Skip to main content Accessibility help
×
Home
  • Cited by 2
  • Print publication year: 2019
  • Online publication date: April 2019

6 - Phosphate Nutrition in Root–Fungus Interactions

from Part II - Role of Endophytes in Growth and Biotic and Abiotic Stress Resistance

Summary

Phosphate belongs to the major mineral nutrient category in plants and is a non-renewable resource. Many natural soils are phosphate deficient, and phosphate fixation into insoluble mineral complexes limits plant growth by decreasing root uptake. Different strategies have appeared during the evolution of land plants to cope with this situation, one of which is to interact with various microbes (bacteria and fungi) located in the plant rhizosphere. This chapter will focus on three major groups of fungi that colonise the roots of most land plants: arbuscular mycorrhizal fungi (Glomeromycotina), fungi from the order Sebacinales (Basidiomycota) and the diverse form-group of dark septate endophytes (Ascomycota). Three major mechanisms of fungal contribution to plant nutrition will be discussed. First, fungi are able to solubilise phosphate from inorganic sources that are not available to plants. Second, fungi can set free mineral nutrients from organic compounds/sources. Third, fungi are able to transport phosphate along their hyphae towards the plant, thereby bridging phosphate depletion zones around the roots. In this chapter, we summarise published knowledge on this topic and present some new non-published data to complete our current model.

Achatz, B., von Ruden, S., Andrade-Linares, D. R. et al. (2010). Root colonization by Piriformospora indica enhances grain yield in barley under diverse nutrient regimes by accelerating plant development. Plant and Soil, 333, 5970.
Almario, J., Jeena, G., Wunder, J. et al. (2017). Root-associated fungal microbiota of nonmycorrhizal Arabis alpina and its contribution to plant phosphorus nutrition. Proceedings of the National Academy of Sciences of the United States of America, 114, E9403–E9412.
Andrade, G., Mihara, K. L., Linderman, R. G. and Bethlenfalvay, G. J. (1997). Bacteria from rhizosphere and hyphosphere soils of different arbuscular-mycorrhizal fungi. Plant and Soil, 192, 7179.
Antunes, P. M., Schneider, K., Hillis, D. and Klironomos, J. N. (2007). Can the arbuscular mycorrhizal fungus Glomus intraradices actively mobilize P from rock phosphates? Pedobiologia, 51, 281–286.
Auge, R. M., Stodola, A. J. W., Tims, J. E. and Saxton, A. M. (2001). Moisture retention properties of a mycorrhizal soil. Plant and Soil, 230, 8797.
Bago, B. and Cano, C. (2005). In Vitro Culture of Mycorrhizas. Berlin: Springer.
Barrow, J. R. and Osuna, P. (2002). Phosphorus solubilization and uptake by dark septate fungi in fourwing saltbush, Atriplex canescens (Pursh) Nutt. Journal of Arid Environments, 51, 449459.
Battini, F., Cristani, C., Giovannetti, M. and Agnolucci, M. (2016). Multifunctionality and diversity of culturable bacterial communities strictly associated with spores of the plant beneficial symbiont Rhizophagus intraradices. Microbiol Research, 183, 6879.
Battini, F., Grønlund, M., Agnolucci, M., Giovannetti, M. and Jakobsen, I. (2017). Facilitation of phosphorus uptake in maize plants by mycorrhizosphere bacteria. Scientific Reports, 7, 4686.
Behie, S. W. and Bidochka, M. J. (2014). Nutrient transfer in plant–fungal symbioses. Trends in Plant Science, 19, 734740.
Bitterlich, M. and Franken, P. (2016). Connecting polyphosphate translocation and hyphal water transport points to a key of mycorrhizal functioning. New Phytologist, 211, 11471149.
Bitterlich, M., Franken, P. and Graefe, J. (2018a). Arbuscular mycorrhiza improves substrate hydraulic conductivity in the plant available moisture range under root growth exclusion. Frontiers in Plant Science, 9, 301.
Bitterlich, M., Sandmann, M. and Graefe, J. (2018b). Arbuscular mycorrhiza alleviates restrictions to substrate water flow and delays transpiration limitation to stronger drought in tomato. Frontiers in Plant Science, 9.
Boldt, K., Pörs, Y., Haupt, B. et al. (2011). Photochemical processes, carbon assimilation and RNA accumulation of sucrose transporter genes in tomato arbuscular mycorrhiza. Journal of Plant Physiology, 168, 12561263.
Brady, N. C. (1990). The Nature and Properties of the Soil. New York, NY: Macmillan Publishing Co.
Breuillin, F., Schramm, J., Hajirezaei, M. et al. (2010). Phosphate systemically inhibits development of arbuscular mycorrhiza in Petunia hybrida and represses genes involved in mycorrhizal functioning. Plant Journal, 64, 10021017.
Bucher, M. (2007). Functional biology of plant phosphate uptake at root and mycorrhiza interfaces. New Phytologist, 173, 1126.
Bütehorn, B., Rhody, D. and Franken, P. (2000). Isolation and characterisation of Pitef1 encoding the translation elongation factor EF-1a of the root endophyte Piriformospora indica. Plant Biology, 49, 687692.
Cano, C. and Bago, A. (2005). Competition and substrate colonization strategies of three polyxenically grown arbuscular mycorrhizal fungi. Mycologia, 97, 12011214.
Chen, M. and Graedel, T. E. (2016). A half-century of global phosphorus flows, stocks, production, consumption, recycling, and environmental impacts. Global Environmental Change, 36, 139152.
Cordell, D. and White, S. (2015). Tracking phosphorus security: indicators of phosphorus vulnerability in the global food system. Food Security, 7, 337350.
Cordell, D., Drangert, J. O. and White, S. (2009). The story of phosphorus: global food security and food for thought. Global Environmental Change, 19, 292–305.
Cox, G., Moran, K. J., Sanders, F., Nockolds, C. and Tinker, P. B. (1980). Translocation and transfer of nutrients in vesicular-arbuscular mycorrhizas. III. Polyphosphate granules and phosphorus translocation. New Phytologist, 84, 649659.
Daynes, C. N., Field, D. J., Saleeba, J. A., Cole, M. A. and McGee, P. A. (2013). Development and stabilisation of soil structure via interactions between organic matter, arbuscular mycorrhizal fungi and plant roots. Soil Biology and Biochemistry, 57, 683694.
Drew, E. A., Murray, R. S., Smith, S. E. and Jakobsen, I. (2003). Beyond the rhizosphere: growth and function of arbuscular mycorrhizal external hyphae in sands of varying pore sizes. Plant and Soil, 251, 105114.
Fakhro, A., Andrade-Linares, D. R., von Bargen, S. et al. (2010). Impact of Piriformospora indica on tomato growth and on interaction with fungal and viral pathogens. Mycorrhiza, 20, 191200.
Franken, P. (2012). The plant strengthening root endophyte Piriformospora indica: potential application and the biology behind. Applied Microbiology and Biotechnology, 96, 14551464.
Frey-Klett, P., Garbaye, J. and Tarkka, M. (2007). The mycorrhiza helper bacteria revisited. New Phytologist, 176, 2236.
Frossard, E., Achat, D. L., Bernasconi, S. M. et al. (2011). Phosphorus in Action: Biological Processes in Soil Phosphorus Cycling. Berlin: Springer.
Gahoonia, T. S., Raza, S. and Nielsen, N. E. (1994). Phosphorus depletion in the rhizosphere as influenced by soil moisture. Plant and Soil, 159, 213218.
George, E., Häussler, K.-U., Vetterlein, D., Gorgus, E. and Marschner, H. (1992). Water and nutrient translocation by hyphae of Glomus mosseae. Canadian Journal of Botany, 70, 21302137.
Gordon-Weeks, R., Tong, Y., Davies, T. G. E. and Leggewie, G. (2003). Restricted spatial expression of a high-affinity phosphate transporter in potato roots. Journal of Cell Science, 116, 31353144.
Graham, J. H. and Abbott, L. K. (2000). Wheat responses to aggressive and non-aggressive arbuscular mycorrhizal fungi. Plant and Soil, 220, 207218.
Harrison, M. J. and van Buuren, M. L. (1995). A phosphate transporter from the mycorrhizal fungus Glomus versiforme. Nature, 378, 626629.
Harrison, M. J., Dewbre, G. R. and Liu, J. Y. (2002). A phosphate transporter from Medicago truncatula involved in the acquisiton of phosphate released by arbuscular mycorrhizal fungi. Plant Cell, 14, 24132429.
Haselwandter, K. and Read, D. J. (1982). The significance of a root-fungus association in two Carex species of high-alpine plant communities. Oecologia, 53, 352354.
Hawkesford, M., Horst, W., Kichey, T. et al. (2012). Marschner’s Mineral Nutrition of Higher Plants, 3rd edn. San Diego, CA: Academic Press.
Helber, N., Wippel, K., Sauer, N. et al. (2011). A versatile monosaccharide transporter that operates in the arbuscular mycorrhizal fungus Glomus sp is crucial for the symbiotic relationship with plants. Plant Cell, 23, 3812–23.
Hermans, C., Hammond, J. P., White, P. J. and Verbruggen, N. (2006). How do plants respond to nutrient shortage by biomass allocation? Trends in Plant Science, 11, 610617.
Hibbett, D. S., Binder, M., Bischoff, J. F. et al. (2007). A higher-level phylogenetic classification of the Fungi. Mycological Research, 111, 509–47.
Hinsinger, P. (2000). Trace Elements in the Rhizosphere. Boca Raton, FL: CRC Press.
Hodge, A. (2009). Root decisions. Plant, Cell & Environment, 32, 628–40.
Javot, H., Penmetsa, R. V., Terzaghi, N., Cook, D. R. and Harrison, M. J. (2007). A Medicago truncatula phosphate transporter indispensable for the arbuscular mycorrhizal symbiosis. Proceedings of the National Academy of Sciences of the United States of America, 104, 17201725.
Johnson, J. M., Sherameti, I., Ludwig, A. et al. (2011). Protocols for Arabidopsis thaliana and Piriformospora indica co-cultivation: a model system to study plant beneficial traits. Journal of Endocytobiosis and Cell Research, 21, 101113.
Johnson, N. C., Graham, J. H. and Smith, F. A. (1997). Functioning of mycorrhizal associations along the mutualism–parasitism continuum. New Phytologist, 135, 575585.
Joner, E. J. and Johansen, A. (2000). Phosphatase activity of external hyphae of two arbuscular mycorrhizal fungi. Mycological Research, 104, 8186.
Jumpponen, A. and Trappe, J. M. (1998). Dark septate endophytes: a review of facultative biotrophic root-colonizing fungi. New Phytologist, 140, 295310.
Jumpponen, A., Mattson, K. G. and Trappe, J. M. (1998). Mycorrhizal functioning of Phialocephala fortinii with Pinus contorta on glacier forefront soil: interactions with soil nitrogen and organic matter. Mycorrhiza, 7, 261265.
Kenrick, P. and Crane, P. R. (1997). The origin and early evolution of plants on land. Nature, 389, 33.
Keymer, A., Pimprikar, P., Wewer, V. et al. (2017). Lipid transfer from plants to arbuscular mycorrhiza fungi. Elife, 6, e29107.
Kikuchi, Y., Hijikata, N., Ohtomo, R. et al. (2016). Aquaporin-mediated long-distance polyphosphate translocation directed towards the host in arbuscular mycorrhizal symbiosis: application of virus-induced gene silencing. New Phytologist, 211, 12021208.
Kivlin, S. N., Emery, S. M. and Rudgers, J. A. (2013). Fungal symbionts alter plant responses to global change. American Journal of Botany, 100, 14451457.
Knapp, D. G. and Kovács, G. M. (2016). Interspecific metabolic diversity of root-colonizing endophytic fungi revealed by enzyme activity tests. FEMS Microbiology Ecology, 92, fiw190.
Knapp, D. G., Németh, J. B., Barry, K. et al. (2018). Comparative genomics provides insights into the lifestyle and reveals functional heterogeneity of dark septate endophytic fungi. Scientific Reports, 8, 6321.
Koide, R. T. and Kabir, Z. (2000). Extraradical hyphae of the mycorrhizal fungus Glomus intraradices can hydrolyse organic phosphate. New Phytologist, 148, 511517.
Lambers, H., Raven, J. A., Shaver, G. R. and Smith, S. E. (2008). Plant nutrient-acquisition strategies change with soil age. Trends in Ecology & Evolution, 23, 95103.
Larsen, J., Cornejo, P. and Barea, J. M. (2009). Interactions between the arbuscular mycorrhizal fungus Glomus intraradices and the plant-growt- promoting rhizobacteria Paenibacillus polymyxa and P. macerans in the mycorrhizosphere of Cucumis sativus. Soil Biology and Biochemistry, 41, 286292.
Li, B., Ravnskov, S., Xie, G. and Larsen, J. (2008). Differential effects of Paenibacillus spp. on cucumber mycorrhizas. Mycological Progress, 7, 277284.
Li, H., Smith, S. E., Holloway, R. E., Zhu, Y. and Smith, F. A. (2006). Arbuscular mycorrhizal fungi contribute to phosphorus uptake by wheat grown in a phosphorus-fixing soil even in the absence of positive growth responses. New Phytologist, 172, 536543.
Liu, H., Trieu, A. T., Blayloock, L. A. and Harrison, M. J. (1998). Cloning and characterization of two phosphate transporters from Medicago truncatula: root regulation in response to phosphate and to colonization by arbuscular mycorrhizal fungi. Molecular Plant–Microbe Interactions, 11, 1422.
Lynch, J. P. (2007). Roots of the second Green Revolution. Australian Journal of Botany, 55, 493512.
Lynch, J. P. and Ho, M. D. (2005). Rhizoeconomics: carbon costs of phosphorus acquisition. Plant and Soil, 269, 4556.
Maldonado-Mendoza, I. E., Dewbre, G. R. and Harrison, M. J. (2001). A phosphate transporter gene from the extra-radical mycelium of an arbuscular mycorrhizal fungus Glomus intraradices is regulated in response to phosphate in the environment. Molecular Plant–Microbe Interactions, 14, 11401148.
Mandyam, K. and Jumpponen, A. (2005). Seeking the elusive function of the root-colonising dark septate endophytic fungi. Studies in Mycology, 173189.
Marschner, H. and Dell, B. (1994). Nutrient uptake in mycorrhizal symbiosis. Plant and Soil, 159, 89102.
Miller, R. M. and Jastrow, J. D. (2000). Mycorrhizal fungi influence soil structure. In Arbuscular Mycorrhizas: Physiology and Function, ed. Kapulnik, Y and Douds, D. D. Dordrecht, The Netherlands: Springer, pp. 318.
Miller, S. H., Browne, P., Prigent-Combaret, C. et al. (2010). Biochemical and genomic comparison of inorganic phosphate solubilization in Pseudomonas species. Environmental Microbiology Reports, 2, 403–11.
Müller, A., George, E. and Gabriel-Neumann, E. (2013). The symbiotic recapture of nitrogen from dead mycorrhizal and non-mycorrhizal roots of tomato plants. Plant and Soil, 364, 341355.
Nautiyal, C. S. (1999). An efficient microbiological growth medium for screening phosphate solubilizing microorganisms. FEMS Microbiology Letters, 170, 265270.
Newsham, K. K. (2000). Phialophora graminicola, a dark septate fungus, is a beneficial associate of the grass Vulpia ciliata ssp. ambigua. New Phytologist, 144, 517524.
Newsham, K. K. (2011). A meta-analysis of plant responses to dark septate root endophytes. New Phytologist, 190, 783793.
Ngwene, B., Boukail, S., Söllner, L., Franken, P. and Andrade-Linares, D. R. (2016). Phosphate utilization by the fungal root endophyte Piriformospora indica. Plant and Soil, 405, 231241.
Oberwinkler, F., Riess, K., Bauer, R. and Garnica, S. (2014). Morphology and molecules: the Sebacinales, a case study. Mycological Progress, 13, 445470.
Oelmuller, R., Sherameti, I., Tripathi, S. and Varma, A. (2009). Piriformospora indica, a cultivable root endophyte with multiple biotechnological applications. Symbiosis, 49, 117.
Olsson, P. A., van Aarle, I. M., Allaway, W. G., Ashford, A. E. and Rouhier, H. (2002). Phosphorus effects on metabolic processes in monoxenic arbuscular mycorrhiza cultures. Plant Physiology, 130, 11621171.
Peskan-Berghofer, T., Shahollari, B., Giong, P. H. et al. (2004). Association of Piriformospora indica with Arabidopsis thaliana roots represents a novel system to study beneficial plant-microbe interactions and involves early plant protein modifications in the endoplasmic reticulum and at the plasma membrane. Physiologia Plantarum, 122, 465477.
Qin, H., Brookes, P. C. and Xu, J. (2016). Arbuscular mycorrhizal fungal hyphae alter soil bacterial community and enhance polychlorinated biphenyls dissipation. Frontiers in Microbiology, 7, 939.
Ramaekers, L., Remans, R., Rao, I. M., Blair, M. W. and Vanderleyden, J. (2010). Strategies for improving phosphorus acquisition efficiency of crop plants. Field Crops Research, 117, 169176.
Rausch, C., Daram, P., Brunner, S. et al. (2001). A phosphate transporter expressed in arbuscule-containing cells in potato. Nature, 414, 462466.
Redecker, D. and Raab, P. (2006). Phylogeny of the Glomeromycota (arbuscular mycorrhizal fungi): recent developments and new gene markers. Mycologia, 98, 885895.
Rich, M. K., Nouri, E., Courty, P.-E. and Reinhardt, D. (2017). Diet of arbuscular mycorrhizal fungi: bread and butter? Trends in Plant Science, 22, 652660.
Richardson, A. E. (2001). Prospects for using soil microorganisms to improve the acquisition of phosphorus by plants. Australian Journal of Plant Physiology, 28, 896–906.
Richardson, A. E. and Simpson, R. J. (2011). Soil microorganisms mediating phosphorus availability. Plant Physiology, 156.
Richardson, A. E., Hocking, P. J., Simpson, R. J. and George, T. S. (2009). Plant mechanisms to optimise access to soil phosphorus. Crop and Pasture Science, 60, 124143.
Rillig, M. C. and Mummey, D. L. (2006). Mycorrhizas and soil structure. New Phytologist, 171, 4153.
Sato, T., Ezawa, T., Cheng, W. G. and Tawaraya, K. (2015). Release of acid phosphatase from extraradical hyphae of arbuscular mycorrhizal fungus Rhizophagus clarus. Soil Science and Plant Nutrition, 61, 269274.
Schachtman, D. P., Reid, R. J. and Ayling, S. M. (1998). Phosphorus uptake by plants: from soil to cell. Plant Physiology, 116, 447453.
Scheublin, T. R., Sanders, I. R., Keel, C. and van der Meer, J. R. (2010). Characterisation of microbial communities colonising the hyphal surfaces of arbuscular mycorrhizal fungi. The ISME Journal, 4, 752.
Selosse, M. A., Bauer, R. and Moyersoen, B. (2002). Basal hymenomycetes belonging to the Sebacinaceae are ectomycorrhizal on temperate deciduous trees. New Phytologist, 155, 183195.
Shahollari, B., Varma, A. and Oelmuller, R. (2005). Expression of a receptor kinase in Arabidopsis roots is stimulated by the basidiomycete Piriformospora indica and the protein accumulates in Triton X-100 insoluble plasma membrane microdomains. Journal of Plant Physiology, 162, 945958.
Sharma, S. B., Sayyed, R. Z., Trivedi, M. H. and Gobi, T. A. (2013). Phosphate solubilizing microbes: sustainable approach for managing phosphorus deficiency in agricultural soils. SpringerPlus, 2, 587.
Shen, J., Yuan, L., Zhang, J. et al. (2011). Phosphorus dynamics: from soil to plant. Plant Physiology, 156, 9971005.
Sieber, T. N. and Grünig, C. R. (2013). Fungal root endophytes. In Plant Roots: The Hidden Half, ed. Wasel, Y, Eshel, A. and Kafkafi, U.. New York: Marcel Dekker, pp. 149.
Smith, S. E. and Read, D. (2008). Mycorrhizal Symbiosis, 3rd edn. London: Academic Press.
Smith, S. E., Smith, F. A. and Jakobsen, I. (2003). Mycorrhizal fungi can dominate phosphate supply to plants irrespective of growth responses. Plant Physiology, 133, 1620.
Smith, S. E., Smith, F. A. and Jakobsen, I. (2004). Functional diversity in arbuscular mycorrhizal (AM) symbioses: the contribution of the mycorrhizal P uptake pathway is not correlated with mycorrhizal responses in growth or total P uptake. New Phytologist, 162, 511524.
Smith, S. E., Jakobsen, I., Grønlund, M. and Smith, F. A. (2011). Roles of arbuscular mycorrhizas in plant phosphorus nutrition. Plant Physiology, 156, 10501057.
Spagnoletti, F. N., Tobar, N. E., Fernández Di Pardo, A., Chiocchio, V. M. and Lavado, R. S. (2017). Dark septate endophytes present different potential to solubilize calcium, iron and aluminum phosphates. Applied Soil Ecology, 111, 2532.
Spatafora, J. W., Chang, Y., Benny, G. L. et al. (2016). A phylum-level phylogenetic classification of zygomycete fungi based on genome-scale data. Mycologia, 108, 10281046.
Staddon, P. L., Ramsey, C. B., Ostle, N., Ineson, P. and Fitter, A. H. (2003). Rapid turnover of hyphae of mycorrhizal fungi determined by AMS microanalysis of 14C. Science, 300, 1138–40.
Taktek, S., St-Arnaud, M., Piché, Y., Fortin, J. A. and Antoun, H. (2017). Igneous phosphate rock solubilization by biofilm-forming mycorrhizobacteria and hyphobacteria associated with Rhizoglomus irregulare DAOM 197198. Mycorrhiza, 27, 1322.
Tawaraya, K. (2003). Arbuscular mycorrhizal dependency of different plant species and cultivars. Soil Science and Plant Nutrition, 49, 655668.
Tedersoo, L., Bahram, M., Ryberg, M. et al. (2014). Global biogeography of the ectomycorrhizal /sebacina lineage (Fungi, Sebacinales) as revealed from comparative phylogenetic analyses. Molecular Ecology, 23, 41684183.
Tennant, D. (1975). A test of a modified line intersect method of estimating root length. Journal of Ecology, 63, 9951001.
Tilman, D., Fargione, J., Wolff, B. et al. (2001). Forecasting agriculturally driven global environmental change. Science, 292, 281284.
Turner, B. L., Papházy, M. J., Haygarth, P. M. and McKelvie, I. D. (2002). Inositol phosphates in the environment. Philosophical Transactions of the Royal Society B: Biological Sciences, 357, 449469.
van der Heijden, M. G., Martin, F. M., Selosse, M. A. and Sanders, I. R. (2015). Mycorrhizal ecology and evolution: the past, the present, and the future. New Phytologist, 205, 1406–23.
Varma, A., Verma, S., Sudah, , Sahay, N. and Franken, P. (1999). Piriformospora indica, a cultivable plant growth-promoting root endophyte. Applied and Environmental Microbiology, 65, 27412744.
Verma, S., Varma, A., Rexer, K.-H. et al. (1998). Piriformospora indica, gen. nov. sp. nov., a new root-colonizing fungus. Mycologia, 90, 896903.
Wang, W., Shi, J., Xie, Q. et al. (2017a). Nutrient exchange and regulation in arbuscular mycorrhizal symbiosis. Molecular Plant, 10, 11471158.
Wang, X. X., Hoffland, E., Feng, G. and Kuyper, T. W. (2017b). Phosphate uptake from phytate due to hyphae-mediated phytase activity by arbuscular mycorrhizal maize. Frontiers in Plant Science, 8, 684.
Weiß, M., Selosse, M. A., Rexer, K. H., Urban, A. and Oberwinkler, F. (2004). Sebacinales: a hitherto overlooked cosm of heterobasidiomycetes with a broad mycorrhizal potential. Mycological Research, 108, 10031010.
Weiß, M., Sykorova, Z., Garnica, S. et al. (2011). Sebacinales everywhere: previously overlooked ubiquitous fungal endophytes. PLoS One, 6, e16793.
Weiß, M., Waller, F., Zuccaro, A. and Selosse, M.-A. (2016). Sebacinales: one thousand and one interactions with land plants. New Phytologist, 211, 2040.
Wolfe, M. S., Baresel, J. P., Desclaux, D. et al. (2008). Developments in breeding cereals for organic agriculture. Euphytica, 163, 323.
Yadav, V., Kumar, M., Deep, D. K. et al. (2010). A phosphate transporter from the root endophytic fungus Piriformospora indica plays a role in phosphate transport to the host plant. Journal of Biological Chemistry, 285, 2653226544.
Zuccaro, A., Basiewicz, M., Zurawska, M., Biedenkopf, D. and Kogel, K. H. (2009). Karyotype analysis, genome organization, and stable genetic transformation of the root colonizing fungus Piriformospora indica. Fungal Genetics and Biology, 46, 543550.
Zuccaro, A., Lahrmann, U., Guldener, U. et al. (2011). Endophytic life strategies decoded by genome and transcriptome analyses of the mutualistic root symbiont Piriformospora indica. PLoS Pathogens, 7, e1002290.