizard locomotion and perch choice in the wild. Functional Ecology, 27, 374381.Google Scholar
Gilman, C. A., Bartlett, M. D., Gillis, G. B. & Irschick, D. J. (2012). Total recoil: Perch compliance alters jumping performance and kinematics in green anole lizards (Anolis carolinensis). Journal of Experimental Biology, 215, 220226.Google Scholar
Glasheen, J. W. & McMahon, T. A. (1996). Size-dependence of water-running ability in basilisk lizards (Basiliscus basiliscus). Journal of Experimental Biology, 199, 26112618.Google Scholar
Gleeson, T. T. & Harrison, J. M. (1988). Muscle composition and its relation to sprint running in the lizard Dipsosaurus dorsalis. American Journal of Physiology, 255, R470R477.Google Scholar
Goodman, B. A. (2007). Divergent morphologies, performance, and escape behaviour in two tropical rock-using lizards (Reptilia: Scincidae). Biological Journal of the Linnean Society, 91, 8598.Google Scholar
Goodman, B. A. (2009). Nowhere to run: The role of habitat openness and refuge use in defining patterns of morphological and performance evolution in tropical lizards. Journal of Evolutionary Biology, 22, 15351544.Google Scholar
Goodman, B. A., Miles, D. B. & Schwarzkopf, L. (2008). Life on the rocks: Habitat use drives morphological and performance evolution in lizards. Ecology, 89, 34623471.Google Scholar
Hansen, W. R. & Autumn, K. (2005). Evidence for self-cleaning in Gecko setae. Proceedings of the National Academy of Sciences, 102, 385389.Google Scholar
Haxton, H. A. (1944). Absolute muscle force in the ankle flexors of man. Journal of Physiology, 103, 267273.Google Scholar
Herrel, A., James, R. S. & Van Damme, R. (2007). Fight versus flight: Physiological basis for temperature-dependent behavioral shifts in lizards. Journal of Experimental Biology, 210, 17621767.Google Scholar
Herrel, A., Vanhooydonck, B., Porck, J. & Irschick, D. J. (2008). Anatomical basis of differences in locomotor behavior in Anolis lizards: A comparison between two ecomorphs. Bulletin of the Museum of Comparative Zoology, 159, 213238.Google Scholar
Hertz, P. E., Huey, R. B. & Nevo, E. (1982). Fight versus flight: Body temperature influences defensive responses of lizards. Animal Behaviour, 30, 676679.Google Scholar
Hertz, P. E., Huey, R. B. & Garland, T. Jr. (1988). Time budgets, thermoregulation, and maximal locomotor performance: Are reptiles olympians or boy scouts? American Zoologist, 28, 927938.Google Scholar
Herzog, W. (2000). Muscle properties and coordination during voluntary movement. Journal of Sports Science, 18, 141152.Google Scholar
Higham, T. E. & Anderson, C. V. (2013). Function and adaptation. In Tolley, K. A. & Herrel, A. (eds.) The Biology of Chameleons. Berkeley: University of California Press, pp. 6383.Google Scholar
Higham, T. E. & Irschick, D. J. (2013). Springs, steroids, and slingshots: The roles of enhancers and constraints in animal movement. Journal of Comparative Physiology B, 183, 583595.Google Scholar
Higham, T. E. & Jayne, B. C. (2004a). In vivo muscle activity in the hindlimb of the arboreal lizard, Chamaeleo calyptratus: General patterns and the effects of incline. Journal of Experimental Biology, 207, 249261.Google Scholar
Higham, T. E. & Jayne, B. C. (2004b). Locomotion of lizards on inclines and perches: Hindlimb kinematics of an arboreal specialist and a terrestrial generalist. Journal of Experimental Biology, 207, 233248.Google Scholar
Higham, T. E. & Russell, A. P. (2010). Flip, flop and fly: Modulated motor control and highly variable movement patterns of autotomized gecko tails. Biology Letters, 6, 7073.Google Scholar
Higham, T. E. & Russell, A. P. (2012). Time-varying motor control of autotomized leopard gecko tails: Multiple inputs and behavioral modulation. Journal of Experimental Biology, 215, 435441.Google Scholar
Higham, T. E., Davenport, M. S. & Jayne, B. C. (2001). Maneuvering in an arboreal habitat: The effects of turning angle on the locomotion of three sympatric ecomorphs of Anolis lizards. Journal of Experimental Biology, 204, 41414155.Google Scholar
Higham, T. E., Korchari, P. G. & McBrayer, L. M. (2011a). How muscles define maximum locomotor performance in lizards: An analysis using stance and swing phase muscles. Journal of Experimental Biology, 214, 16851691.Google Scholar
Higham, T. E., Korchari, P. G. & McBrayer, L. M. (2011b). How to climb a tree: Lizards accelerate faster, but pause more, when escaping on vertical surfaces. Biological Journal of the Linnean Society, 102, 8390.Google Scholar
Higham, T. E., Lipsett, K. R., Syme, D. A. & Russell, A. P. (2013a). Controlled chaos: Three-dimensional kinematics, fiber histochemistry and muscle contractile dynamics of autotomized lizard tails. Physiological and Biochemical Zoology, 86, 611630.Google Scholar
Higham, T. E., Russell, A. P. & Zani, P. A. (2013b). Integrative biology of tail autotomy in lizards. Physiological and Biochemical Zoology, 86, 603610.Google Scholar
Hildebrand, M. (1985). Walking and running. In Hildebrand, M., Bramble, D. M., Liem, K.F. & Wake, D. B. (eds.) Functional Vertebrate Morphology. Cambridge: Harvard University Press, pp. 3857.Google Scholar
Howland, H. C. (1974). Optimal strategies for predator avoidance: The relative importance of speed and manoeuvrability. Journal of Theoretical Biology, 47, 333350.Google Scholar
Hsieh, S. T. & Lauder, G. V. (2004). Running on water: Three-dimensional force generation by basilisk lizards. Proceedings of the National Academy of Sciences, 101, 1678416788.Google Scholar
Huey, R. B. & Dunham, A. E. (1987). Repeatability of locomotor performance in natural populations of the lizard Sceloporus merriami. Evolution, 41, 11161120.Google Scholar
Huey, R. B. & Hertz, P. E. (1984). Effects of body size and slope on acceleration of a lizard (Stellio stellio). Journal of Experimental Biology, 110, 113123.Google Scholar
Huey, R. B., Dunham, A. E., Overall, K. L. & Newman, R. A. (1990). Variation in locomotor performance in demographically known populations of the lizard Sceloporus merriami. Physiological Zoology, 63, 845872.Google Scholar
Husak, J. F. (2006a). Does speed help you survive? A test with collared lizards of different ages. Functional Ecology, 20, 174179.Google Scholar
Husak, J. F. (2006b). Does survival depend on how fast you can run or how fast you do run? Functional Ecology, 20, 10801086.Google Scholar
Husak, J. F. (2006c). Do female collared lizards change field use of maximal sprint speed capacity when gravid? Oecologia, 150, 339343.Google Scholar
Husak, J. F. & Fox, S. F. (2006). Field use of maximal sprint speed by collared lizards (Crotaphytus collaris): Compensation and sexual selection. Evolution, 60, 18881895.Google Scholar
Husak, J. F. & Fox, S. F. (2008). Sexual selection on locomotor performance. Evolutionary Ecology Research, 10, 213228.Google Scholar
Husak, J. F., Irschick, D. J., Meyers, J. J., Lailvaux, S. P. & Moore, I. T. (2007). Hormones, sexual signals, and performance of green anole lizards (Anolis carolinensis). Hormones and Behavior, 52, 360367.Google Scholar
Iraeta, P., Monasterio, C., Salvador, A. & Díaz, J. A. (2011). Sexual dimorphism and interpopulation differences in lizard hind limb length: Locomotor performance or chemical signalling? Biological Journal of the Linnean Society, 104, 318329.Google Scholar
Irschick, D. J. (2000). Effects of behaviour and ontogeny on the locomotor performance of a West Indian lizard, Anolis lineatopus. Functional Ecology, 14, 438444.Google Scholar
Irschick, D. J. (2003). Measuring performance in nature: implications for studies of fitness within populations. Integrative and Comparative Biology, 43, 396407.Google Scholar
Irschick, D. J. & Garland, T. (2001). Integrating function and ecology in studies of adaptation: Investigations of locomotor capacity as a model system. Annual Review of Ecology and Systematics, 32, 367396.Google Scholar
Irschick, D. J. & Jayne, B. C. (1999). A field study of the effects of incline on the escape locomotion of a bipedal lizard, Callisaurus draconoides. Physiological & Biochemical Zoology, 72, 4456.Google Scholar
Irschick, D. J. & Losos, J. B. (1998). A comparative analysis of the ecological significance of maximal locomotor performance in Caribbean Anolis lizards. Evolution, 52, 219226.Google Scholar
Irschick, D. J. & Losos, J. B. (1999). Do lizards avoid habitats in which performance is submaximal? The relationship between sprinting capabilities and structural habitat use in Caribbean anoles. American Naturalist, 154, 293305.Google Scholar
Irschick, D. J., Vanhooydonck, B., Herrel, A. & Andronescu, A. (2003). Effects of loading and size on maximum power output and gait characteristics in geckos. Journal of Experimental Biology, 206, 39233934.Google Scholar
Irschick, D. J., Herrel, A., Vanhooydonck, B., Huyghe, K. & van Damme, R. (2005). Locomotor compensation creates a mismatch between laboratory and field estimates of escape speed in lizards: A cautionary tale for performance-to-fitness studies. Evolution, 59, 15791587.Google Scholar
Jaksić, F. M. & Núñez, H. (1979). Escaping behavior and morphological correlates in two Liolaemus species of central Chile (Lacertilia: Iguanidae). Oecologia, 42, 119122.Google Scholar
James, R. S. (2013). A review of the thermal sensitivity of the mechanics of vertebrate skeletal muscle. Journal of Comparative Physiology B, 183, 723733.Google Scholar
Jayne, B. C. & Daggy, M. W. (2000). The effects of temperature on the burial performance and axial motor pattern of the sand-swimming of the Mojave fringe-toed lizard Uma scoparia. Journal of Experimental Biology, 203, 12411252.Google Scholar
Jayne, B. C. & Ellis, R. V. (1998). How inclines affect the escape behaviour of a dune-dwelling lizard, Uma scoparia. Animal Behavior, 55, 11151130.Google Scholar
Jayne, B. C. & Irschick, D. J. (1999). Effects of incline and speed on the three-dimensional hindlimb kinematics of a generalized iguanian lizard (Dipsosaurus dorsalis). Journal of Experimental Biology, 202, 143159.Google Scholar
Jayne, B. C. & Irschick, D. J. (2000). A field study of incline use and preferred speeds for the locomotion of lizards. Ecology, 81, 29692983.Google Scholar
John-Alder, H. B., Garland, T. Jr. & Bennett, A. F., (1986). Locomotory capacities, oxygen consumption, and the cost of locomotion of the shingle-back lizard (Trachydosaurus rugosus). Physiological Zoology, 59, 523531.Google Scholar
Klukowski, M., Jenkinson, N. M. & Nelson, C. E. (1998). Effects of testosterone on locomotor performance and growth in field-active northern fence lizards, Sceloporus undulatus hyacinthinus. Physiological Zoology, 71, 506514.Google Scholar
Kohlsdorf, T. & Navas, C. (2012). Evolution of form and function: Morphophysiological relationships and locomotor performance in tropidurine lizards. Journal of Zoology, 288, 4149.Google Scholar
Lailvaux, S. P. (2007). Interactive effects of sex and temperature on locomotion in reptiles. Integrative and Comparative Biology, 47, 189199.Google Scholar
Lailvaux, S. P., Alexander, G. J. & Whiting, M. J. (2003). Sex-based differences and similarities in locomotor performance, thermal preferences, and escape behaviour in the lizard Platysaurus intermedius wilhelmi. Physiological & Biochemical Zoology, 76, 511521.Google Scholar
Lamb, T. & Aaron, M. B. (2006). Footprints in the sand: Independent reduction of subdigital lamellae in the Namib-Kalahari burrowing geckos. Proceedings of the Royal Society, B., 273, 855864.Google Scholar
Le Galliard, J. F., Le Bris, M. & Clobert, J. (2003). Timing of locomotor impairment and shift in thermal preferences during gravidity in a viviparous lizard. Functional Ecology, 17, 877885.Google Scholar
Lejeune, T. M., Willems, P. A. & Heglund, N. C. (1998). Mechanics and energetics of human locomotion on sand. Journal of Experimental Biology, 201, 20712080.Google Scholar
Li, C., Hsieh, S. T. & Goldman, D. I. (2012). Multi-functional foot use during running in the zebra-tailed lizard (Callisaurus draconoides). Journal of Experimental Biology, 215, 32933308.Google Scholar
Lieber, R. L. & Ward, S. R. (2011). Skeletal muscle design to meet functional demands. Philosophical Transactions of the Royal Society B, 366, 14661476.Google Scholar
Loeb, G. E. & Gans, C. (1986). The organization of muscle. In Electromyography for Experimentalists. London: University of Chicago Press, pp. 2543.Google Scholar
Losos, J. B. & Irschick, D. J. (1996). The effect of perch diameter on escape behaviour of Anolis lizards: Laboratory predictions and field tests. Animal Behaviour, 51, 593602.Google Scholar
Losos, J. B. & Sinervo, B. (1989). The effects of morphology and perch diameter on sprint performance of Anolis lizards. Journal of Experimental Biology, 145, 2330.Google Scholar
Luke, C. (1986). Convergent evolution of lizard toe fringes. Biological Journal of the Linnean Society, 27, 116.Google Scholar
Maladen, R. D., Ding, Y., Li, C. & Goldman, D. I.(2009). Undulatory swimming in sand: Subsurface locomotion of the sandfish lizard. Science, 325, 314318.Google Scholar
Marsh, R. L. & Bennett, A. F. (1986a). Thermal-dependence of contractile properties of skeletal-muscle from the lizard Sceloporus occidentalis with comments on methods for fitting and comparing force-velocity curves. Journal of Experimental Biology, 126, 6377.Google Scholar
Marsh, R. L. & Bennett, A. F. (1986b). Thermal-dependence of sprint performance of the lizard Sceloporus occidentalis. Journal of Experimental Biology, 126, 7987.Google Scholar
Mattingly, W. B. & Jayne, B. C. (2005). The choice of arboreal escape paths and its consequences for the locomotor behaviour of four species of Anolis lizards. Animal Behaviour, 70, 12391250.Google Scholar
McElroy, E. & Bergmann, P. J. (2013). Tail autotomy, tail size and locomotor performance in lizards. Physiological & Biochemical Zoology, 86, 669679.Google Scholar
McElroy, E. J. & McBrayer, L. D. (2010). Getting up to speed: Acceleration strategies in the Florida scrub lizard, Sceloporus woodi. Physiological & Biochemical Zoology, 83, 643653.Google Scholar
McElroy, E. J., Meyers, J. J., Reilly, S. M. & Irschick, D. J. (2007). Dissecting the effects of behaviour and habitat on the locomotion of a lizard (Urosaurus ornatus). Animal Behaviour, 73, 359365.Google Scholar
McGuire, J. A. (2003). Allometric prediction of locomotor performance: An example from Southeast Asian flying lizards. American Naturalist, 161, 337349.Google Scholar
Melville, J. (2008). Evolutionary correlations between microhabitat specialisation and locomotor capabilities in the lizard genus Niveoscincus. Australian Journal of Zoology, 55, 351355.Google Scholar
Melville, J. & Swain, R. (2000). Evolutionary relationships between morphology, performance and habitat openness in the lizard genus Niveoscincus (Scincidae : Lygosominae). Biological Journal of the Linnean Society, 70, 667683.Google Scholar
O’Connor, J. L., McBrayer, L. M., Higham, T. E. et al. (2011). Effects of training and testosterone on muscle fiber types and locomotor performance in male six-lined racerunners (Aspidoscelis sexlineata). Physiological and Biochemical Zoology, 84, 394405.Google Scholar
Payne, R. C., Crompton, R. H., Isler, K., et al. (2006). Morphological analysis of the hindlimb in apes and humans. II. Moment arms. Journal of Anatomy, 208, 725742.Google Scholar
Peterson, J. A. (1984). The locomotion of Chamaeleo (Reptilia: Sauria) with particular reference to the forelimb. Journal of Zoology, 202, 142.Google Scholar
Pianka, E. R. & Vitt, L. J. (2003). Lizards: Windows to the Evolution of Diversity. Berkeley, CA: University of California Press.Google Scholar
Preuschoft, H. (2002). What does “arboreal locomotion” mean exactly and what are the relationships between “climbing”, environment and morphology? Zeitschrift fur Morphologie und Anthropologie, 83, 171188.Google Scholar
Rand, A. S. (1964). Ecological distribution in anoline lizards of Puerto Rico. Ecology, 45, 745752.Google Scholar
Rassier, D. E., MacIntosh, B. R. & Herzog, W. (1999). Length dependence of active force production in skeletal muscle. Journal of Applied Physiology, 86, 14451457.Google Scholar
Reilly, S. M. (1998). Sprawling locomotion in the lizard Sceloporus clarkii: speed modulation of motor patterns in a walking trot. Brain, Behavior & Evolution, 52, 126138.Google Scholar
Reilly, S. M. & Delancey, M. J. (1997). Sprawling locomotion in the lizard Sceloporus clarkii: the effects of speed on gait, hindlimb kinematics, and axial bending during walking. Journal of Zoology, 243, 417433.Google Scholar
Revell, L. J., Johnson, M. A., Schulte, J. A. II, Kolbe, J. J. & Losos, J. B. (2007). A phylogenetic test for adaptive convergence in rock-dwelling lizards. Evolution, 61, 28982912.Google Scholar
Reznick, D. (1985). Costs of reproduction: An evaluation of the empirical evidence. Oikos, 44, 257267.Google Scholar
Richmond, F. J. R. (1998). Elements of style in neuromuscular architecture. American Zoologist, 38, 729742.Google Scholar
Roberts, T. J., Marsh, R. L., Weyand, P. G. & Taylor, C. R. (1997). Muscular force in running turkeys: the economy of minimizing work. Science, 275, 11131115.Google Scholar
Rome, L. C. & Bennett, A. F. (1990). Influence of temperature on muscle and locomotor performance. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 259, R189R190.Google Scholar
Runyon, D. (1992). Guys and Dolls. New York: Penguin Books, Ltd.Google Scholar
Russell, A. P. (1975). A contribution to the functional analysis of the foot of the Tokay, Gekko gecko (Reptilia: Gekkonidae). Journal of Zoology, 176, 437476.Google Scholar
Russell, A. P. (1986). The morphological basis of weight-bearing in the scansors of the tokay gecko (Reptilia: Sauria). Canadian Journal of Zoology, 64, 948955.Google Scholar
Russell, A. P. & Johnson, M. K. (2007). Real-world challenges to, and capabilities of, the gekkotan adhesive system: contrasting the rough and the smooth. Canadian Journal of Zoology, 85, 12281238.Google Scholar
Russell, A. P. & Johnson, M. K. (2014). Between a rock and a soft place: Microtopography of the locomotor substrate and the morphology of the setal fields of Namibian day geckos (Gekkota: Gekkonidae: Rhoptropus). Acta Zoologica, 95, 295318.Google Scholar
Russell, A. P., Lai, E. K., Powell, G. L. & Higham, T. E. (2014). Density and distribution of cutaneous sensilla on tails of leopard geckos (Eublepharis macularius) in relation to caudal autotomy. Journal of Morphology, 275, 961979.Google Scholar
Sacks, R. D. & Roy, R. R. (1982). Architecture of the hind limb muscles of cats: Functional significance. Journal of Morphology, 173, 185195.Google Scholar
Scales, J. & Butler, M. (2007). Are powerful females powerful enough? Acceleration in gravid green iguanas (Iguana iguana). Integrative and Comparative Biology, 47, 285294.Google Scholar
Schall, J. J. & Pianka, E. R. (1980). Evolution of escape behavior diversity. American Naturalist, 115, 551566.Google Scholar
Schmidt, A. & Fischer, M. S. (2010). Arboreal locomotion in rats. The challenge of maintaining stability. Journal of Experimental Biology, 213, 36153624.Google Scholar
Sherbrooke, W. C., George, A. & Middendorf, G. A. III. (2001). Blood-squirting variability in horned lizards (Phrynosoma). Copeia, 2001, 11141122.Google Scholar
Shine, R. (2003a). Effects of pregnancy on locomotor performance: An experimental study on lizards. Oecologia, 136, 450456.Google Scholar
Shine, R. (2003b). Locomotor speeds of gravid lizards: Placing “costs of reproduction” within an ecological context. Functional Ecology, 17, 526533.Google Scholar
Sinervo, B. & Losos, J. B.(1991). Walking the tight rope: arboreal sprint performance among Sceloporus occidentalis lizard populations. Ecology, 72, 12251233.Google Scholar
Skelton, T. M., Waran, N. K. & Young, R. J. (1996). Assessment of motivation in the lizard, Chalcides ocellatus. Animal Welfare, 5, 6369.Google Scholar
Smith, D. G. (1997). Ecological factors influencing the antipredator behaviors of the ground skink, Scincella lateralis. Behavioral Ecology, 8, 622629.Google Scholar
Snell, H. L., Jennings, R. D., Snell, H. M. & Harcourt, S. (1988). Intrapopulation variation in predator-avoidance performance of Galápagos lava lizards: The interaction of sexual and natural selection. Evolutionary Ecology, 2, 353369.Google Scholar
Snyder, R. C. (1954). The anatomy and function of the pelvic girdle and hindlimb in lizard locomotion. American Journal of Anatomy, 95, 145.Google Scholar
Snyder, R. C. (1962). Adaptations for bipedal locomotion of lizards. American Zoologist, 2, 191203.Google Scholar
Sorci, G., Swallow, J. G., Theodore, G. Jr. & Clobert, J. (1995). Quantitative genetics of locomotor speed and endurance in the lizard Lacerta vivipara. Physiological Zoology, 68, 698720.Google Scholar
Spezzano, L. C. & Jayne, B. C. (2004). The effects of surface diameter and incline on the hindlimb kinematics of an arboreal lizard (Anolis sagrei). Journal of Experimental Biology, 207, 21152131.Google Scholar
Stiller, R. B. & McBrayer, L. D. (2013). The ontogeny of escape behavior, locomotor performance, and the hind limb in Sceloporus woodi. Zoology, 116, 175181.Google Scholar
Taylor, C. R., Caldwell, S. L. & Rowntree, V. J. (1972). Running up and down hills: Some consequences of size. Science, 178, 10961097.Google Scholar
Tian, Y., Pesika, N., Zeng, H. et al. (2006). Adhesion and friction in gecko toe attachment and detachment. Proceedings of the National Academy of Sciences, 103, 1932019325.Google Scholar
Toro, E., Herrel, A., Vanhooydonck, B. & Irschick, D. J. (2003). A biomechanical analysis of intra- and interspecific scaling of jumping and morphology in Caribbean Anolis lizards. Journal of Experimental Biology, 206, 26412652.Google Scholar
Toro, E., Herrel, A. & Irschick, D. J. (2004). The evolution of jumping performance in Caribbean Anolis lizards: Solutions to biomechanical trade-offs. American Naturalist, 163, 844856.Google Scholar
Tulli, M. J., Cruz, F. B., Herrel, A., Vanhooydonck, B. & Abdala, V. (2009). The interplay between claw morphology and microhabitat use in neotropical iguanian lizards. Zoology, 112, 379392.Google Scholar
Tulli, M. J., Abdala, V. & Cruz, F. B. (2012). Effects of different substrates on the sprint performance of lizards. Journal of Experimental Biology, 215, 774784.Google Scholar
Van Damme, R., Aerts, P. & Vanhooydonck, B. (1998). Variation in morphology, gait characteristics and speed of locomotion in two populations of lizards. Biological Journal of the Linnean Society, 63, 409427.Google Scholar
Vanhooydonck, B., Aerts, P., Irschick, D.J. & Herrel, A. (2006a). Power generation during locomotion in Anolis lizards: An ecomorphological approach. In Herrel, A., Speck, T. & Rowe, N.P. (eds.) Ecology and Biomechanics: A Mechanical Approach to the Ecology of Animals and Plants. Boca Raton, FL: CRC Press, pp. 253269.Google Scholar
Vanhooydonck, B., Herrel, A. & Irschick, D. J. (2006b). Out on a limb: the differential effect of substrate diameter on acceleration capacity in Anolis lizards. Journal of Experimental Biology, 209, 45154523.Google Scholar
Vanhooydonck, B., Herrel, A., Van Damme, R. & Irschick, D. J. (2006c). The quick and the fast: The evolution of acceleration capacity in Anolis lizards. Evolution, 60, 21372147.Google Scholar
Vanhooydonck, B., James, R. S., Tallis, J., et al. (2014). Is the whole more than the sum of its parts? Evolutionary trade-offs between burst and sustained locomotion in lacertid lizards. Proceedings of the Royal Society B: Biological Sciences, 281, 20132677.Google Scholar
Wainwright, P. C. (2007). Functional versus morphological diversity in macroevolution. Annual Review of Ecology, Evolution, and Systematics, 38, 381401.Google Scholar
Wainwright, P. C., Alfaro, M. E., Bolnick, D. I. & Hulsey, C. D. (2005). Many-to-one mapping of form to function: A general principle in organismal design? Integrative and Comparative Biology, 45, 256262.Google Scholar
Walker, J. A. (2000). Does a rigid body limit maneuverability? Journal of Experimental Biology, 203, 33913396.Google Scholar
Wassersug, R. J. & Sperry, D. G. (1977). The relationship of locomotion to differental predation on Pseudacris triseriata (Anura: Hylidae). Ecology, 58, 830839.Google Scholar
Weinstein, R. B. & Full, R. J. (1999). Intermittent locomotion increases endurance in a gecko. Physiological and Biochemical Zoology, 72, 732739.Google Scholar
Wilson, A. & Lichtwark, G. (2011). The anatomical arrangement of muscle and tendon enhances limb versatility and locomotor performance. Philosophical Transactions of the Royal Society B, 366, 15401553.Google Scholar
Woakes, A. J. & Foster, W. A. (eds.) (1991). The comparative physiology of exercise. Journal of Experimental Biology, 160, 1340.Google Scholar
Ydenberg, R. C. & Dill, L. M. (1986). The economics of fleeing from predators. In Rosenblatt, J. S., Beer, C., Busnel, M.-C. & Slater, P. J. B. (eds.) Advances in the Study of Behavior, Vol. 16. pp. 229249.Google Scholar
Zaaf, A., Herrel, A., Aerts, P. & De Vree, F. (1999). Morphology and morphometrics of the appendicular musculature in geckoes with different locomotor habits (Lepidosauria). Zoomorphology, 119, 922.Google Scholar
Zamparo, P., Perini, R., Orizio, C., Sacher, M. & Ferretti, G. (1992). The energy cost of walking or running on sand. European Journal of Applied Physiology, 65, 183187.Google Scholar
Zani, P. A. (2000). The comparative evolution of lizard claw and toe morphology and clinging performance. Journal of Evolutionary Biology, 13, 316325.Google Scholar
Zehr, E. P. & Sale, D. G. (1994). Ballistic movement: muscle activation and neuromuscular adaptation. Canadian Journal of Applied Physiology, 19, 363378.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×