Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-vvkck Total loading time: 0 Render date: 2024-04-25T23:15:13.577Z Has data issue: false hasContentIssue false

6 - Phosphate Nutrition in Root–Fungus Interactions

from Part II - Role of Endophytes in Growth and Biotic and Abiotic Stress Resistance

Published online by Cambridge University Press:  01 April 2019

Trevor R. Hodkinson
Affiliation:
Trinity College Dublin
Fiona M. Doohan
Affiliation:
University College Dublin
Matthew J. Saunders
Affiliation:
Trinity College Dublin
Brian R. Murphy
Affiliation:
Trinity College Dublin
Get access

Summary

Phosphate belongs to the major mineral nutrient category in plants and is a non-renewable resource. Many natural soils are phosphate deficient, and phosphate fixation into insoluble mineral complexes limits plant growth by decreasing root uptake. Different strategies have appeared during the evolution of land plants to cope with this situation, one of which is to interact with various microbes (bacteria and fungi) located in the plant rhizosphere. This chapter will focus on three major groups of fungi that colonise the roots of most land plants: arbuscular mycorrhizal fungi (Glomeromycotina), fungi from the order Sebacinales (Basidiomycota) and the diverse form-group of dark septate endophytes (Ascomycota). Three major mechanisms of fungal contribution to plant nutrition will be discussed. First, fungi are able to solubilise phosphate from inorganic sources that are not available to plants. Second, fungi can set free mineral nutrients from organic compounds/sources. Third, fungi are able to transport phosphate along their hyphae towards the plant, thereby bridging phosphate depletion zones around the roots. In this chapter, we summarise published knowledge on this topic and present some new non-published data to complete our current model.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Achatz, B., von Ruden, S., Andrade-Linares, D. R. et al. (2010). Root colonization by Piriformospora indica enhances grain yield in barley under diverse nutrient regimes by accelerating plant development. Plant and Soil, 333, 5970.CrossRefGoogle Scholar
Almario, J., Jeena, G., Wunder, J. et al. (2017). Root-associated fungal microbiota of nonmycorrhizal Arabis alpina and its contribution to plant phosphorus nutrition. Proceedings of the National Academy of Sciences of the United States of America, 114, E9403–E9412.Google ScholarPubMed
Andrade, G., Mihara, K. L., Linderman, R. G. and Bethlenfalvay, G. J. (1997). Bacteria from rhizosphere and hyphosphere soils of different arbuscular-mycorrhizal fungi. Plant and Soil, 192, 7179.CrossRefGoogle Scholar
Antunes, P. M., Schneider, K., Hillis, D. and Klironomos, J. N. (2007). Can the arbuscular mycorrhizal fungus Glomus intraradices actively mobilize P from rock phosphates? Pedobiologia, 51, 281–286.CrossRefGoogle Scholar
Auge, R. M., Stodola, A. J. W., Tims, J. E. and Saxton, A. M. (2001). Moisture retention properties of a mycorrhizal soil. Plant and Soil, 230, 8797.CrossRefGoogle Scholar
Bago, B. and Cano, C. (2005). In Vitro Culture of Mycorrhizas. Berlin: Springer.Google Scholar
Barrow, J. R. and Osuna, P. (2002). Phosphorus solubilization and uptake by dark septate fungi in fourwing saltbush, Atriplex canescens (Pursh) Nutt. Journal of Arid Environments, 51, 449459.CrossRefGoogle Scholar
Battini, F., Cristani, C., Giovannetti, M. and Agnolucci, M. (2016). Multifunctionality and diversity of culturable bacterial communities strictly associated with spores of the plant beneficial symbiont Rhizophagus intraradices. Microbiol Research, 183, 6879.CrossRefGoogle ScholarPubMed
Battini, F., Grønlund, M., Agnolucci, M., Giovannetti, M. and Jakobsen, I. (2017). Facilitation of phosphorus uptake in maize plants by mycorrhizosphere bacteria. Scientific Reports, 7, 4686.CrossRefGoogle ScholarPubMed
Behie, S. W. and Bidochka, M. J. (2014). Nutrient transfer in plant–fungal symbioses. Trends in Plant Science, 19, 734740.CrossRefGoogle ScholarPubMed
Bitterlich, M. and Franken, P. (2016). Connecting polyphosphate translocation and hyphal water transport points to a key of mycorrhizal functioning. New Phytologist, 211, 11471149.CrossRefGoogle ScholarPubMed
Bitterlich, M., Franken, P. and Graefe, J. (2018a). Arbuscular mycorrhiza improves substrate hydraulic conductivity in the plant available moisture range under root growth exclusion. Frontiers in Plant Science, 9, 301.CrossRefGoogle ScholarPubMed
Bitterlich, M., Sandmann, M. and Graefe, J. (2018b). Arbuscular mycorrhiza alleviates restrictions to substrate water flow and delays transpiration limitation to stronger drought in tomato. Frontiers in Plant Science, 9.CrossRefGoogle ScholarPubMed
Boldt, K., Pörs, Y., Haupt, B. et al. (2011). Photochemical processes, carbon assimilation and RNA accumulation of sucrose transporter genes in tomato arbuscular mycorrhiza. Journal of Plant Physiology, 168, 12561263.CrossRefGoogle ScholarPubMed
Brady, N. C. (1990). The Nature and Properties of the Soil. New York, NY: Macmillan Publishing Co.Google Scholar
Breuillin, F., Schramm, J., Hajirezaei, M. et al. (2010). Phosphate systemically inhibits development of arbuscular mycorrhiza in Petunia hybrida and represses genes involved in mycorrhizal functioning. Plant Journal, 64, 10021017.CrossRefGoogle ScholarPubMed
Bucher, M. (2007). Functional biology of plant phosphate uptake at root and mycorrhiza interfaces. New Phytologist, 173, 1126.CrossRefGoogle ScholarPubMed
Bütehorn, B., Rhody, D. and Franken, P. (2000). Isolation and characterisation of Pitef1 encoding the translation elongation factor EF-1a of the root endophyte Piriformospora indica. Plant Biology, 49, 687692.CrossRefGoogle Scholar
Cano, C. and Bago, A. (2005). Competition and substrate colonization strategies of three polyxenically grown arbuscular mycorrhizal fungi. Mycologia, 97, 12011214.CrossRefGoogle ScholarPubMed
Chen, M. and Graedel, T. E. (2016). A half-century of global phosphorus flows, stocks, production, consumption, recycling, and environmental impacts. Global Environmental Change, 36, 139152.CrossRefGoogle Scholar
Cordell, D. and White, S. (2015). Tracking phosphorus security: indicators of phosphorus vulnerability in the global food system. Food Security, 7, 337350.CrossRefGoogle Scholar
Cordell, D., Drangert, J. O. and White, S. (2009). The story of phosphorus: global food security and food for thought. Global Environmental Change, 19, 292–305.CrossRefGoogle Scholar
Cox, G., Moran, K. J., Sanders, F., Nockolds, C. and Tinker, P. B. (1980). Translocation and transfer of nutrients in vesicular-arbuscular mycorrhizas. III. Polyphosphate granules and phosphorus translocation. New Phytologist, 84, 649659.CrossRefGoogle Scholar
Daynes, C. N., Field, D. J., Saleeba, J. A., Cole, M. A. and McGee, P. A. (2013). Development and stabilisation of soil structure via interactions between organic matter, arbuscular mycorrhizal fungi and plant roots. Soil Biology and Biochemistry, 57, 683694.CrossRefGoogle Scholar
Drew, E. A., Murray, R. S., Smith, S. E. and Jakobsen, I. (2003). Beyond the rhizosphere: growth and function of arbuscular mycorrhizal external hyphae in sands of varying pore sizes. Plant and Soil, 251, 105114.CrossRefGoogle Scholar
Fakhro, A., Andrade-Linares, D. R., von Bargen, S. et al. (2010). Impact of Piriformospora indica on tomato growth and on interaction with fungal and viral pathogens. Mycorrhiza, 20, 191200.CrossRefGoogle ScholarPubMed
Franken, P. (2012). The plant strengthening root endophyte Piriformospora indica: potential application and the biology behind. Applied Microbiology and Biotechnology, 96, 14551464.CrossRefGoogle ScholarPubMed
Frey-Klett, P., Garbaye, J. and Tarkka, M. (2007). The mycorrhiza helper bacteria revisited. New Phytologist, 176, 2236.CrossRefGoogle ScholarPubMed
Frossard, E., Achat, D. L., Bernasconi, S. M. et al. (2011). Phosphorus in Action: Biological Processes in Soil Phosphorus Cycling. Berlin: Springer.Google Scholar
Gahoonia, T. S., Raza, S. and Nielsen, N. E. (1994). Phosphorus depletion in the rhizosphere as influenced by soil moisture. Plant and Soil, 159, 213218.CrossRefGoogle Scholar
George, E., Häussler, K.-U., Vetterlein, D., Gorgus, E. and Marschner, H. (1992). Water and nutrient translocation by hyphae of Glomus mosseae. Canadian Journal of Botany, 70, 21302137.CrossRefGoogle Scholar
Gordon-Weeks, R., Tong, Y., Davies, T. G. E. and Leggewie, G. (2003). Restricted spatial expression of a high-affinity phosphate transporter in potato roots. Journal of Cell Science, 116, 31353144.CrossRefGoogle ScholarPubMed
Graham, J. H. and Abbott, L. K. (2000). Wheat responses to aggressive and non-aggressive arbuscular mycorrhizal fungi. Plant and Soil, 220, 207218.CrossRefGoogle Scholar
Harrison, M. J. and van Buuren, M. L. (1995). A phosphate transporter from the mycorrhizal fungus Glomus versiforme. Nature, 378, 626629.CrossRefGoogle ScholarPubMed
Harrison, M. J., Dewbre, G. R. and Liu, J. Y. (2002). A phosphate transporter from Medicago truncatula involved in the acquisiton of phosphate released by arbuscular mycorrhizal fungi. Plant Cell, 14, 24132429.CrossRefGoogle Scholar
Haselwandter, K. and Read, D. J. (1982). The significance of a root-fungus association in two Carex species of high-alpine plant communities. Oecologia, 53, 352354.CrossRefGoogle ScholarPubMed
Hawkesford, M., Horst, W., Kichey, T. et al. (2012). Marschner’s Mineral Nutrition of Higher Plants, 3rd edn. San Diego, CA: Academic Press.Google Scholar
Helber, N., Wippel, K., Sauer, N. et al. (2011). A versatile monosaccharide transporter that operates in the arbuscular mycorrhizal fungus Glomus sp is crucial for the symbiotic relationship with plants. Plant Cell, 23, 3812–23.CrossRefGoogle ScholarPubMed
Hermans, C., Hammond, J. P., White, P. J. and Verbruggen, N. (2006). How do plants respond to nutrient shortage by biomass allocation? Trends in Plant Science, 11, 610617.CrossRefGoogle ScholarPubMed
Hibbett, D. S., Binder, M., Bischoff, J. F. et al. (2007). A higher-level phylogenetic classification of the Fungi. Mycological Research, 111, 509–47.CrossRefGoogle ScholarPubMed
Hinsinger, P. (2000). Trace Elements in the Rhizosphere. Boca Raton, FL: CRC Press.Google Scholar
Hodge, A. (2009). Root decisions. Plant, Cell & Environment, 32, 628–40.CrossRefGoogle ScholarPubMed
Javot, H., Penmetsa, R. V., Terzaghi, N., Cook, D. R. and Harrison, M. J. (2007). A Medicago truncatula phosphate transporter indispensable for the arbuscular mycorrhizal symbiosis. Proceedings of the National Academy of Sciences of the United States of America, 104, 17201725.CrossRefGoogle ScholarPubMed
Johnson, J. M., Sherameti, I., Ludwig, A. et al. (2011). Protocols for Arabidopsis thaliana and Piriformospora indica co-cultivation: a model system to study plant beneficial traits. Journal of Endocytobiosis and Cell Research, 21, 101113.Google Scholar
Johnson, N. C., Graham, J. H. and Smith, F. A. (1997). Functioning of mycorrhizal associations along the mutualism–parasitism continuum. New Phytologist, 135, 575585.CrossRefGoogle Scholar
Joner, E. J. and Johansen, A. (2000). Phosphatase activity of external hyphae of two arbuscular mycorrhizal fungi. Mycological Research, 104, 8186.CrossRefGoogle Scholar
Jumpponen, A. and Trappe, J. M. (1998). Dark septate endophytes: a review of facultative biotrophic root-colonizing fungi. New Phytologist, 140, 295310.CrossRefGoogle ScholarPubMed
Jumpponen, A., Mattson, K. G. and Trappe, J. M. (1998). Mycorrhizal functioning of Phialocephala fortinii with Pinus contorta on glacier forefront soil: interactions with soil nitrogen and organic matter. Mycorrhiza, 7, 261265.CrossRefGoogle ScholarPubMed
Kenrick, P. and Crane, P. R. (1997). The origin and early evolution of plants on land. Nature, 389, 33.CrossRefGoogle Scholar
Keymer, A., Pimprikar, P., Wewer, V. et al. (2017). Lipid transfer from plants to arbuscular mycorrhiza fungi. Elife, 6, e29107.CrossRefGoogle ScholarPubMed
Kikuchi, Y., Hijikata, N., Ohtomo, R. et al. (2016). Aquaporin-mediated long-distance polyphosphate translocation directed towards the host in arbuscular mycorrhizal symbiosis: application of virus-induced gene silencing. New Phytologist, 211, 12021208.CrossRefGoogle ScholarPubMed
Kivlin, S. N., Emery, S. M. and Rudgers, J. A. (2013). Fungal symbionts alter plant responses to global change. American Journal of Botany, 100, 14451457.CrossRefGoogle ScholarPubMed
Knapp, D. G. and Kovács, G. M. (2016). Interspecific metabolic diversity of root-colonizing endophytic fungi revealed by enzyme activity tests. FEMS Microbiology Ecology, 92, fiw190.CrossRefGoogle ScholarPubMed
Knapp, D. G., Németh, J. B., Barry, K. et al. (2018). Comparative genomics provides insights into the lifestyle and reveals functional heterogeneity of dark septate endophytic fungi. Scientific Reports, 8, 6321.CrossRefGoogle ScholarPubMed
Koide, R. T. and Kabir, Z. (2000). Extraradical hyphae of the mycorrhizal fungus Glomus intraradices can hydrolyse organic phosphate. New Phytologist, 148, 511517.CrossRefGoogle ScholarPubMed
Lambers, H., Raven, J. A., Shaver, G. R. and Smith, S. E. (2008). Plant nutrient-acquisition strategies change with soil age. Trends in Ecology & Evolution, 23, 95103.CrossRefGoogle ScholarPubMed
Larsen, J., Cornejo, P. and Barea, J. M. (2009). Interactions between the arbuscular mycorrhizal fungus Glomus intraradices and the plant-growt- promoting rhizobacteria Paenibacillus polymyxa and P. macerans in the mycorrhizosphere of Cucumis sativus. Soil Biology and Biochemistry, 41, 286292.CrossRefGoogle Scholar
Li, B., Ravnskov, S., Xie, G. and Larsen, J. (2008). Differential effects of Paenibacillus spp. on cucumber mycorrhizas. Mycological Progress, 7, 277284.CrossRefGoogle Scholar
Li, H., Smith, S. E., Holloway, R. E., Zhu, Y. and Smith, F. A. (2006). Arbuscular mycorrhizal fungi contribute to phosphorus uptake by wheat grown in a phosphorus-fixing soil even in the absence of positive growth responses. New Phytologist, 172, 536543.CrossRefGoogle Scholar
Liu, H., Trieu, A. T., Blayloock, L. A. and Harrison, M. J. (1998). Cloning and characterization of two phosphate transporters from Medicago truncatula: root regulation in response to phosphate and to colonization by arbuscular mycorrhizal fungi. Molecular Plant–Microbe Interactions, 11, 1422.CrossRefGoogle Scholar
Lynch, J. P. (2007). Roots of the second Green Revolution. Australian Journal of Botany, 55, 493512.CrossRefGoogle Scholar
Lynch, J. P. and Ho, M. D. (2005). Rhizoeconomics: carbon costs of phosphorus acquisition. Plant and Soil, 269, 4556.CrossRefGoogle Scholar
Maldonado-Mendoza, I. E., Dewbre, G. R. and Harrison, M. J. (2001). A phosphate transporter gene from the extra-radical mycelium of an arbuscular mycorrhizal fungus Glomus intraradices is regulated in response to phosphate in the environment. Molecular Plant–Microbe Interactions, 14, 11401148.CrossRefGoogle ScholarPubMed
Mandyam, K. and Jumpponen, A. (2005). Seeking the elusive function of the root-colonising dark septate endophytic fungi. Studies in Mycology, 173189.CrossRefGoogle Scholar
Marschner, H. and Dell, B. (1994). Nutrient uptake in mycorrhizal symbiosis. Plant and Soil, 159, 89102.CrossRefGoogle Scholar
Miller, R. M. and Jastrow, J. D. (2000). Mycorrhizal fungi influence soil structure. In Arbuscular Mycorrhizas: Physiology and Function, ed. Kapulnik, Y and Douds, D. D. Dordrecht, The Netherlands: Springer, pp. 318.CrossRefGoogle Scholar
Miller, S. H., Browne, P., Prigent-Combaret, C. et al. (2010). Biochemical and genomic comparison of inorganic phosphate solubilization in Pseudomonas species. Environmental Microbiology Reports, 2, 403–11.CrossRefGoogle ScholarPubMed
Müller, A., George, E. and Gabriel-Neumann, E. (2013). The symbiotic recapture of nitrogen from dead mycorrhizal and non-mycorrhizal roots of tomato plants. Plant and Soil, 364, 341355.CrossRefGoogle Scholar
Nautiyal, C. S. (1999). An efficient microbiological growth medium for screening phosphate solubilizing microorganisms. FEMS Microbiology Letters, 170, 265270.CrossRefGoogle ScholarPubMed
Newsham, K. K. (2000). Phialophora graminicola, a dark septate fungus, is a beneficial associate of the grass Vulpia ciliata ssp. ambigua. New Phytologist, 144, 517524.CrossRefGoogle Scholar
Newsham, K. K. (2011). A meta-analysis of plant responses to dark septate root endophytes. New Phytologist, 190, 783793.CrossRefGoogle ScholarPubMed
Ngwene, B., Boukail, S., Söllner, L., Franken, P. and Andrade-Linares, D. R. (2016). Phosphate utilization by the fungal root endophyte Piriformospora indica. Plant and Soil, 405, 231241.CrossRefGoogle Scholar
Oberwinkler, F., Riess, K., Bauer, R. and Garnica, S. (2014). Morphology and molecules: the Sebacinales, a case study. Mycological Progress, 13, 445470.CrossRefGoogle Scholar
Oelmuller, R., Sherameti, I., Tripathi, S. and Varma, A. (2009). Piriformospora indica, a cultivable root endophyte with multiple biotechnological applications. Symbiosis, 49, 117.CrossRefGoogle Scholar
Olsson, P. A., van Aarle, I. M., Allaway, W. G., Ashford, A. E. and Rouhier, H. (2002). Phosphorus effects on metabolic processes in monoxenic arbuscular mycorrhiza cultures. Plant Physiology, 130, 11621171.CrossRefGoogle ScholarPubMed
Peskan-Berghofer, T., Shahollari, B., Giong, P. H. et al. (2004). Association of Piriformospora indica with Arabidopsis thaliana roots represents a novel system to study beneficial plant-microbe interactions and involves early plant protein modifications in the endoplasmic reticulum and at the plasma membrane. Physiologia Plantarum, 122, 465477.Google Scholar
Qin, H., Brookes, P. C. and Xu, J. (2016). Arbuscular mycorrhizal fungal hyphae alter soil bacterial community and enhance polychlorinated biphenyls dissipation. Frontiers in Microbiology, 7, 939.CrossRefGoogle ScholarPubMed
Ramaekers, L., Remans, R., Rao, I. M., Blair, M. W. and Vanderleyden, J. (2010). Strategies for improving phosphorus acquisition efficiency of crop plants. Field Crops Research, 117, 169176.CrossRefGoogle Scholar
Rausch, C., Daram, P., Brunner, S. et al. (2001). A phosphate transporter expressed in arbuscule-containing cells in potato. Nature, 414, 462466.CrossRefGoogle ScholarPubMed
Redecker, D. and Raab, P. (2006). Phylogeny of the Glomeromycota (arbuscular mycorrhizal fungi): recent developments and new gene markers. Mycologia, 98, 885895.CrossRefGoogle ScholarPubMed
Rich, M. K., Nouri, E., Courty, P.-E. and Reinhardt, D. (2017). Diet of arbuscular mycorrhizal fungi: bread and butter? Trends in Plant Science, 22, 652660.CrossRefGoogle ScholarPubMed
Richardson, A. E. (2001). Prospects for using soil microorganisms to improve the acquisition of phosphorus by plants. Australian Journal of Plant Physiology, 28, 896–906.Google Scholar
Richardson, A. E. and Simpson, R. J. (2011). Soil microorganisms mediating phosphorus availability. Plant Physiology, 156.CrossRefGoogle ScholarPubMed
Richardson, A. E., Hocking, P. J., Simpson, R. J. and George, T. S. (2009). Plant mechanisms to optimise access to soil phosphorus. Crop and Pasture Science, 60, 124143.CrossRefGoogle Scholar
Rillig, M. C. and Mummey, D. L. (2006). Mycorrhizas and soil structure. New Phytologist, 171, 4153.CrossRefGoogle ScholarPubMed
Sato, T., Ezawa, T., Cheng, W. G. and Tawaraya, K. (2015). Release of acid phosphatase from extraradical hyphae of arbuscular mycorrhizal fungus Rhizophagus clarus. Soil Science and Plant Nutrition, 61, 269274.CrossRefGoogle Scholar
Schachtman, D. P., Reid, R. J. and Ayling, S. M. (1998). Phosphorus uptake by plants: from soil to cell. Plant Physiology, 116, 447453.CrossRefGoogle ScholarPubMed
Scheublin, T. R., Sanders, I. R., Keel, C. and van der Meer, J. R. (2010). Characterisation of microbial communities colonising the hyphal surfaces of arbuscular mycorrhizal fungi. The ISME Journal, 4, 752.CrossRefGoogle ScholarPubMed
Selosse, M. A., Bauer, R. and Moyersoen, B. (2002). Basal hymenomycetes belonging to the Sebacinaceae are ectomycorrhizal on temperate deciduous trees. New Phytologist, 155, 183195.CrossRefGoogle Scholar
Shahollari, B., Varma, A. and Oelmuller, R. (2005). Expression of a receptor kinase in Arabidopsis roots is stimulated by the basidiomycete Piriformospora indica and the protein accumulates in Triton X-100 insoluble plasma membrane microdomains. Journal of Plant Physiology, 162, 945958.CrossRefGoogle ScholarPubMed
Sharma, S. B., Sayyed, R. Z., Trivedi, M. H. and Gobi, T. A. (2013). Phosphate solubilizing microbes: sustainable approach for managing phosphorus deficiency in agricultural soils. SpringerPlus, 2, 587.CrossRefGoogle ScholarPubMed
Shen, J., Yuan, L., Zhang, J. et al. (2011). Phosphorus dynamics: from soil to plant. Plant Physiology, 156, 9971005.CrossRefGoogle ScholarPubMed
Sieber, T. N. and Grünig, C. R. (2013). Fungal root endophytes. In Plant Roots: The Hidden Half, ed. Wasel, Y, Eshel, A. and Kafkafi, U.. New York: Marcel Dekker, pp. 149.Google Scholar
Smith, S. E. and Read, D. (2008). Mycorrhizal Symbiosis, 3rd edn. London: Academic Press.Google Scholar
Smith, S. E., Smith, F. A. and Jakobsen, I. (2003). Mycorrhizal fungi can dominate phosphate supply to plants irrespective of growth responses. Plant Physiology, 133, 1620.CrossRefGoogle ScholarPubMed
Smith, S. E., Smith, F. A. and Jakobsen, I. (2004). Functional diversity in arbuscular mycorrhizal (AM) symbioses: the contribution of the mycorrhizal P uptake pathway is not correlated with mycorrhizal responses in growth or total P uptake. New Phytologist, 162, 511524.CrossRefGoogle Scholar
Smith, S. E., Jakobsen, I., Grønlund, M. and Smith, F. A. (2011). Roles of arbuscular mycorrhizas in plant phosphorus nutrition. Plant Physiology, 156, 10501057.CrossRefGoogle ScholarPubMed
Spagnoletti, F. N., Tobar, N. E., Fernández Di Pardo, A., Chiocchio, V. M. and Lavado, R. S. (2017). Dark septate endophytes present different potential to solubilize calcium, iron and aluminum phosphates. Applied Soil Ecology, 111, 2532.CrossRefGoogle Scholar
Spatafora, J. W., Chang, Y., Benny, G. L. et al. (2016). A phylum-level phylogenetic classification of zygomycete fungi based on genome-scale data. Mycologia, 108, 10281046.CrossRefGoogle ScholarPubMed
Staddon, P. L., Ramsey, C. B., Ostle, N., Ineson, P. and Fitter, A. H. (2003). Rapid turnover of hyphae of mycorrhizal fungi determined by AMS microanalysis of 14C. Science, 300, 1138–40.CrossRefGoogle ScholarPubMed
Taktek, S., St-Arnaud, M., Piché, Y., Fortin, J. A. and Antoun, H. (2017). Igneous phosphate rock solubilization by biofilm-forming mycorrhizobacteria and hyphobacteria associated with Rhizoglomus irregulare DAOM 197198. Mycorrhiza, 27, 1322.CrossRefGoogle ScholarPubMed
Tawaraya, K. (2003). Arbuscular mycorrhizal dependency of different plant species and cultivars. Soil Science and Plant Nutrition, 49, 655668.CrossRefGoogle Scholar
Tedersoo, L., Bahram, M., Ryberg, M. et al. (2014). Global biogeography of the ectomycorrhizal /sebacina lineage (Fungi, Sebacinales) as revealed from comparative phylogenetic analyses. Molecular Ecology, 23, 41684183.CrossRefGoogle ScholarPubMed
Tennant, D. (1975). A test of a modified line intersect method of estimating root length. Journal of Ecology, 63, 9951001.CrossRefGoogle Scholar
Tilman, D., Fargione, J., Wolff, B. et al. (2001). Forecasting agriculturally driven global environmental change. Science, 292, 281284.CrossRefGoogle ScholarPubMed
Turner, B. L., Papházy, M. J., Haygarth, P. M. and McKelvie, I. D. (2002). Inositol phosphates in the environment. Philosophical Transactions of the Royal Society B: Biological Sciences, 357, 449469.CrossRefGoogle ScholarPubMed
van der Heijden, M. G., Martin, F. M., Selosse, M. A. and Sanders, I. R. (2015). Mycorrhizal ecology and evolution: the past, the present, and the future. New Phytologist, 205, 1406–23.CrossRefGoogle ScholarPubMed
Varma, A., Verma, S., Sudah, , Sahay, N. and Franken, P. (1999). Piriformospora indica, a cultivable plant growth-promoting root endophyte. Applied and Environmental Microbiology, 65, 27412744.CrossRefGoogle ScholarPubMed
Verma, S., Varma, A., Rexer, K.-H. et al. (1998). Piriformospora indica, gen. nov. sp. nov., a new root-colonizing fungus. Mycologia, 90, 896903.CrossRefGoogle Scholar
Wang, W., Shi, J., Xie, Q. et al. (2017a). Nutrient exchange and regulation in arbuscular mycorrhizal symbiosis. Molecular Plant, 10, 11471158.CrossRefGoogle ScholarPubMed
Wang, X. X., Hoffland, E., Feng, G. and Kuyper, T. W. (2017b). Phosphate uptake from phytate due to hyphae-mediated phytase activity by arbuscular mycorrhizal maize. Frontiers in Plant Science, 8, 684.CrossRefGoogle ScholarPubMed
Weiß, M., Selosse, M. A., Rexer, K. H., Urban, A. and Oberwinkler, F. (2004). Sebacinales: a hitherto overlooked cosm of heterobasidiomycetes with a broad mycorrhizal potential. Mycological Research, 108, 10031010.CrossRefGoogle ScholarPubMed
Weiß, M., Sykorova, Z., Garnica, S. et al. (2011). Sebacinales everywhere: previously overlooked ubiquitous fungal endophytes. PLoS One, 6, e16793.CrossRefGoogle ScholarPubMed
Weiß, M., Waller, F., Zuccaro, A. and Selosse, M.-A. (2016). Sebacinales: one thousand and one interactions with land plants. New Phytologist, 211, 2040.CrossRefGoogle ScholarPubMed
Wolfe, M. S., Baresel, J. P., Desclaux, D. et al. (2008). Developments in breeding cereals for organic agriculture. Euphytica, 163, 323.CrossRefGoogle Scholar
Yadav, V., Kumar, M., Deep, D. K. et al. (2010). A phosphate transporter from the root endophytic fungus Piriformospora indica plays a role in phosphate transport to the host plant. Journal of Biological Chemistry, 285, 2653226544.CrossRefGoogle Scholar
Zuccaro, A., Basiewicz, M., Zurawska, M., Biedenkopf, D. and Kogel, K. H. (2009). Karyotype analysis, genome organization, and stable genetic transformation of the root colonizing fungus Piriformospora indica. Fungal Genetics and Biology, 46, 543550.CrossRefGoogle ScholarPubMed
Zuccaro, A., Lahrmann, U., Guldener, U. et al. (2011). Endophytic life strategies decoded by genome and transcriptome analyses of the mutualistic root symbiont Piriformospora indica. PLoS Pathogens, 7, e1002290.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×