Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-x5gtn Total loading time: 0 Render date: 2024-05-29T00:21:21.666Z Has data issue: false hasContentIssue false

Chapter 21 - The kidney in endocrine disease

from Section III - Anatomical endocrine pathology

Published online by Cambridge University Press:  13 April 2017

Ozgur Mete
Affiliation:
University of Toronto
Sylvia L. Asa
Affiliation:
University of Toronto
Get access
Type
Chapter
Information
Endocrine Pathology , pp. 821 - 833
Publisher: Cambridge University Press
Print publication year: 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Kambham, N, Markowiz, GS, Valeri, AM, Lin, J, D'Agati, VD. Obesity-related glomerulopathy: an emerging epidemic. Kidney Int 2001;59:14981509.CrossRefGoogle ScholarPubMed
World Health Organization. Global Health Observatory (GHO) data. Obesity. Geneva: World Health Organization, 2014 (http://www.who.int/gho/ncd/risk_factors/obesity_text/en/, accessed 29 September 2015).Google Scholar
Weisinger, JR, Kempson, RL, Eldridge, FL, Swenson, RS. The nephrotic syndrome: a complication of massive obesity. Ann Intern Med 1974;81:440447.Google Scholar
Hsu, CY, McCulloch, CE, Iribarren, C, Darbinian, J, Go, AS. Body mass index and risk for end-stage renal disease. Ann Intern Med 2006;144: 2128.Google Scholar
Vivante, A, Golan, E, Tzur, D, Leiba, A, Tirosh, A, Skorecki, K, et al. Body mass index in 1.2 million adolescents and risk for end-stage renal disease. Arch Intern Med 2012;172:16441650.Google Scholar
Kastarinen, M, Juutilainen, A, Kastarinen, H, Salomaa, V, Karhapää, P, Tuomilehto, J, et al. Risk factors for end-stage renal disease in a community-based population: 26-year follow-up of 25 821 men and women in eastern Finland. J Intern Med 2010;267:612620.CrossRefGoogle Scholar
Darouich, S, Goucha, R, Jaafoura, MH, Zekri, S, Ben Maiz, H, Kheder, A. Clinicopathological characteristics of obesity-associated focal segmental glomerulosclerosis. Ultrastruct Pathol 2011;35:176182.Google Scholar
Danilewicz, M, Wagrowska-Danielwicz, M. Morphometric and immunohistochemical insight into focal segmental glomerulosclerosis in obese and non-obese patients. Nefrologia 2009;29:3541.Google Scholar
Chagnac, A, Weinstein, T, Korzets, A, Ramadan, E, Hirsch, J, Gafter, U. Glomerular hemodynamics in severe obesity. Am J Physiol 2000;278:F817F822.Google Scholar
Helal, I, Fick-Brosnahan, GM, Reed-Gitomer, B, Schrier, RW. Glomerular hyperfiltration: definitions, mechanisms and clinical implications. Nat Rev Nephrol 2012;8:293300.Google Scholar
Durvasula, RV, Shankland, SJ. The renin–angiotensin system in glomerular podocytes: mediator of glomerulosclerosis and link to hypertensive nephropathy. Curr Hypertens Rep 2006;8:132138.Google Scholar
Sharma, AM, Engeli, S, Pischon, T. New developments in mechanisms of obesity-induced hypertension: role of adipose tissue. Curr Hypertens Rep 2001;3:152156.CrossRefGoogle ScholarPubMed
Gill, PS, Wilcox, CS. NADPH oxidases in the kidney. Antioxid Redox Signal 2006;8:15971607.Google Scholar
Benigni, A, Gagliardini, E, Remuzzi, G. Changes in glomerular perm-selectivity induced by angiotensin II imply podocyte dysfunction and slit diaphragm protein rearrangement. Semin Nephrol 2004;24:131140.Google Scholar
Miceli, I, Burt, D, Tarabra, E, Camussi, G, Perin, PC, Gruden, G. Stretch reduces nephrin expression via an angiotensin II-AT 1-dependent mechanism in human podocytes: effect of rosiglitazone. Am J Physiol Renal Physiol 2009;298:F381390.CrossRefGoogle Scholar
Dessapt, C, Baradez, MO, Hayward, A, Dei Cas, A, Thomas, SM, Viberti, G, et al. Mechanical forces and TGFbeta1 reduce podocyte adhesion through alpha3-beta1 integrin downregulation. Nephrol Dial Transplant 2009;24: 26452655.Google Scholar
Chen, S, Lee, JS, Iglesias-de la Cruz, MC, Wang, A, Izquierdo-Lahuerta, A, Gandhi, NK, et al. Angiotensin II stimulates alpha3(IV) collagen production in mouse podocytes via TGF-beta and VEGF signalling: implications for diabetic glomerulopathy. Nephrol Dial Transplant 2005;20:13201328.Google Scholar
Yoshida, S, Nagase, M, Shibata, S, Fujita, T. Podocyte injury induced by albumin overload in vivo and in vitro: Involvement of TGF-beta and p38 MAPK. Nephron Exp Nephrol 2008;108:e57e68.Google Scholar
Nolan, E, O'Meara, YM, Godson, C. Lipid mediators of inflammation in obesity-related glomerulopathy. Nephrol Dial Transplant 2013;28(suppl 4):2229.Google Scholar
Ehrhart-Bornstein, M, Lamounier-Zepter, V, Schraven, A, Langenbach, J, Willenberg, HS, Barthel, A, et al. Human adipocytes secrete mineralcorticoid-releasing factors. Proc Natl Acad Sci USA 2003;100:1421114216.Google Scholar
Shibata, S, Nagase, M, Yoshida, S, Kawachi, H, Fujita, T. Podocyte as the target for aldosterone: roles of oxidative stress and Sgk1. Hypertension 2007;49:355364.CrossRefGoogle ScholarPubMed
Praga, M, Hernández, E, Herrero, JC, Morales, E, Revilla, Y, Díaz-González, R, et al. Influence of obesity on the appearance of proteinuria and renal insufficiency after unilateral nephrectomy. Kidney Int 2000;58:21112118.Google Scholar
Praga, M, Hernandez, E, Morales, E, Campos, AP, Valero, MA, Martinez, MA, et al. Clinical features and long-term outcome of obesity-associated focal segmental glomerulosclerosis. Nephrol Dial Transplant 2001;16:17901798.Google Scholar
González, E, Gutiérrez, E, Morales, E, Hernández, E, Andres, A, Bello, I, et al. Factors influencing the progression of renal damage in patients with unilateral renal agenesis and remnant kidney. Kidney Int 2005;68:263270.Google Scholar
Tsuboi, N, Utsunomiya, Y, Kanzaki, G, Koike, K, Ikegami, M, Kawamura, T, et al. Low glomerular density with glomerulomegaly in obesity-related glomerulopathy. Clin J Am Soc Nephrol 2012;7:735741.CrossRefGoogle ScholarPubMed
Silverwood, RJ, Pierce, M, Hardy, R, Sattar, N, Whincup, P, Ferro, C, et al. Low birth weight, later renal function, and the roles of adulthood blood pressure, diabetes, and obesity in a British birth cohort. Kidney Int 2013;84:12621270.Google Scholar
Gurusinghe, S, Brown, RD, Cai, X, Samuel, CS, Ricardo, SD, Thomas, MC, et al. Does a nephron deficit exacerbate the renal and cardiovascular effects of obesity? PLOS ONE 2013;8:e73095.Google Scholar
Goumenous, DS, Kawar, B, El Nahas, M, Conti, S, Wangner, B, Spyropoulos, C, et al. Early histological changes in the kidney of people with morbid obesity. Nephrol Dial Transplant 2009;24:37323738.Google Scholar
Kasiske, BL, Napier, J. Glomerular sclerosis in patients with massive obesity. Am J Nephrol 1985;5:4550.Google Scholar
Cohen, AH. Massive obesity and the kidney. A morphologic and statistical study. Am J Pathol 1975;81:117130.Google Scholar
Chen, HM, Liu, ZH, Zeng, CH, Li, SJ, Wang, QW, Li, LS. Podocyte lesions in patients with obesity-related glomerulopathy. Am J Kidney Dis 2006;48:772779.Google Scholar
Bolignano, D, Zoccali, C. Effects of weight loss on renal function in obese CKD patients: a systematic review. Nephrol Dial Transplant 2013;28(suppl 4):8298.Google Scholar
Weir, MA, Beyea, MM, Gomes, T, Juurlink, DN, Mamdani, M, Blake, PG, et al. Orlistat and acute kidney injury: an analysis of 953 patients. Arch Intern Med 2011;171:703704.Google Scholar
Coutinho, AK, Glancey, GR. Orlistat, an under-recognised cause of progressive renal impairment. Nephrol Dial Transplant 2013;28(suppl 4):172174.CrossRefGoogle ScholarPubMed
Troxell, ML, Houghton, DC, Hawkey, M, Batiuk, TD, Bennett, WM. Enteric oxalate nephropathy in the renal allograft: an underrecognized complication of bariatric surgery. Am J Transplant 2013;13:501509.Google Scholar
Bonnet, F, Deprele, C, Sassolas, A, Moulin, P, Berthezene, F, Berthoux, F. Excessive body weight as a new independent risk factor for clinical and pathological progression in primary IgA nephritis. Am J Kidney Dis 2001;37:720727.Google Scholar
Griffin, B, Lightstone, L. Renoprotective strategies in lupus nephritis: beyond immunosuppression. Lupus 2013;22:12671273.Google Scholar
Chan, W, Bosch, JA, Jones, D, McTernan, PG, Phillips, AC, Borrows, R. Obesity in kidney transplantation. J Ren Nutr 2014;24:112.Google Scholar
American Diabetes Association. Standards of medical care in diabetes: 2013. Diabetes Care 2013;36:S11S66.Google Scholar
International Diabetes Federation. IDF Diabetes Atlas, 6th edn. Brussels: International Diabetes Federation, 2013 (http://www.idf.org/diabetesatlas, accessed 29 September 2015).Google Scholar
U.S. Renal Data System. USRDS 2013 Annual Data Report: Atlas of Chronic Kidney Disease and End-Stage Renal Disease in the United States. Bethesda, MD: National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases, 2013.Google Scholar
Perkins, BA, Ficociello, LH, Silva, KH, Finkelstein, DM, Warram, JH, Krolewski, AS. Regression of microalbuminuria in type 1 diabetes. N Engl J Med 2003;348:22852293.Google Scholar
Caramori, ML, Fioretto, P, Mauer, M. The need for early predictors of diabetic nephropathy risk: is albumin excretion rate sufficient? Diabetes 2000;49:13991408.Google Scholar
Adler, A, Stevens, R, Manley, S, Bilous, R, Cull, C, Holman, R, UKPDS group. Development and progression of nephropathy in type 2 diabetes: the United Kingdom Prospective Diabetes Study (UKPDS 64). Kidney Int 2003;63:225232.Google Scholar
Chronic Kidney Disease Prognosis Consortium, Matsushita, K, van der Velde, M, Astor, BC, Woodward, M, Levey, AS, et al. Association of estimated glomerular filtration rate and albuminuria with all-cause and cardiovascular mortality in general population cohorts: a collaborative meta-analysis. Lancet 2010;375:20732081.Google Scholar
Drummond, K, Mauer, M. The early natural history of nephropathy in type 1 diabetes. II. Early renal structural changes in type 1 diabetes. Diabetes 2002;51:15801587.Google Scholar
Mac-Moune, LF, Szeto, CC, Choi, PC, Ho, KK, Tang, NL, Chow, KM, et al. Isolated diffuse thickening of glomerular capillary basement membrane: a renal lesion in prediabetes? Mod Pathol 2004;17:15061512.Google Scholar
Amann, K, Benz, K. Structural renal changes in obesity and diabetes. Semin Nephrol 2013;33:2333.Google Scholar
Tervaert, TWC, Mooyaart, AL, Amann, K, Cohen, AH, Cook, HT, Drachenberg, CB, et al. Pathologic classification of diabetic nephropathy. J Am Soc Nephrol 2010;21:556563.Google Scholar
Rossing, P, Hougaard, P, Parving, HH. Risk factors for development of incipient and overt diabetic nephropathy in type 1 diabetic patients: A 10-year prospective observational study. Diabetes Care 2002;25:859.Google Scholar
Najafian, B, Alpers, CE, Fogo, AB. Pathology of human diabetic nephropathy. Contrib Nephrol 2011;170:3647.Google Scholar
Alpers, CE, Hudkins, KL. Mouse models of diabetic nephropathy. Curr Opin Nephrol Hypertens 2011;20:278284.Google Scholar
Kanwar, YS. Sun, L, Xie, P, Liu, FY, Chen, S. A glimpse of various pathogenetic mechanisms of diabetic nephropathy. Annu Rev Pathol 2011;6:395423.Google Scholar
Mogensen, CE, Christensen, CK, Vittinghus, E. The stages in diabetic renal disease: with emphasis on the stage of incipient diabetic nephropathy. Diabetes 1983;32(suppl 2):64.Google Scholar
Raparia, K, Usman, I, Kanwar, YS. Renal morphologic lesions reminiscent of diabetic nephropathy. Arch Pathol Lab Med 2013;137:351359.Google Scholar
Olson, JL, Laszik, ZG. Diabetic nephropathy. In Jennette, JC, Olson, JL, Silva, FG, D'Agati, VD, eds. Heptinstall's Pathology of the Kidney, 7th edn. Lippincott Williams & Wilkins, 2015:897950.Google Scholar
Bagby, SP. Diabetic nephropathy and proximal tubule ROS: challenging our glomerulocentricity. Kidney Int 2007;71:11991202.Google Scholar
Hickey, FB, Martin, F. Diabetic kidney disease and immune modulation. Curr Opin Pharmacol 2013;13:602612.Google Scholar
Stout, LC, Kumar, S, Whorton, EB. Insudative lesions: their pathogenesis and association with glomerular obsolescence in diabetes: a dynamic hypothesis based on single views of advancing human diabetic nephropathy. Hum Pathol 1994;25:12131227.Google Scholar
Toyoda, M, Najafian, B, Kim, Y, Caramori, ML, Mauer, M. Podocyte detachment and reduced glomerular capillary endothelial fenestration in human type 1 diabetic nephropathy. Diabetes 2007;56:21552160.CrossRefGoogle ScholarPubMed
Brito, PL, Fioretto, P, Drummond, K, Kim, Y, Steffes, MW, Basgen, JM, et al. Proximal tubular basement membrane width in insulin-dependent diabetes mellitus. Kidney Int 1998;53:754761.Google Scholar
Bangstad, HJ, Osterby, R, Dahl-Jorgensen, K, Berg, KJ, Hartmann, A, Hanssen, KF. Improvement of blood glucose control in IDDM patients retards the progression of morphological changes in early diabetic nephropathy. Diabetologia 1994;37: 483490.Google Scholar
Schwartz, MM, Lewis, EJ, Leonard-Martin, T, Lewis, JB, Batlle, D. Renal pathology patterns in type II diabetes mellitus: relationship with retinopathy. The Collaborative Study Group. Nephrol Dial Transplant 1998;13:25472552.Google Scholar
Meyer, TW, Bennett, PH, Nelson, RG. Podocyte number predicts long-term urinary albumin excretion in Pima Indians with type II diabetes and microalbuminuria. Diabetologia 1999;42:13411344.Google Scholar
Alsaad, KO, Herzenberg, AM. Distinguishing diabetic nephropathy from other causes of glomerulosclerosis: an update. J Clin Pathol 2007;60:1826.Google Scholar
Iksander, SS, Herrera, GA. Glomerular diseases with organized deposits. In Jennette, JC, Olson, JL, Silva, FG, D'Agati, VD, eds. Heptinstall's Pathology of the Kidney, 7th edn. Lippincott Williams & Wilkins, 2015:10151038.Google Scholar
Gaede, P, Lund-Andersen, H, Parving, HH, Pedersen, O. Effect of a multifactorial intervention on mortality in type 2 diabetes. N Engl J Med 2008;358:580591.Google Scholar
Chobanian, AV, Bakris, GL, Black, HR, Cushman, WC, Green, LA, Izzo, JL Jr., et al. The Seventh Report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure: the JNC 7 report. JAMA 2003;289:25602572.Google Scholar
ACE Inhibitors in Diabetic Nephropathy Trialist Group. Should all patients with type 1 diabetes mellitus and microalbuminuria receive angiotensin-converting enzyme inhibitors? A meta-analysis of individual patient data. Ann Intern Med 2001;134:370379.Google Scholar
Lindholm, LH, Ibsen, H, Dahlof, B, Devereux, RB, Beevers, G, de Faire, U, et al. Cardiovascular morbidity and mortality in patients with diabetes in the Losartan Intervention For Endpoint Reduction in Hypertension study (LIFE): a randomised trial against atenolol Lancet 2003;359:10041010.Google Scholar
Mauer, M, Zinman, B, Gardiner, R, Suissa, S, Sinaiko, A, Strand, T, et al. Renal and retinal effects of enalapril and losartan in type 1 diabetes. N Engl J Med 2009;361:4051.Google Scholar
Lewis, EJ, Hunsicker, LG, Clarke, WR, Berl, T, Pohl, MA, Lewis, JB, et al. Renoprotective effect of the angiotensin receptor antagonist irbesartan in patients with nephropathy due to type 2 diabetes. N Engl J Med 2001;345:851860.Google Scholar
Viberti, G, Wheeldon, NM. Microalbuminuria reduction with valsartan in patients with type 2 diabetes mellitus: a blood pressure-independent effect. Circulation 2002;106:672678.Google Scholar
Mogensen, CE. Microalbuminuria and hypertension with focus on type 1 and type 2 diabetes. J Intern Med 2003;254:4566.Google Scholar
Diabetes Control and Complications (DCCT) Research Group. Effect of intensive therapy on the development and progression of diabetic nephropathy in the Diabetes Control and Complications Trial. Kidney Int 1995;47:17031717.Google Scholar
UK Prospective Diabetes Study (UKPDS) Group. Effect of intensive blood-glucose control with metformin on complications in overweight patients with type 2 diabetes (UKPDS 34). Lancet 1998;352:854865.Google Scholar
UK Prospective Diabetes Study (UKPDS) Group. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). Lancet 1998;352:837853.Google Scholar
Grundy, SM, Cleeman, JI, Merz, CN, Brewer, HB Jr., Clark, LT, Hunninghake, DB, et al. Implications of recent clinical trials for the National Cholesterol Education Program Adult Treatment Panel III guidelines. Circulation 2004;110:227239.CrossRefGoogle ScholarPubMed
Fried, LF, Orchard, TJ, Kasiske, BL. Effect of lipid reduction on the progression of renal disease: a meta-analysis. Kidney Int 2001;59:260269.Google Scholar
Kearney, PM, Blackwell, L, Collins, R, Keech, A, Simes, J, Peto, R, Armitage, J, et al. Efficacy of cholesterol lowering therapy in 18 686 people with diabetes in 14 randomised trials of statins: a meta-analysis. Lancet 2008;371:117125.Google ScholarPubMed
Burney, BO, Kalaitzidis, RG, Bakris, GL. Novel therapies of diabetic nephropathy. Curr Opin Nephrol Hypertens 2009;18:107111.Google Scholar
Gambaro, G, Kinalska, I, Oksa, A, Pont'uch, P, Hertlová, M, Olsovsky, J, et al. Oral sulodexide reduces albuminuria in microalbuminuric and macroalbuminuric type 1 and type 2 diabetic patients: the Di.N.A.S. randomized trial. J Am Soc Nephrol 2002;13:16151625.Google Scholar
Heerspink, HL, Greene, T, Lewis, JB, Raz, I, Rohde, RD, Hunsicker, LG, et al. Effects of sulodexide in patients with type 2 diabetes and persistent albuminuria. Nephrol Dial Transplant 2008;23:19461954.Google Scholar
Tuttle, KR, Bakris, GL, Toto, RD, McGill, JB, Hu, K, Anderson, PW. The effect of ruboxistaurin on nephropathy in type 2 diabetes. Diabetes Care 2005;28:26862690.Google Scholar
Williams, ME, Bolton, WK, Khalifah, RG, Degenhardt, TP, Schotzinger, RJ, McGill, JB. Effects of pyridoxamine in combined phase 2 studies of patients with type 1 and type 2 diabetes and overt nephropathy. Am J Nephrol 2007;27:605614.Google Scholar
Perrin, NE, Torbjornsdotter, TB, Jaremko, GA, Berg, UB. The course of diabetic glomerulopathy in patients with type I diabetes: a 6-year follow-up with serial biopsies. Kidney Int 2006;69:699705.Google Scholar
Heaf, JG, Lokkegaard, H, Larsen, S. The relative prognosis of nodular and diffuse diabetic nephropathy. Scand J Urol Nephrol 2001;35: 233238.Google Scholar
Oh, SW, Kim, S, Na, KY, Chae, DW, Kim, S, Jin, DC, et al. Clinical implications of pathologic diagnosis and classification for diabetic nephropathy. Diabetes Res Clin Pract 2012;97: 418424.Google Scholar
Mise, K, Hoshino, J, Ubara, Y, Sumida, K, Hiramatsu, R, Hasegawa, E, et al. Renal prognosis a long time after renal biopsy on patients with diabetic nephropathy. Nephrol Dial Transplant 2013;0: 110.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×