Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-25wd4 Total loading time: 0 Render date: 2024-04-27T03:30:58.466Z Has data issue: false hasContentIssue false

3 - Application of Formulated Endophytic Entomopathogenic Fungi for Novel Plant Protection Strategies

from Part II - Role of Endophytes in Growth and Biotic and Abiotic Stress Resistance

Published online by Cambridge University Press:  01 April 2019

Trevor R. Hodkinson
Affiliation:
Trinity College Dublin
Fiona M. Doohan
Affiliation:
University College Dublin
Matthew J. Saunders
Affiliation:
Trinity College Dublin
Brian R. Murphy
Affiliation:
Trinity College Dublin
Get access

Summary

In recent years, research into novel plant protection strategies with endophytic entomopathogenic fungi has increased markedly. However, current applications of these fungi are mostly not supported by targeted formulation strategies which should enhance fungal establishment in close proximity to plant tissue and promote endophytism. Further drawbacks are low stability of fungal propagules during drying and storage, difficult handling as well as high dosages and costs per hectare. Formulation has the potential to substantially improve all of these characteristics to come closer to implementation of these fungi in integrated pest management. This chapter reviews the currently available literature on application of formulated endophytic entomopathogenic fungi via sprays, seed treatments, and sowing of granules and beads. It further addresses future trends in formulation science to overcome current challenges of endophytic entomopathogenic fungi regarding consistent efficacy particularly under field conditions.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adamek, A. (1965). Submerse cultivation of the fungus Metarhizium anisopliae. Folia Microbiologica, 4, 255257.CrossRefGoogle Scholar
Adams, A. J., Chappie, A. and Hall, F. R. (1990). Droplet spectra for some agricultural fan nozzles, with respect to drift and biological efficiency. In Pesticide Formulations and Application Systems, ed. L. E. Bode, J. L. Hazen and D. G. Chasin. West Conshohocken, PA: ASTM International, pp. 156169.CrossRefGoogle Scholar
Akello, J., Dubois, T., Coyne, D. and Kyamanywa, S. (2008). Effect of endophytic Beauveria bassiana on populations of the banana weevil, Cosmopolites sordidus, and their damage in tissue-cultured banana plants. Entomologia Experimentalis et Applicata, 129, 157165.CrossRefGoogle Scholar
Andersch, W., Hartwig, J., Reinecke, P. and Stenzel, K. (1990). Production of mycelial granules of the entomopathogenic fungus Metarhizium anisopliae for biological control of soil pests. In 5th International Colloquium on Invertebrate Pathology and Microbial Control: incorporating the 23rd Annual Meeting of the Society for Invertebrate Pathology: Proceedings and Abstracts. Adelaide: Society for Invertebrate Pathology, pp. 25.Google Scholar
Arnold, A. E. and Lutzoni, F. (2007). Diversity and host range of foliar fungal endophytes: are tropical leaves biodiversity hotspots? Ecology, 88, 541549.CrossRefGoogle ScholarPubMed
Barelli, L., Moonjely, S., Behie, S. W. and Bidochka, M. J. (2016). Fungi with multifunctional lifestyles: endophytic insect pathogenic fungi. Plant Molecular Biology, 90, 657664.CrossRefGoogle ScholarPubMed
Bashan, Y., De-Bashan, L. E., Prabhu, S. and Hernandez, J.-P. (2014). Advances in plant growth-promoting bacterial inoculant technology: formulations and practical perspectives (1998–2013). Plant and Soil, 378, 133.CrossRefGoogle Scholar
Bateman, R. and Chapple, A. (2001). The spray application of mycopesticide formulations. In Fungi as Biocontrol Agents: Progress Problems and Potential, ed. T. M. Butt, C. Jackson and N. Magan. Wallingford: CABI Publishing, pp. 289309.CrossRefGoogle Scholar
Bejarano, A., Sauer, U. and Preininger, C. (2017). Design and development of a workflow for microbial spray formulations including decision criteria. Applied Microbiology and Biotechnology, 101, 73357346.CrossRefGoogle ScholarPubMed
Bernhard, K., Holloway, P. J. and Burges, H. D. (1998). A catalogue of formulation additives: Function, nomenclature, properties and suppliers. In Formulation of Microbial Biopesticides: Beneficial Microorganisms, Nematodes and Seed Treatments, ed. H. D. Burges. Dordrecht, The Netherlands: Kluwer Academic Publishers, pp. 333365.Google Scholar
Bidochka, M. J., Pfeifer, T. A. and Khachatourians, G. G. (1987). Development of the entomopathogenic fungus Beauveria bassiana in liquid cultures. Mycopathologia, 99, 7783.CrossRefGoogle Scholar
Bing, L. A. and Lewis, L. C. (1991). Suppression of Ostrinia nubilalis (Huebner) (Lepidoptera: Pyralidae) by endophytic Beauveria bassiana (Balsamo) Vuillemin. Environmental Entomology, 20, 12071211.CrossRefGoogle Scholar
Boeger, P., Wakabayashi, K. and Hirai, K., (2012). Herbicide Classes in Development: Mode of Action, Targets, Genetic Engineering, Chemistry. Heidelberg, Germany: Springer.Google Scholar
Brownbridge, M., Reay, S. D., Nelson, T. L. and Glare, T. R. (2012). Persistence of Beauveria bassiana (Ascomycota: Hypocreales) as an endophyte following inoculation of radiata pine seed and seedlings. Biological Control, 61, 194200.CrossRefGoogle Scholar
Burges, H. D. (2012). Formulation of mycoinsecticides. In Formulation of Microbial Biopesticides: Beneficial Microorganisms, Nematodes and Seed Treatments, ed. H. D. Burges. Dordrecht, The Netherlands: Kluwer Academic Publishers, pp. 131–186.Google Scholar
Clay, K. (1989). Clavicipitaceous endophytes of grasses: their potential as biocontrol agents. Mycological Research, 92, 112.CrossRefGoogle Scholar
De Bary, A. (1866). Morphologie und Physiologie der Pilze, Flechten und Myxomyceten. Leipzig: W. Engelmann.Google Scholar
De Faria, M. R. and Wraight, S. P. (2007). Mycoinsecticides and mycoacaricides: a comprehensive list with worldwide coverage and international classification of formulation types. Biological Control, 43, 237256.CrossRefGoogle Scholar
Gómez-Vidal, S., Lopez-Llorca, L., Jansson, H.-B. and Salinas, J. (2006). Endophytic colonization of date palm (Phoenix dactylifera L.) leaves by entomopathogenic fungi. Micron, 37, 624632.CrossRefGoogle ScholarPubMed
Greenfield, M., Gómez-Jiménez, M. I., Ortiz, V., Vega, F. E., Kramer, M. and Parsa, S. (2016). Beauveria bassiana and Metarhizium anisopliae endophytically colonize cassava roots following soil drench inoculation. Biological Control, 95, 4048.CrossRefGoogle ScholarPubMed
Guesmi-Jouini, J., Garrido-Jurado, I., López-Díaz, C., Halima-Kamel, M. B. and Quesada-Moraga, E. (2014). Establishment of fungal entomopathogens Beauveria bassiana and Bionectria ochroleuca (Ascomycota: Hypocreales) as endophytes on artichoke Cynara scolymus. Journal of Invertebrate Pathology, 119, 14.CrossRefGoogle ScholarPubMed
Gurulingappa, P., Sword, G. A., Murdoch, G. and McGee, P. A. (2010). Colonization of crop plants by fungal entomopathogens and their effects on two insect pests when in planta. Biological Control, 55, 3441.CrossRefGoogle Scholar
Hardoim, P. R., Van Overbeek, L. S., Berg, G. et al. (2015). The hidden world within plants: ecological and evolutionary considerations for defining functioning of microbial endophytes. Microbiology and Molecular Biology Reviews, 79, 293320.CrossRefGoogle ScholarPubMed
Hazen, J. L. (2000). Adjuvants – terminology, classification, and chemistry. Weed Technology, 14, 773784.CrossRefGoogle Scholar
Hegedus, D. D., Bidochka, M. J. and Khachatourians, G. G. (1990). Beauveria bassiana submerged conidia production in a defined medium containing chitin, two hexosamines or glucose. Applied Microbiology and Biotechnology, 33, 641647.CrossRefGoogle Scholar
Hegedus, D. D., Bidochka, M. J., Miranpuri, G. S. and Khachatourians, G. G. (1992). A comparison of the virulence, stability and cell-wall-surface characteristics of three spore types produced by the entomopathogenic fungus Beauveria bassiana. Applied Microbiology and Biotechnology, 36, 785789.CrossRefGoogle Scholar
Hodgkinson, M. C., Johnson, D., Smith, G. et al. (2002). Causes of phytotoxicity induced by petroleum-derived spray oil. In Spray Oils -Beyond 2000, ed. Beattie, G. A. C., D. M. Watson, M. L. Stevens, D. J. Rae and R. N. Spooner-Hart. Sydney, Australia: University of Western Sydney, pp. 170178.Google Scholar
Holder, D. J., Kirkland, B. H., Lewis, M. W. and Keyhani, N. O. (2007). Surface characteristics of the entomopathogenic fungus Beauveria (Cordyceps) bassiana. Microbiology, 153, 34483457.CrossRefGoogle ScholarPubMed
Humphreys, A. M., Matewele, P., Trinci, A. P. and Gillespie, A. T. (1989). Effects of water activity on morphology, growth and blastospore production of Metarhizium anisopliae, Beauveria bassiana and Paecilomyces farinosus in batch and fed-batch culture. Mycological Research, 92, 257264.CrossRefGoogle Scholar
Inglis, G. D., Goettel, M. and Johnson, D. (1995). Influence of ultraviolet light protectants on persistence of the entomopathogenic fungus, Beauveria bassiana. Biological Control, 5, 581590.CrossRefGoogle Scholar
Inglis, G. D., Goettel, M. S., Butt, T. M. and Strasser, H. (2001). Use of hyphomycetous fungi for managing insect pests. In Fungi as Biocontrol Agents: Progress Problems and Potential, ed. T. M. Butt, C. Jackson and N. Magan. Wallingford: CABI Publishing, pp. 2370.CrossRefGoogle Scholar
Issaly, N., Chauveau, H., Aglevor, F., Fargues, J. and Durand, A. (2005). Influence of nutrient, pH and dissolved oxygen on the production of Metarhizium flavoviride Mf189 blastospores in submerged batch culture. Process Biochemistry, 40, 14251431.CrossRefGoogle Scholar
Jaber, L. R. and Enkerli, J. (2016). Effect of seed treatment duration on growth and colonization of Vicia faba by endophytic Beauveria bassiana and Metarhizium brunneum. Biological Control, 103, 187195.CrossRefGoogle Scholar
Jaber, L. R. and Enkerli, J. (2017). Fungal entomopathogens as endophytes: can they promote plant growth? Biocontrol Science and Technology, 27, 2841.CrossRefGoogle Scholar
Jackson, M. A. and Jaronski, S. T. (2009a). Composition of entomopathogenic fungus and method of production and application for insect control. USA patent application 11/901,547. 19th March, 2009.Google Scholar
Jackson, M. A. and Jaronski, S. T. (2009b). Production of microsclerotia of the fungal entomopathogen Metarhizium anisopliae and their potential for use as a biocontrol agent for soil-inhabiting insects. Mycological Research, 113, 842850.CrossRefGoogle ScholarPubMed
Jackson, M. A. and Schisler, D. A. (1995). Liquid culture production of microsclerotia of Colletotrichum truncatum for use as bioherbicidal propagules. Mycological Research, 99, 879884.CrossRefGoogle Scholar
Jaronski, S. T. and Mascarin, G. M. (2016). Mass production of fungal entomopathogens. In Microbial Control of Insect and Mite Pests: From Theory to Practice, ed. L. A. Lacey. London: Elsevier Science, pp. 141156.Google Scholar
Jenkins, N. E. and Goettel, M. S. (1997). Methods for mass-production of microbial control agents of grasshoppers and locusts. Memoirs of the Entomological Society of Canada, 129, 3748.CrossRefGoogle Scholar
Jenkins, N. and Prior, C. (1993). Growth and formation of true conidia by Metarhizium flavoviride in a simple liquid medium. Mycological Research, 97, 14891494.CrossRefGoogle Scholar
Johnson, L. J., De Bonth, A. C., Briggs, L. R. et al. (2013). The exploitation of epichloae endophytes for agricultural benefit. Fungal Diversity, 60, 171188.CrossRefGoogle Scholar
Kassa, A., Stephan, D., Vidal, S. and Zimmermann, G. (2004). Production and processing of Metarhizium anisopliae var. acridum submerged conidia for locust and grasshopper control. Mycological Research, 108, 93100.CrossRefGoogle ScholarPubMed
Kleespies, R. and Zimmermann, G. (1992). Production of blastospores by three strains of Metarhizium anisopliae (Metch.) Sorokin in submerged culture. Biocontrol Science and Technology, 2, 127135.CrossRefGoogle Scholar
Krell, V., Jakobs-Schoenwandt, D., Hettlage, L., Vidal, S. and Patel, A. V. (2017a). Exoenzymes improve penetration and colonization of potato plants by endophytic entomopathogenic Metarhizium brunneum. In 16th meeting of the IOBC-WPRS Working Group Microbial and Nematode Control of Invertebrate Pests, ed. Tarasco, E., Jehle, J. A, Burjanadze, M, L. Ruiu, V. Půža, E. Quesada-Moraga, M. Lopez-Ferber and D. Stephan. Tbilisi, Georgia: IOBC-WPRS, 65–69.Google Scholar
Krell, V., Jakobs-Schoenwandt, D., Vidal, S. and Patel, A. V. (2017b). Encapsulation of Metarhizium brunneum enhances endophytism in tomato plants. Biological Control, 116, 6273.CrossRefGoogle Scholar
Krell, V., Jakobs-Schoenwandt, D., Vidal, S. and Patel, A. V. (2018). Cellulase enhances endophytism of encapsulated Metarhizium brunneum in potato plants. Fungal Biology, 122, 373378.CrossRefGoogle ScholarPubMed
Leckie, B. M., Ownley, B. H., Pereira, R. M. et al. (2008). Mycelia and spent fermentation broth of Beauveria bassiana incorporated into synthetic diets affect mortality, growth and development of larval Helicoverpa zea (Lepidoptera: Noctuidae). Biocontrol Science and Technology, 18, 697710.CrossRefGoogle Scholar
Leland, J. E., Mullins, D. E., Vaughan, L. J. and Warren, H. L. (2005). Effects of media composition on submerged culture spores of the entomopathogenic fungus, Metarhizium anisopliae var. acridum, part 1: comparison of cell wall characteristics and drying stability among three spore types. Biocontrol Science and Technology, 15, 379392.CrossRefGoogle Scholar
Lohse, R., Jakobs-Schönwandt, D. and Patel, A. V. (2014). Screening of liquid media and fermentation of an endophytic Beauveria bassiana strain in a bioreactor. AMB Express, 4, 47.CrossRefGoogle Scholar
Lohse, R., Jakobs-Schönwandt, D., Vidal, S. and Patel, A. V. (2015). Evaluation of new fermentation and formulation strategies for a high endophytic establishment of Beauveria bassiana in oilseed rape plants. Biological Control, 88, 2636.CrossRefGoogle Scholar
Magalhäes, B. P., Dias, J. M. C. D. S. and Ferreira, C. M. (1994). Mycelial production of Metarhizium anisopliae in liquid culture using different sources of carbon and nitrogen. Revista de Microbiologia, 25, 181187.Google Scholar
Marques, E. J., Alves, S. B. and Marques, I. M. (1999). Effects of the temperature and storage on formulations with mycelia of Beauveria bassiana (Bals.) Vuill and Metarhizium anisopliae (Metschn.) Sorok. Brazilian Archives of Biology and Technology, 42, 153160.CrossRefGoogle Scholar
Mascarin, G. M., Kobori, N. N., De Jesus Vital, R. C., Jackson, M. A. and Quintela, E. D. (2014). Production of microsclerotia by Brazilian strains of Metarhizium spp. using submerged liquid culture fermentation. World Journal of Microbiology and Biotechnology, 30, 15831590.CrossRefGoogle ScholarPubMed
Mayerhofer, J., Eckard, S., Hartmann, M. et al. (2017). Assessing effects of the entomopathogenic fungus Metarhizium brunneum on soil microbial communities in Agriotes spp. biological pest control. FEMS Microbiology Ecology, 93, fix117, 115.CrossRefGoogle ScholarPubMed
Mckinnon, A. C., Saari, S., Moran-Diez, M. E. et al. (2017). Beauveria bassiana as an endophyte: a critical review on associated methodology and biocontrol potential. BioControl, 62, 117.CrossRefGoogle Scholar
Moonjely, S., Barelli, L. and Bidochka, M. (2016). Insect pathogenic fungi as endophytes. Advances in Genetics, 94, 107135.CrossRefGoogle ScholarPubMed
Moore, D., Bridge, P., Higgins, P., Bateman, R. and Prior, C. (1993). Ultra-violet radiation damage to Metarhizium flavoviride conidia and the protection given by vegetable and mineral oils and chemical sunscreens. Annals of Applied Biology, 122, 605616.CrossRefGoogle Scholar
Ownley, B. H., Gwinn, K. D. and Vega, F. E. (2010). Endophytic fungal entomopathogens with activity against plant pathogens: ecology and evolution. BioControl, 55, 113128.CrossRefGoogle Scholar
Parsa, S., Ortiz, V. and Vega, F. E. (2013). Establishing fungal entomopathogens as endophytes: towards endophytic biological control. Journal of Visualized Experiments, 74 , 50360.Google Scholar
Pedrini, S., Merritt, D. J., Stevens, J. and Dixon, K. (2017). Seed coating: science or marketing spin? Trends in Plant Science, 22, 106116.CrossRefGoogle ScholarPubMed
Pereira, R. M. and Roberts, D. W. (1990). Dry mycelium preparations of entomopathogenic fungi, Metarhizium anisopliae and Beauveria bassiana. Journal of Invertebrate Pathology, 56, 3946.CrossRefGoogle Scholar
Pereira, R. M. and Roberts, D. W. (1991). Alginate and cornstarch mycelial formulations of entomopathogenic fungi, Beauveria bassiana and Metarhizium anisopliae. Journal of Economic Entomology, 84, 16571661.CrossRefGoogle Scholar
Posada, F. and Vega, F. E. (2005). Establishment of the fungal entomopathogen Beauveria bassiana (Ascomycota: Hypocreales) as an endophyte in cocoa seedlings (Theobroma cacao). Mycologia, 97, 11951200.CrossRefGoogle ScholarPubMed
Posada, F., Aime, M. C., Peterson, S. W., Rehner, S. A. and Vega, F. E. (2007). Inoculation of coffee plants with the fungal entomopathogen Beauveria bassiana (Ascomycota: Hypocreales). Mycological research, 111, 748757.CrossRefGoogle ScholarPubMed
Powell, W. A., Klingeman, W. E., Ownley, B. H. and Gwinn, K. D. (2009). Evidence of endophytic Beauveria bassiana in seed-treated tomato plants acting as a systemic entomopathogen to larval Helicoverpa zea (Lepidoptera: Noctuidae). Journal of Entomological Science, 44, 391396.CrossRefGoogle Scholar
Przyklenk, M., Vemmer, M., Hanitzsch, M. and Patel, A. (2017). A bioencapsulation and drying method increases shelf life and efficacy of Metarhizium brunneum conidia. Journal of Microencapsulation, 34, 498512.CrossRefGoogle ScholarPubMed
Quesada-Moraga, E., Landa, B., Muñoz-Ledesma, J., Jiménez-Diáz, R. and Santiago-Alvarez, C. (2006). Endophytic colonisation of opium poppy, Papaver somniferum, by an entomopathogenic Beauveria bassiana strain. Mycopathologia, 161, 323329.CrossRefGoogle ScholarPubMed
Quesada-Moraga, E., Munoz-Ledesma, F. and Santiago-Alvarez, C. (2009). Systemic protection of Papaver somniferum L. against Iraella luteipes (Hymenoptera: Cynipidae) by an endophytic strain of Beauveria bassiana (Ascomycota: Hypocreales). Environmental Entomology, 38, 723730.CrossRefGoogle ScholarPubMed
Ravensberg, W. J. (2011). A Roadmap to the Successful Development and Commercialization of Microbial Pest Control Products for Control of Arthropods. Luxembourg: Springer Science & Business Media.CrossRefGoogle Scholar
Raya-Díaz, S., Sánchez-Rodríguez, A. R., Segura-Fernández, J. M., Del Campillo, M. D. C. and Quesada-Moraga, E. (2017). Entomopathogenic fungi-based mechanisms for improved Fe nutrition in sorghum plants grown on calcareous substrates. PloS One, 12, e0185903.CrossRefGoogle ScholarPubMed
Reay, S., Brownbridge, M., Gicquel, B., Cummings, N. and Nelson, T. (2010). Isolation and characterization of endophytic Beauveria spp. (Ascomycota: Hypocreales) from Pinus radiata in New Zealand forests. Biological Control, 54, 5260.CrossRefGoogle Scholar
Resquín-Romero, G., Garrido-Jurado, I., Delso, C., Ríos-Moreno, A. and Quesada-Moraga, E. (2016). Transient endophytic colonizations of plants improve the outcome of foliar applications of mycoinsecticides against chewing insects. Journal of Invertebrate Pathology, 136, 2331.CrossRefGoogle ScholarPubMed
Ríos-Moreno, A., Garrido-Jurado, I., Resquín-Romero, G., Arroyo-Manzanares, N., Arce, L. and Quesada-Moraga, E. (2016). Destruxin A production by Metarhizium brunneum strains during transient endophytic colonisation of Solanum tuberosum. Biocontrol Science and Technology, 26, 15741585.CrossRefGoogle Scholar
Rodriguez, R., White Jr, J., Arnold, A. and Redman, A. R. A. (2009). Fungal endophytes: diversity and functional roles. New Phytologist, 182, 314330.CrossRefGoogle ScholarPubMed
Rombach, M., Aguda, R. and Roberts, D. W. (1988). Production of Beauveria bassiana [Deuteromycotina: Hyphomycetes] in different liquid media and subsequent conidiation of dry mycelium. Entomophaga, 33, 315324.CrossRefGoogle Scholar
Sánchez-Rodríguez, A. R., Del Campillo, M. C. and Quesada-Moraga, E. (2015). Beauveria bassiana: An entomopathogenic fungus alleviates Fe chlorosis symptoms in plants grown on calcareous substrates. Scientia Horticulturae, 197, 193202.CrossRefGoogle Scholar
Schulz, B. and Boyle, C. (2005). The endophytic continuum. Mycological Research, 109, 661686.CrossRefGoogle ScholarPubMed
Shah, P., Douro-Kpindou, O.-K., Sidibe, A., Daffe, C., Van Der Pauuw, H. and Lomer, C. (1998). Effects of the sunscreen oxybenzone on field efficacy and persistence of Metarhizium flavoviride conidia against Kraussella amabile (Orthoptera: Acrididae) in Mali, West Africa. Biocontrol Science and Technology, 8, 357364.CrossRefGoogle Scholar
Shanmugam, S. (2015). Granulation techniques and technologies: recent progresses. BioImpacts, 5, 5563.CrossRefGoogle ScholarPubMed
Shearer, J. F. and Jackson, M. A. (2006). Liquid culturing of microsclerotia of Mycoleptodiscus terrestris, a potential biological control agent for the management of hydrilla. Biological Control, 38, 298306.CrossRefGoogle Scholar
Singh, M., Orsenigo, J. and Shah, D. (1984). Surface tension and contact angle of herbicide solutions affected by surfactants. Journal of the American Oil Chemists’ Society, 61, 596600.CrossRefGoogle Scholar
Tefera, T. and Vidal, S. (2009). Effect of inoculation method and plant growth medium on endophytic colonization of sorghum by the entomopathogenic fungus Beauveria bassiana. BioControl, 54, 663669.CrossRefGoogle Scholar
Thomas, K., Khachatourians, G. and Ingledew, W. (1987). Production and properties of Beauveria bassiana conidia cultivated in submerged culture. Canadian Journal of Microbiology, 33, 1220.CrossRefGoogle Scholar
Vega, F. E. (2008). Insect pathology and fungal endophytes. Journal of Invertebrate Pathology, 98, 277279.CrossRefGoogle ScholarPubMed
Vemmer, M. and Patel, A. V. (2013). Review of encapsulation methods suitable for microbial biological control agents. Biological Control, 67, 380389.CrossRefGoogle Scholar
Vidal, S. and Jaber, L. R. (2015). Entomopathogenic fungi as endophytes: plant–endophyte–herbivore interactions and prospects for use in biological control. Current Science, 109, 4654.Google Scholar
Wagner, B. L. and Lewis, L. C. (2000). Colonization of corn, Zea mays, by the entomopathogenic fungus Beauveria bassiana. Applied and Environmental Microbiology, 66, 34683473.Google ScholarPubMed
Wraight, S. P., Jackson, M. A. and De Kock, S. L. (2001). Production, stabilization and formulation of fungal biocontrol agents. In Fungi as Biocontrol Agents: Progress Problems and Potential, ed. T. M. Butt, C. Jackson and N. Magan. Wallingford: CABI Publishing, pp. 253288.CrossRefGoogle Scholar
Yuan, Y. and Lee, T. R. (2013). Contact angle and wetting properties. In Surface Science Techniques, ed. B. Holst and G. Bracco. Heidelberg, Germany: Springer, pp. 334.CrossRefGoogle Scholar
Zimmermann, G. (1982). Effect of high temperatures and artificial sunlight on the viability of conidia of Metarhizium anisopliae. Journal of Invertebrate Pathology, 40, 3640.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×