Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-gvh9x Total loading time: 0 Render date: 2024-07-18T13:41:58.608Z Has data issue: false hasContentIssue false

7 - Detecting the infectious disease consequences of climate change and extreme weather events

Published online by Cambridge University Press:  28 July 2009

Paul R. Epstein
Affiliation:
Center for Health and the Global Environment, Harvard Medical School, Boston, USA
P. Martens
Affiliation:
Universiteit Maastricht, Netherlands
A. J. McMichael
Affiliation:
Australian National University, Canberra
Get access

Summary

Introduction

According to the World Health Organization (WHO, 1996) 30 infectious diseases new to medicine emerged between 1976 and 1996. Included are HIV/AIDS, Ebola, Lyme disease, Legionnaires' disease, toxic Escherichia coli, a new hantavirus, a new strain of cholera and a rash of rapidly evolving antibiotic-resistant organisms. In addition, there has been a resurgence and redistribution of several old diseases on a global scale; for example, malaria and dengue (“breakbone”) fever carried by (vectored by) mosquitoes. The factors influencing this lability of infectious diseases are many and varied. They include urbanization, increased human mobility, long-distance trade, changing land-use patterns, drug abuse and sexual behaviours, the rise of antibiotic resistance, the decline of public health infrastructure in many countries, and a quarter century of predominantly anthropogenic climate change. This complex mix of potential influences means, of course, that the scientific task of attributing causation is difficult. This chapter discusses the types of evidence relevant to the detection of changes in infectious disease occurrence in response to climatic variations and trends.

Arthropods such as mosquitoes and ticks are extremely sensitive to climate. Throughout the past century public health researchers have understood that climate circumscribes the distribution of mosquito-borne diseases, while weather affects the timing and intensity of outbreaks (Gill, 1920, 1921; Dobson& Carper, 1993). Paleoclimatic data (Elias, 1994) demonstrate that geographical shifts of beetles have been closely associated with changes in climate.

Type
Chapter
Information
Environmental Change, Climate and Health
Issues and Research Methods
, pp. 172 - 196
Publisher: Cambridge University Press
Print publication year: 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Albritton, D. L., Allen, M. R., Baede, A. P. M. et al. (2001). IPCC Working Group I Summary for Policy Makers, Third Assessment Report: Climate Change 2001: The Scientific Basis. New York City, NY: Cambridge University Press
Anderson, P. K.& Morales, F. J. (1993). The emergence of new plant diseases: the case of insect-transmitted plant viruses. In Disease in Evolution: Global Changes and Emergence of Infectious Diseases, ed. M. E. Wilson, R. Levins& A. Spielman, pp. 181–94. New York: NY Academy of Sciences
Barry, J. P., Baxter, C. H., Sagarin, R. D.Gilman, S. E. (1995). Climate-related, longterm faunal changes in a California rocky intertidal community. Science, 267, 672–75CrossRefGoogle Scholar
Billett, J. D. (1974). Direct and indirect influences of temperature on the transmission of parasites from insects to man. In The Effects of Meteorological Factors Upon Parasites, ed. A. E. R. Taylor& R. Muller, pp. 79–95. Oxford: Blackwell Scientific Publication
Billings, D. W. (1995). What we need to know: some priorities for research biotic feedbacks in a changing biosphere. In Biotic Feedbacks in the Global Climate System, ed. G. M. Woodwell& F. T. Mackenzie, pp. 377–92. New York: Oxford University Press
Bindoff, N. L.& Church, J. A. (1992). Warming of the water column in the southwest Pacific. Nature, 357, 59–62CrossRefGoogle Scholar
Bouma, M. J., Sondorp, H. E.& Kaay, J. H. (1994a). Health and climate change. Lancet, 343, 302CrossRefGoogle Scholar
Bouma, M. J., Sondorp, H. E.& Kaay, J. H. (1994b). Climate change and periodic epidemic malaria. Lancet, 343, 1440CrossRefGoogle Scholar
Bradshaw, W. E.& Holzapfel, U. (2001). Genetic shift in photoperiodic response correlated with global warming. Proceedings of the National Academy of Science of the USA, 498, 14509–11CrossRefGoogle Scholar
Burgos, J. J. (1990). Analogias agroclimatologicas utiles para la adaptacion al posible cambio climatico global de America del Sur. Revista Geofisica, 32, 79–95Google Scholar
Burgos, J. J., Curto de Casas, S. I., Carcavallo, R. U.& Galindez, G. I. (1994). Global climate change in the distribution of some pathogenic complexes. Entomologia y Vectores, 1, 69–82Google Scholar
Burgos, J. J., Curto de Casas, S. I., Carcavallo, R. U.& Galindez, G. I.Centers for Disease Control and Prevention CDC, (1995). Local transmission of Plasmodium vivax malaria– Houston, Texas, 1994. Morbidity and Mortality Weekly Review, 44, 295–303Google Scholar
Burgos, J. J., Curto de Casas, S. I., Carcavallo, R. U.& Galindez, G. I.CDC, (1996). Mosquito-transmitted malaria– Michigan, 1995. Morbidity and Mortality Weekly Review, 45, 398–400Google Scholar
Burgos, J. J., Curto de Casas, S. I., Carcavallo, R. U.& Galindez, G. I.CDC, (1997). Probable locally acquired mosquito-transmitted Plasmodium vivax infection– Georgia, 1996. Morbidity and Mortality Weekly Report, 46, 264–7Google Scholar
Checkley, W., Epstein, L. D., Gilman, R. H., Figueroa, D., Cama, R. I.& Patz, J. A. (2000). Effects of El Niño and ambient temperature on hospital admissions for diarrhoeal diseases in Peruvian children. Lancet, 355, 442–50Google ScholarPubMed
Dahlstein, D. L.& Garcia, R. (eds.) (1989). Eradication of Exotic Pests: Analysis with Case Histories. New Haven, CT: Yale University Press
Davis, M. B. (1989). Lags in vegetation response to greenhouse warming. Climatic Change, 15, 75–82CrossRefGoogle Scholar
Davis, M. B.& Zabinski, C. (1992). Changes in geographical range resulting from greenhouse warming: effects on biodiversity in forests. In Global Warming and Biological Diversity, ed. R. L. Peters& T. E. Lovejoy, pp. 297–308. New Haven, CT: Yale University Press
DeMeillon, B. (1934). Observations on Anopheles funestus and Anopheles gambiae in the Transvaal. Publications of the South African Institute of Medical Research, 6, 195–248Google Scholar
Diaz, H. F.& Graham, N. E. (1996). Recent changes in tropical freezing heights and the role of sea surface temperature. Nature, 383, 152–5CrossRefGoogle Scholar
Diaz, H. F., Beniston, M. & Bradley, R. S. (1997). Climatic Change at High Elevation Sites, pp. 1–298. Dordrecht: KluwerCrossRef
Dobson, A.& Carper, R. (1993). Biodiversity. Lancet, 342, 1096–9CrossRefGoogle ScholarPubMed
Easterling, D. R., Horton, B., Jones, P. D., Peterson, T. C., Karl, T. R., Parker, D. E., Salinger, M. J., Razuvayev, V., Plummer, N., Jamason, P.& Folland, C. K. (1997). Maximum and minimum temperature trends for the globe. Science, 277, 363–7CrossRefGoogle Scholar
Easterling, D. R., Meehl, G. A., Parmesan, C., Changnon, S. A., Karl, T. R.& Mearns, L. O. (2000). Climate extremes: observations, modeling, and impacts. Science, 289, 2068–74CrossRefGoogle ScholarPubMed
Elias, S. A. (1994). Quaternary Insects and Their Environments. Washington DC: Smithsonian Institution Press
Engelthaler, D. M.et al. (1999). Climatic and environmental patterns associated with hanta virus pulmonary syndrome, Four Corners region, United States. Emerging Infectious Diseases, 5, 87–94CrossRefGoogle ScholarPubMed
Epstein, P. R. (ed.) (1999a). Extreme weather events: the health and economic consequences of the 1997/98 El Niño and La Niña. Harvard Medical School Boston, MA: Center for Health and the Global Environment. http://chge2.med.harvard.edu/enso/disease.html
Epstein, P. R. (1999b). Climate and health. Science, 285, 347–8CrossRefGoogle Scholar
Epstein, P. R. (2000). Is global warming harmful to health?Scientific American, August, 50–7CrossRefGoogle Scholar
Epstein, P. R.& Chikwenhere, G. P. (1994). Biodiversity questions (Ltr). Science, 265, 1510–11CrossRefGoogle Scholar
Epstein, P. R.& Defilippo, C. (2001). West-Nile virus and drought. Global Change and Human Health, 2(2), 105–7CrossRefGoogle Scholar
Epstein, P. R., Pena, O. C.& Racedo, J. B. (1995). Climate and disease in Colombia. Lancet, 346, 1243CrossRefGoogle ScholarPubMed
Epstein, P. R., Diaz, H. F., Elias, S., Grabherr, G., Graham, N. E., Martens, W. J. M., Mosley-Thompson, E.& Susskind, J. (1998). Biological and physical signs of climate change: focus on mosquito-borne disease. Bulletin of the American Meteorological Society, 78, 409–172.0.CO;2>CrossRefGoogle Scholar
Focks, D. A., Daniels, E., Haile, D. G.& Keesling, L. E. (1995). A simulation model of the epidemiology of urban dengue fever: literature analysis, model development, preliminary validation, and samples of simulation results. American Journal of Tropical Medicine and Hygiene, 53, 489–506CrossRefGoogle ScholarPubMed
Gill, C. A. (1920). The relationship between malaria and rainfall. Indian Journal of Medical Research, 7, 618–32Google Scholar
Gill, C. A. (1921). The role of meteorology and malaria. Indian Journal of Medical Research, 8, 633–93Google Scholar
Grabherr, G., Gottfried, N.& Pauli, H. (1994). Climate effects on mountain plants. Nature, 369, 447CrossRefGoogle ScholarPubMed
Graham, N. E. (1995). Simulation of recent global temperature trends. Science, 267, 666–71CrossRefGoogle ScholarPubMed
Haeberli, W. (1995). Climate change impacts on glaciers and permafrost. In Potential Ecological Impacts of Climate Change in the Alps and Fennoscandanavian Mountains, ed. A. Guisan, J. I. Holton, R. Spichiger& L. Tessier, pp. 97–103. Geneva: Conservatoire et Jardin Botaniques de Genève
Haines, A., McMichael, A. J.Epstein, P. R. (2000). Global climate change and health. Canadian Medical Association Journal, 163, 729–34Google ScholarPubMed
Hales, S., Weinstein, P.& Woodward, A. (1996). Dengue fever in the South Pacific: driven by El Niño Southern Oscillation?Lancet, 348, 1664–5CrossRefGoogle ScholarPubMed
Harvell, C. D., Kim, K., Burkholder, J. M., Colwell, R. R., Epstein, P. R., Grimes, J., Hofmann, E. E., Lipp, E., Osterhaus, A. D. M. E., Overstreet, R., Porter, J. W., Smith, G. W.Vasta, G. (1999). Diseases in the ocean: emerging pathogens, climate links, and anthropogenic factors. Science, 285, 1505–10CrossRefGoogle Scholar
Hastenrath, S.& Kruss, P. D. (1992). Greenhouse indicators in Kenya. Nature, 355 (6360), 503–4CrossRefGoogle Scholar
Houghton, J. T., Ding, Y., Griggs, D. J., Noguer, M., van der Linden, P. J., Dai, X., Maskell, K.& Johnson, C. A. (2001). IPCC Working Group I Third Assessment Report: Climate Change 2001: The Scientific Basis. New York City, NY: Cambridge University Press
Intergovernmental Panel on Climate Change (IPCC) (1996). Climate Change ‘95: The Science of Climate Change. Contribution of Working Group I to the Second Assessment Report of the IPCC, ed. J. T. Houghton, L. G. Meiro Filho, B. A. Callander, N. Harris, A. Kattenberg& K. Maskell, p. 149, pp. 370–4. Cambridge, UK: Cambridge University Press
Jacobson, G. L. Jr., Webb T.III& Grimm, E. C. (1987). Patterns and rates of vegetation change during the deglaciation of eastern North America. In North America and Adjacent Oceans During the Last Deglaciation. The Geology of North America, ed. W. F. Ruddiman& H. E. Wright Jr., pp. 277–88, vol. K-3. Boulder, CO: Geological Society of AmericaCrossRef
Karl, T. R., Jones, P. D., Knight, R. W., Kukla, G., Plummer, N., Razuvayev, V., Gallo, K. P., Lindsay, J., Charlson, R. J.& Peterson, T. C. (1993). A new perspective on recent global warming: asymmetric trends of daily maximum and minimum temperature. Bulletin of the American Meteorological Society, 74, 1007–232.0.CO;2>CrossRefGoogle Scholar
Karl, T. R., Knight, R. W., Easterling, D. R.& Quayle, R. G. (1995a). Trends in U.S. climate during the twentieth century. Consequences, 1, 3–12Google Scholar
Karl, T. R., Knight, R. W.& Plummer, N. (1995b). Trends in high-frequency climate variability in the twentieth century. Nature, 377, 217–20CrossRefGoogle Scholar
Karl, T. R., Nicholls, N.& Gregory, J. (1997). The coming climate. Scientific American, May, 78–83CrossRefGoogle Scholar
Kaser, G.& Noggler, B. (1991). Observations on Speke Glacier, Ruwenzori Range, Uganda. Journal of Glaciology, 37, 513–18CrossRefGoogle Scholar
Koopman, J. S., Prevots, D. R., Marin, M. A. V., Dantes, H. G., Aquino, M. L. Z., Longini, I. M. Jr.& Amor, J. S. (1991). Determinants and predictors of dengue infection in Mexico. American Journal of Epidemiology, 133, 1168–78CrossRefGoogle ScholarPubMed
Kovats, R. S., Campbell-Lendrum, D., Reid, C.& Martens, P. (2000). Climate and Vector-Borne Diseases: An Assessment of the Role of Climate in Changing Disease Patterns. ICIS/UNEP/LSHTM, October 2000, Maastricht University
Kovats, R. S., Campbell-Lendrum, D. H., McMichael, A. J., Woodward, A.& Cox, J. (2001). Early effects of climate change: do they include changes in vector-borne diseases?Philosophical Transactions, 356, 1057–68CrossRefGoogle Scholar
Krabill, W., Frederick, E., Manizade, S., Martin, C., Sonntag, J., Swift, R., Thomas, R., Wright, W.& Yungel, J. (1999). Rapid thinning of parts of the southern Greenland Ice Sheet. Science, 283, 1522–4CrossRefGoogle ScholarPubMed
Leaf, A. (1989). Potential health effects of global climate and environmental changes. New England Journal of Medicine, 321, 1577–83CrossRefGoogle ScholarPubMed
Leeson, H. S. (1939). Longevity of Anopheles maculipennis race atroparvus, Van Theil, at controlled temperature and humidity after one blood meal. Bulletin of Entomological Research, 30, 103–301CrossRefGoogle Scholar
Levitus, S., Antonov, J. I., Boyer, T. P.& Stephens, C. (2000). Warming of the world ocean. Science, 287, 2225–9CrossRefGoogle Scholar
Lindgren, E.& Gustafson, R. (2001). Tick-borne encephalitis in Sweden and climate change. Lancet, 358, 16–18CrossRefGoogle ScholarPubMed
Lindgren, E., Tälleklint, L.& Polfeld, T. (2000). Impact of climatic change on the northern latitude limit and population density of the disease-transmitting European tickIxodes ricans. Environmental Health Perspectives, 108, 119–23CrossRefGoogle ScholarPubMed
Lindsay, S. W.& Martens, P. (1998). Malaria in the African highlands: past, present and future. Bulletin of the World Health Organization, 76(1), 33–45Google ScholarPubMed
Loevinsohn, M. (1994). Climatic warming and increased malaria incidence in Rwanda. Lancet, 343, 714–18CrossRefGoogle ScholarPubMed
MacArthur, R. H. (1972). Geographical Ecology. New York: Harper& Row
Maldonado, Y. A., Nahlen, B. L., Roberto, R. R.et al. (1990). Transmission of Plasmodium vivax malaria in San Diego County, California, 1986. American Journal of Tropical Medicine and Hygiene, 42, 3–9CrossRefGoogle Scholar
Mann, M. B., Bradley, R. S.Hughs, M. K. (1998). Global-scale temperature patterns and climate forcing over the past six centuries. Nature, 392, 779–87CrossRefGoogle Scholar
Martens, P., Jetten, T. H.& Focks, D. (1997). Sensitivity of malaria, schistosomiasis and dengue to global warming. Climatic Change, 35, 145–56CrossRefGoogle Scholar
Martin, P. H.& Lefebvre, M. G. (1995). Malaria and climate: sensitivity of malaria potential transmission to climate. Ambio, 24, 200–9Google Scholar
Maskell, K., Mintzer, I. M.& Callander, B. A. (1993). Basic science of climate change. Lancet, 342, 1027–31CrossRefGoogle ScholarPubMed
Matola, Y. G., White, G. B.Magayuka, S. A. (1987). The changed pattern of malaria endemicity and transmission at Amani in the eastern Usambara mountains, north-eastern Tanzania. Journal of Tropical Medicine and Hygiene, 90, 127–34Google ScholarPubMed
Matsuoka, Y.& Kai, K. (1994). An estimation of climatic change effects on malaria. Journal of Global Environment Engineering, 1, 1–15Google Scholar
McCarthy, J. J., Canziani, O. F., Leary, N. A., Dokken, D. J.& White, K. S. (eds.) (2001). Climate change 2001: Impacts, Adaptation, and Vulnerability. IPCC Working GroupIII, Third Assessment Report Geneva: IPCC
McMichael, A. J., Haines, A.& Slooff, R. (eds.) (1996). Climate Change and Human Health. [Task Force: McMichael, A. J., Ando, M., Carcavallo, R., Epstein, P. R., Haines, A., Jendritzky, G., Kalkstein, L. S., Odongo, R. A., Patz, J., Piver, W. T.& Slooff, R.] World Health Organization, World Meteorological Organization, United Nations Environmental Program, Geneva, Switzerland
Morse, S. S. (1995). Factors in the emergence of infections diseases. Emerging Infections Diseases, 1, 7–15CrossRefGoogle Scholar
Molineaux, L. (1988). In Malaria, Principles and Practice of Malariology (vol. 2), ed. W. H. Wernsdorfer& I. McGregor, pp. 913–98. New York: Churchill Livingstone
Mosley-Thompson, E. (1997). Glaciological evidence of recent environmental changes. Presentation: AAG, Fort Worth, Texas, April 3
Overpeck, J. T., Bartlein, P. J.& Webb, T. III (1991). Potential magnitude of future vegetation change in eastern North America: comparisons with the past. Science, 254, 692–5CrossRefGoogle ScholarPubMed
Parkinson, C. L., Cavalieri, D. J., Gloersen, P., Zwally, H. J.& Comiso, J. C. (1999). Spatial distribution of trends and seasonality in the hemispheric sea ice covers. Journal of Geophysical Research. 104, 20827–35Google Scholar
Parmesan, C. (1996). Climate and species' range. Nature, 382, 765CrossRefGoogle Scholar
Parmesan, C. (1999). The world as a patchwork. Nature, 399, 747CrossRefGoogle Scholar
Parmesan, C., Ryholm, N., Stefanescu, C., Hill, J. K., Thomas, C. D., Descimon, H., Huntley, B., Kaila, L., Kullberg, J., Tammaru, T., Tennent, W. J., Thomas, J. A.& Warren, M. (1999). Poleward shifts in geographical ranges of butterfly species associated with regional warming. Nature, 399, 579–83CrossRefGoogle Scholar
Parrilla, G., Lavin, A., Bryden, H., Garcia, M.& Millard, R. (1994). Rising temperatures in the sub-tropical North Atlantic Ocean over the past 35 years. Nature, 369, 48–51CrossRefGoogle Scholar
Patz, J. A., Epstein, P. R., Burke, T. A.& Balbus, J. M. (1996). Global climate change and emerging infectious diseases. Journal of the American Medical Association, 275, 217–23CrossRefGoogle ScholarPubMed
Pauli, H., Gottfried, M.& Grabherr, G. (1996). Effects of climate change on mountain ecosystems– upward shifting of alpine plants. World Resource Review, 8, 382–90Google Scholar
Peters, R. L. (1991). Consequences of global warming for biological diversity. In Global Climate Change and Life on Earth, ed. R. L. White. New York: Routledge, Chapman and Hall
ProMED (1996). Malaria, autochthonous– Florida, USA. ProMED Archives, reported by Roger Spitzer, 2 Aug 1996
ProMED (1997). Malaria– Indonesia (Irian Jaya). ProMED Archives, reported by Budi Subianto, 23 Dec 1997
ProMED (1999). V99.n213, September, 1999. Malaria in New York City http://www.medscape.com/other/ProMED/public/archive.html ProMED/public/archive.html
Rajagopalan, B., Kumar, K. K.& Cane, M. A. (1999). On the weakening relationship between the Indian monsoon and ENSO. Science, 284, 2156–9Google Scholar
Reeves, W. C., Hardy, J. L., Reisen, W. K.& Milby, M. M. (1994). Potential effect of global warming on mosquito-borne arboviruses. Journal of Medical Entomology, 31, 323–32CrossRefGoogle ScholarPubMed
Regaldo, A. (1995). Listen up! The world's oceans may be starting to warm. Science, 268, 1436–7CrossRefGoogle Scholar
Reisen, W. K., Meyer, R. P., Preser, S. B.& Hardy, J. L. (1993). Effect of temperature on the transmission of western equine encephalomyelitis and St. Louis encephalitis viruses by Culex tarsalis (Diptera: Culicadae). Journal of Medical Entomology, 30, 51–160CrossRefGoogle Scholar
Retallack, G. J. (1997). Early forest soils and their role in Devonian global change. Science, 276, 583–5CrossRefGoogle ScholarPubMed
Roemmich, D.& McGowan, J. (1995). Climatic warming and the decline of zooplankton in the California current. Science, 267, 1324–6CrossRefGoogle ScholarPubMed
Rosenzweig, C.& Hillel, D. (1998). Climate Change and the Global Harvest, pp. 101–22. New York: Oxford University Press
Rosenzweig, C., Iglesias, A., Yang, X. B., Epstein, P. R.& Chivian, E. (2000). Climate Change and U.S. Agriculture: the Impacts of Warming and Extreme Weather Events on Productivity, Plant Diseases, and Pests. Harvard Medical School, Boston, MA: Center for Health and the Global Environment
Rosenzweig, C., Iglesias, A., Yang, X. B., Epstein, P. R.& Chivian, E. (2001). Climate change and extreme weather event. Implications for food production plant diseases, and pests. Global Change and Human Health, 2(2), 90–104CrossRefGoogle Scholar
Rothrock, D. A., Yu, Y.& Marykut, G. A. (1999). Thinning of the Arctic Sea-ice cover. Journal of Geophysical Research Letters, 26, 3469–72CrossRefGoogle Scholar
Rozendaal, J. (1996). Assignment Report: Malaria. Pt. Moresby, Papua New Guinea. Geneva: World Health Organization
Santer, B. D., Taylor, K. E., Wigley, T. M. L., Johns, T. C., Jones, P. D., Karoly, D. J., Mitchell, J. F. B., Oort, A. H., Penner, J. E., Ramaswamy, V., Schwarzkopf, M. D., Stouffer, R. J.& Tett, S. (1996). A search for human influences on the thermal structure of the atmosphere. Nature, 382, 39–46CrossRefGoogle Scholar
Shepherd, A., Wingham, D. J., Mansley, J. A. D.& Corr, H. F. J. (2001). Inland thinning of Pine Island Glacier, West Antarctica. Science, 291, (5505), 862–4CrossRefGoogle ScholarPubMed
Shope, R. (1991). Global climate change and infectious disease. Environmental Health Perspectives, 96, 171–4CrossRefGoogle Scholar
Some, E. S. (1994). Effects and control of highland malaria epidemic in Uasin Gishu District, Kenya. East African Medical Journal, 71(1), 2–8Google ScholarPubMed
Suarez, M. F.& Nelson, M. J. (1981). Registro de altitud del Aedes aegypti en Colombia. Biomedica, 1, 225CrossRefGoogle Scholar
Susskind, J., Piraino, P., Rokke, L., Iredell, L.& Mehta, A. (1997). Characteristics of the TOVS Pathfinder Path A data set. Bulletin of the American Meteorological Society, 78, 1449–722.0.CO;2>CrossRefGoogle Scholar
Sutherst, R. W. (1990). Impact of climate change on pests and diseases in Australasia. Search, 21, 230–2Google Scholar
Tälleklint, L.& Jaenson, T. G. T. (1998). Increasing geographical distribution and density of Ixodes Ricans (Acari: Ixodidae) in central and northern Sweden. Journal of Medical Entomology, 35, 521–6CrossRefGoogle Scholar
Thompson, L. G., Mosley-Thompson, E., Davis, M., Lin, P. N., Yao, T., Dyurgerov, M.& Dai, J. (1993). “Recent warming”: ice core evidence from tropical ice cores with emphasis on Central Asia. Global and Planetary Change, 7, 145–56CrossRefGoogle Scholar
Thompson, L. G., Yao, T., Mosley-Thompson, E., Davis, M. E., Henderson, K. A.& Lin, P.- N. (2000). A high-resolution millennial record of the South Asian Monsoon from Himalayan ice cores. Science, 289, 1916–19CrossRefGoogle ScholarPubMed
Thwaites, T. (1994). Are the antipodes in hot water? New Scientist, 12 November, p. 21
Travis, J. (1994). Taking a bottom-to-sky “slice” of the Arctic Ocean. Science, 266, 1947–8CrossRefGoogle ScholarPubMed
World Health Organization (WHO) (1996). The World Health Report 1996: Fighting Disease, Fostering Development. Geneva: World Health Organization
Yoon, C. K. (1994). Warming moves plants up peaks, threatening extinction. The New York Times, 21 June, p. C4
Zucker, J. R. (1996). Changing patterns of autochthonous malaria transmission in the United States: a review of recent outbreaks. Emerging Infectious Diseases, 2, 37CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×