Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-75dct Total loading time: 0 Render date: 2024-06-08T22:41:06.992Z Has data issue: false hasContentIssue false

Chapter 17 - Endocrine lesions of the gastrointestinal tract

from Section III - Anatomical endocrine pathology

Published online by Cambridge University Press:  13 April 2017

Ozgur Mete
Affiliation:
University of Toronto
Sylvia L. Asa
Affiliation:
University of Toronto
Get access
Type
Chapter
Information
Endocrine Pathology , pp. 677 - 717
Publisher: Cambridge University Press
Print publication year: 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Rehfeld, J.F. 1998. The new biology of gastrointestinal hormones. Physiol Rev 78:10871108.CrossRefGoogle ScholarPubMed
Pearse, A.G. 1969. The cytochemistry and ultrastructure of polypeptide hormone-producing cells of the APUD series and the embryologic, physiologic and pathologic implications of the concept. J Histochem Cytochem 17:303313.Google Scholar
Andrew, A., Kramer, B., et al. 1998. The origin of gut and pancreatic neuroendocrine (APUD) cells–the last word? J Pathol 186:117118.Google Scholar
Karam, S.M., Li, Q., et al. 1997. Gastric epithelial morphogenesis in normal and transgenic mice. Am J Physiol 272:G1209G1220.Google Scholar
Karam, S.M., Leblond, C.P. 1993. Dynamics of epithelial cells in the corpus of the mouse stomach. I. Identification of proliferative cell types and pinpointing of the stem cell. Anat Rec 236:259279.Google Scholar
Gordon, J.I., Schmidt, G.H., et al. 1992. Studies of intestinal stem cells using normal, chimeric, and transgenic mice. Faseb J 6:30393050.CrossRefGoogle ScholarPubMed
Booth, C., Potten, C.S. 2000. Gut instincts: thoughts on intestinal epithelial stem cells. J Clin Invest 105:14931499.CrossRefGoogle ScholarPubMed
Marshman, E., Booth, C., et al. 2002. The intestinal epithelial stem cell. Bioessays 24:9198.Google Scholar
Skipper, M., Lewis, J. 2000. Getting to the guts of enteroendocrine differentiation. Nat Genet 24:34.Google Scholar
Solcia, E., Vanoli, A. 2014. Histogenesis and natural history of gut neuroendocrine tumors: present status. Endocr Pathol 25:165170.Google Scholar
Murphy, K.G., Bloom, S.R. 2006. Gut hormones and the regulation of energy homeostasis. Nature 444: 854859.CrossRefGoogle ScholarPubMed
Kellum, J.M., Albuquerque, F.C., et al. 1999. Stroking human jejunal mucosa induces 5-HT release and Cl-secretion via afferent neurons and 5-HT4 receptors. Am J Physiol 277: G515520.Google Scholar
Fukumoto, S., Tatewaki, M., et al. 2003. Short-chain fatty acids stimulate colonic transit via intraluminal 5-HT release in rats. Am J Physiol Regul Integr Comp Physiol 284:R12691276.Google Scholar
Challacombe, D.N., Wheeler, E.E. 1983. Possible neural projections from enterochromaffin cells. Lancet ii: 1502.Google Scholar
Wiedenmann, B., John, M., et al. 1998. Molecular and cell biological aspects of neuroendocrine tumors of the gastroenteropancreatic system. J Mol Med (Berl) 76:637647.CrossRefGoogle ScholarPubMed
Feldman, S.A., Eiden, L.E. 2003. The chromogranins: their roles in secretion from neuroendocrine cells and as markers for neuroendocrine neoplasia. Endocr Pathol 14:323.Google Scholar
Cetin, Y., Kuhn, M., et al. 1994. Enterochromaffin cells of the digestive system: cellular source of guanylin, a guanylate cyclase-activating peptide. Proc Natl Acad Sci USA 91:29352939.Google Scholar
Modlin, I.M., Kidd, M., et al. 2006. The functional characterization of normal and neoplastic human enterochromaffin cells. J Clin Endocrinol Metab 91:23402348.Google Scholar
Bosman, F.T., Carneiro, F., et al. WHO Classification of Tumours of the Digestive System. Lyon: International Agency for Research on Cancer, 2010.Google Scholar
Klimstra, D.S., Modlin, I.R., et al. 2010. The pathologic classification of neuroendocrine tumors: a review of nomenclature, grading, and staging systems. Pancreas 39:707712.CrossRefGoogle ScholarPubMed
Rindi, G., Kloppel, G., et al. 2006. TNM staging of foregut (neuro)endocrine tumors: a consensus proposal including a grading system. Virchows Arch 449:395401.Google Scholar
Rindi, G., Kloppel, G., et al. 2007. TNM staging of midgut and hindgut (neuro)endocrine tumors: a consensus proposal including a grading system. Virchows Arch 451:757762.CrossRefGoogle ScholarPubMed
Sorbye, H., Welin, S., et al. 2013. Predictive and prognostic factors for treatment and survival in 305 patients with advanced gastrointestinal neuroendocrine carcinoma (WHO G3): the NORDIC NEC study. Ann Oncol 24:152160.Google Scholar
Velayoudom-Cephise, F.L., Duvillard, P., et al. 2013. Are G3 ENETS neuroendocrine neoplasms heterogeneous? Endocr Relat Cancer 20:649657.Google Scholar
van Velthuysen, M.L., Groen, E.J., et al. 2014. Reliability of proliferation assessment by Ki-67 expression in neuroendocrine neoplasms: eyeballing or image analysis? Neuroendocrinology 100:288292.Google Scholar
Kaltsas, G.A., Besser, G.M., et al. 2004. The diagnosis and medical management of advanced neuroendocrine tumors. Endocr Rev 25:458511.Google Scholar
Stridsberg, M., Oberg, K., et al. 1995. Measurements of chromogranin A, chromogranin B (secretogranin I), chromogranin C (secretogranin II) and pancreastatin in plasma and urine from patients with carcinoid tumours and endocrine pancreatic tumours. J Endocrinol 144:4959.Google Scholar
Sciarra, A., Monti, S., et al. 2005. Chromogranin A expression in familial versus sporadic prostate cancer. Urology 66:10101014.Google Scholar
Rorstad, O. 2005. Prognostic indicators for carcinoid neuroendocrine tumors of the gastrointestinal tract. J Surg Oncol 89:151160.CrossRefGoogle ScholarPubMed
Berna, M.J., Hoffmann, K.M., et al. 2006. Serum gastrin in Zollinger–Ellison syndrome: II. Prospective study of gastrin provocative testing in 293 patients from the National Institutes of Health and comparison with 537 cases from the literature. evaluation of diagnostic criteria, proposal of new criteria, and correlations with clinical and tumoral features. Medicine (Baltimore) 85:331364.CrossRefGoogle ScholarPubMed
Eriksson, B., Oberg, K., et al. 2000. Tumor markers in neuroendocrine tumors. Digestion 62(suppl 1):3338.Google Scholar
Kwekkeboom, D.J., Krenning, E.P. 1996. Somatostatin receptor scintigraphy in patients with carcinoid tumors. World J Surg 20:157161.Google Scholar
Gibril, F., Jensen, R.T. 2004. Diagnostic uses of radiolabelled somatostatin receptor analogues in gastroenteropancreatic endocrine tumours. Dig Liver Dis 36(suppl 1):S106S120.Google Scholar
Gibril, F., Reynolds, J.C., et al. 1996. Somatostatin receptor scintigraphy: its sensitivity compared with that of other imaging methods in detecting primary and metastatic gastrinomas. A prospective study. Ann Intern Med 125:2634.Google Scholar
Montravers, F., Grahek, D., et al. 2006. Can fluorodihydroxyphenylalanine PET replace somatostatin receptor scintigraphy in patients with digestive endocrine tumors? J Nucl Med 47:14551462.Google Scholar
van Essen, M., Sundin, A., et al. 2014. Neuroendocrine tumours: the role of imaging for diagnosis and therapy. Nat Rev Endocrinol 10:102114.Google Scholar
D’Onofrio, M., Martone, E., et al. 2006. Focal liver lesions: sinusoidal phase of CEUS. Abdom Imaging 31:529536.Google Scholar
Hyslop, W.B., Semelka, R.C. 2005. Future directions in body magnetic resonance imaging. Top Magn Reson Imaging 16:314.Google Scholar
Funovics, M.A., Kapeller, B., et al. 2004. MR imaging of the Her2/neu and 9.2.27 tumor antigens using immunospecific contrast agents. Magn Reson Imaging 22:843850.Google Scholar
van Tuyl, S.A., van Noorden, J.T., et al. 2006. Detection of small-bowel neuroendocrine tumors by video capsule endoscopy. Gastrointest Endosc 64:6672.CrossRefGoogle ScholarPubMed
La Rosa, S., Marando, A., et al. 2012. Mixed adenoneuroendocrine carcinomas (MANECs) of the gastrointestinal tract: an update. Cancers (Basel) 4:1130.CrossRefGoogle ScholarPubMed
Adhikari, D., Conte, C., et al. 2002. Combined adenocarcinoma and carcinoid tumor in atrophic gastritis. Ann Clin Lab Sci 32: 422–7.Google Scholar
Caruso, M.L., Pilato, F.P., et al. 1989. Composite carcinoid-adenocarcinoma of the stomach associated with multiple gastric carcinoids and nonantral gastric atrophy. Cancer 64:15341539.3.0.CO;2-H>CrossRefGoogle ScholarPubMed
Auber, F., Gambiez, L., et al. 1998. Mixed adenocarcinoid tumor and Crohn’s disease. J Clin Gastroenterol 26:353354.Google Scholar
Hock, Y.L., Scott, K.W., et al. 1993. Mixed adenocarcinoma/carcinoid tumour of large bowel in a patient with Crohn’s disease. J Clin Pathol 46:183185.CrossRefGoogle Scholar
Cary, N.R., Barron, D.J., et al. 1993. Combined oesophageal adenocarcinoma and carcinoid in Barrett’s oesophagitis: potential role of enterochromaffin-like cells in oesophageal malignancy. Thorax 48:404405.Google Scholar
Tahara, E., Ito, H., et al. 1982. Scirrhous argyrophil cell carcinoma of the stomach with multiple production of polypeptide hormones, amine, CEA, lysozyme, and HCG. Cancer 49:19041915.Google Scholar
Yang, G.C., Rotterdam, H. 1991. Mixed (composite) glandular-endocrine cell carcinoma of the stomach. Report of a case and review of literature. Am J Surg Pathol 15:592598.CrossRefGoogle ScholarPubMed
Serra, S., Chetty, R. 2014. Amphicrine (mixed adenoneuroendocrine carcinoma) of the duodenum and coexistent metastatic well differentiated neuroendocrine tumour. Diagn Histopathol 20:297300.CrossRefGoogle Scholar
Modlin, I.M., Kidd, M., et al. 2005. Current status of gastrointestinal carcinoids. Gastroenterology 128:17171751.Google Scholar
Norton, J.A. 2005. Endocrine tumours of the gastrointestinal tract. Surgical treatment of neuroendocrine metastases. Best Pract Res Clin Gastroenterol 19:577583.CrossRefGoogle ScholarPubMed
Lee, E., Pachter, H.L., et al. 2012. Hepatic arterial embolization for the treatment of metastatic neuroendocrine tumors. Int J Hepatol 2012;471203.CrossRefGoogle Scholar
Walter, T., Brixi-Benmansour, H., et al. 2012. New treatment strategies in advanced neuroendocrine tumours. Dig Liver Dis 44:95105.Google Scholar
Kolby, L., Persson, G., et al. 2003. Randomized clinical trial of the effect of interferon alpha on survival in patients with disseminated midgut carcinoid tumours. Br J Surg 90:687693.Google Scholar
Oberg, K.E. 2012. The management of neuroendocrine tumours: current and future medical therapy options. Clin Oncol (R Coll Radiol) 24:282293.Google Scholar
Gulenchyn, K.Y., Yao, X., et al. Radionuclide therapy in neuroendocrine tumours: a systematic review. Clin Oncol (R Coll Radiol) 24:294308.Google Scholar
Mills, SE. 2007. Histology for Pathologists, 3rd edn. Philadelphia PA: Lippincott Williams & Wilkins, 2007Google Scholar
Tateishi, R., Taniguchi, K., et al. 1976. Argyrophil cell carcinoma (apudoma) of the esophagus. A histopathologic entity. Virchows Arch A Pathol Anat Histopathol 371:283294.Google Scholar
Modlin, I.M., Sandor, A. 1997. An analysis of 8305 cases of carcinoid tumors. Cancer 79:813829.Google Scholar
Maru, D.M., Khurana, H., et al. 2008. Retrospective study of clinicopathologic features and prognosis of high-grade neuroendocrine carcinoma of the esophagus. Am J Surg Pathol 32:14041411.Google Scholar
Briggs, J.C., Ibrahim, N.B. 1983. Oat cell carcinomas of the oesophagus: a clinico-pathological study of 23 cases. Histopathology 7:261277.CrossRefGoogle ScholarPubMed
Chong, F.K., Graham, J.H., et al. 1979. Mucin-producing carcinoid (composite tumor) of upper third of esophagus: a variant of carcinoid tumor. Cancer 44:18531859.Google Scholar
Attar, B.M., Levendoglu, H., et al. 1990. Small cell carcinoma of the esophagus. Report of three cases and review of the literature. Dig Dis Sci 35:145152.Google Scholar
Kloppel, G., Rindi, G., et al. 2007. Site-specific biology and pathology of gastroenteropancreatic neuroendocrine tumors. Virchows Arch 451(suppl 1):S9S27.Google Scholar
Huncharek, M., Muscat, J. 1995. Small cell carcinoma of the esophagus. The Massachusetts General Hospital experience, 1978 to 1993. Chest 107:179181.Google Scholar
Modlin, I.M., Shapiro, M.D., et al. 2005. An analysis of rare carcinoid tumors: clarifying these clinical conundrums. World J Surg 29:92101.CrossRefGoogle ScholarPubMed
Siegal, A., Swartz, A. 1986. Malignant carcinoid of oesophagus. Histopathology 10:761765.CrossRefGoogle ScholarPubMed
Nawroz, I.M. 1987. Malignant carcinoid tumour of oesophagus. Histopathology 11:879880.Google Scholar
Takubo, K., Nakamura, K., et al. 1999. Primary undifferentiated small cell carcinoma of the esophagus. Hum Pathol 30:216221.Google Scholar
Yun, J.P., Zhang, M.F., et al. 2007. Primary small cell carcinoma of the esophagus: clinicopathological and immunohistochemical features of 21 cases. BMC Cancer 7: 38.Google Scholar
Yamamoto, J., Ohshima, K., et al. 2003. Primary esophageal small cell carcinoma with concomitant invasive squamous cell carcinoma or carcinoma in situ. Hum Pathol 34:11081115.Google Scholar
Mori, M., Matsukuma, A., et al. 1989. Small cell carcinoma of the esophagus. Cancer 63:564573.Google Scholar
Imai, T., Sannohe, Y., et al. 1978. Oat cell carcinoma (apudoma) of the esophagus: a case report. Cancer 41:358364.Google Scholar
Ready, A.R., Soul, J.O., et al. 1989. Malignant carcinoid tumour of the oesophagus. Thorax 44:594596.Google Scholar
Edge, SB, Byrd, D.R., et al. AJCC Cancer Staging Manual. New York: Springer, 2010.Google Scholar
Sobin, LH, G.M., Wittekind, C 2009. TMN Classification of Malignant Tumours. Oxford: Wiley-Blackwell.Google Scholar
Law, S.Y., Fok, M., et al. 1994. Small cell carcinoma of the esophagus. Cancer 73:28942899.Google Scholar
Rindi, G., Inzani, F., et al. Pathology of gastrointestinal disorders. Endocrinol Metab Clin North Am 39:713727.CrossRefGoogle Scholar
Debelenko, L.V., Emmert-Buck, M.R., et al. 1997. The multiple endocrine neoplasia type I gene locus is involved in the pathogenesis of type II gastric carcinoids. Gastroenterology 113:773781.Google Scholar
Capella, C., Solcia, E., et al. 2010. Endocrine tumours of the stomach. In Bosnan, FTCF, Hruban, RH, et al., eds. WHO Classification of Tumors of the Digestive System. Lyon: International Agency for Research on Cancer, 2010:5357.Google Scholar
Ihamaki, T., Kekki, M., et al. 1985. The sequelae and course of chronic gastritis during a 30- to 34-year bioptic follow-up study. Scand J Gastroenterol 20:485491.CrossRefGoogle ScholarPubMed
Lehy, T., Cadiot, G., et al. 1992. Influence of multiple endocrine neoplasia type 1 on gastric endocrine cells in patients with the Zollinger–Ellison syndrome. Gut 33:12751279.CrossRefGoogle ScholarPubMed
Berna, M.J., Annibale, B., et al. 2008. A prospective study of gastric carcinoids and enterochromaffin-like cell changes in multiple endocrine neoplasia type 1 and Zollinger–Ellison syndrome: identification of risk factors. J Clin Endocrinol Metab 93:15821591.Google Scholar
Modlin, I.M., Lye, K.D., et al. 2003. A 5-decade analysis of 13 715 carcinoid tumors. Cancer 97:934959.Google Scholar
Sjoblom, S.M. 1988. Clinical presentation and prognosis of gastrointestinal carcinoid tumours. Scand J Gastroenterol 23:779787.CrossRefGoogle ScholarPubMed
Hauso, O., Gustafsson, B.I., et al. 2008. Neuroendocrine tumor epidemiology: contrasting Norway and North America. Cancer 113:26552664.Google Scholar
Rindi, G., Azzoni, C., et al. 1999. ECL cell tumor and poorly differentiated endocrine carcinoma of the stomach: prognostic evaluation by pathological analysis. Gastroenterology 116:532542.Google Scholar
Rindi, G., Luinetti, O., et al. 1993. Three subtypes of gastric argyrophil carcinoid and the gastric neuroendocrine carcinoma: a clinicopathologic study. Gastroenterology 104:9941006.Google Scholar
Ooi, A., Ota, M., et al. 1995. An unusual case of multiple gastric carcinoids associated with diffuse endocrine cell hyperplasia and parietal cell hypertrophy. Endocr Pathol 6:229237.Google Scholar
Abraham, S.C., Carney, J.A., et al. 2005. Achlorhydria, parietal cell hyperplasia, and multiple gastric carcinoids: a new disorder. Am J Surg Pathol 29: 969–75.Google Scholar
Hou, W., Schubert, M.L. 2007. Treatment of gastric carcinoids. Curr Treat Options Gastroenterol 10:123133.Google Scholar
Rindi, G., Bordi, C., et al. 1996. Gastric carcinoids and neuroendocrine carcinomas: pathogenesis, pathology, and behavior. World J Surg 20:168172.Google Scholar
Solcia, E., Capella, C., et al. 1990. Gastric argyrophil carcinoidosis in patients with Zollinger–Ellison syndrome due to type 1 multiple endocrine neoplasia. A newly recognized association. Am J Surg Pathol 14:503513.Google Scholar
Oates, J.A., Sjoerdsma, A. 1962. A unique syndrome associated with secretion of 5-hydroxytryptophan by metastatic gastric carcinoids. Am J Med 32: 333342.Google Scholar
Roberts, L.J., 2nd, Bloomgarden, Z.T., et al. 1983. Histamine release from a gastric carcinoid: provocation by pentagastrin and inhibition by somatostatin. Gastroenterology 84:272275.Google Scholar
Tsolakis, A.V., Portela-Gomes, G.M., et al. 2004. Malignant gastric ghrelinoma with hyperghrelinemia. J Clin Endocrinol Metab 89:37393744.Google Scholar
Christodoulopoulos, J.B., Klotz, A.P. 1961. Carcinoid syndrome with primary carcinoid tumor of the stomach. Gastroenterology 40: 429440.Google Scholar
Kloppel, G., Clemens, A. 1996. The biological relevance of gastric neuroendocrine tumors. Yale J Biol Med 69:6974.Google Scholar
Delle Fave, G., Capurso, G., et al. 2005. Endocrine tumours of the stomach. Best Pract Res Clin Gastroenterol 19:659673.Google Scholar
Norton, J.A., Melcher, M.L., et al. 2004. Gastric carcinoid tumors in multiple endocrine neoplasia-1 patients with Zollinger–Ellison syndrome can be symptomatic, demonstrate aggressive growth, and require surgical treatment. Surgery 136:12671274.Google Scholar
Chejfec, G., Gould, V.E. 1977. Malignant gastric neuroendogrinomas. Ultrastructural and biochemical characterization of their secretory activity. Hum Pathol 8:433440.Google Scholar
Jiang, S.X., Mikami, T., et al. 2006. Gastric large cell neuroendocrine carcinomas: a distinct clinicopathologic entity. Am J Surg Pathol 30:945953.Google Scholar
Kim, K.M., Kim, M.J., et al. 2002. Genetic evidence for the multi-step progression of mixed glandular-neuroendocrine gastric carcinomas. Virchows Arch 440:8593.Google Scholar
Furlan, D., Cerutti, R., et al. 2003. Microallelotyping defines the monoclonal or the polyclonal origin of mixed and collision endocrine-exocrine tumors of the gut. Lab Invest 83:963971.Google Scholar
Capella, C., Polak, J.M., et al. 1980. Gastric carcinoids of argyrophil ECL cells. Ultrastruct Pathol 1:411418.Google Scholar
Rindi, G., Paolotti, D., et al. 2000. Vesicular monoamine transporter 2 as a marker of gastric enterochromaffin-like cell tumors. Virchows Arch 436:217223.Google Scholar
Higham, A.D., Bishop, L.A., et al. 1999. Mutations of RegIalpha are associated with enterochromaffin-like cell tumor development in patients with hypergastrinemia. Gastroenterology 116:13101318.CrossRefGoogle ScholarPubMed
D’Adda, T., Candidus, S., et al. 1999. Gastric neuroendocrine neoplasms: tumour clonality and malignancy-associated large X-chromosomal deletions. J Pathol 189:394401.Google Scholar
Pizzi, S., Azzoni, C., et al. 2003. Genetic alterations in poorly differentiated endocrine carcinomas of the gastrointestinal tract. Cancer 98:12731282.Google Scholar
Furlan, D., Cerutti, R., et al. 2004. Different molecular profiles characterize well-differentiated endocrine tumors and poorly differentiated endocrine carcinomas of the gastroenteropancreatic tract. Clin Cancer Res 10:947957.Google Scholar
Kulke, M.H., Anthony, L.B., et al. 2010. NANETS treatment guidelines: well-differentiated neuroendocrine tumors of the stomach and pancreas. Pancreas 39:735752.Google Scholar
Matsui, K., Jin, X.M., et al. 1998. Clinicopathologic features of neuroendocrine carcinomas of the stomach: appraisal of small cell and large cell variants. Arch Pathol Lab Med 122:10101017.Google Scholar
Pape, U.F., Jann, H., et al. 2008. Prognostic relevance of a novel TNM classification system for upper gastroenteropancreatic neuroendocrine tumors. Cancer 113:256265.Google Scholar
Carlson, B.M. 2014. Embryology Human and Developmental Biology, 5th edn. Philadelphia, PA: Elsevier-Saunders.Google Scholar
Sjolund, K., Sanden, G., et al. 1983. Endocrine cells in human intestine: an immunocytochemical study. Gastroenterology 85:11201130.Google Scholar
Walsh, J.H. 1993. Gastrointestinal hormones: past, present, and future. Gastroenterology 105:653657.Google Scholar
Bosshard, A., Chery-Croze, S., et al. 1989. Immunocytochemical study of peptidergic structures in Brunner’s glands. Gastroenterology 97:13821388.Google Scholar
Silverman, L., Waugh, J.M., et al. 1961. Large adenomatous polyp of Brunner’s glands. Am J Clin Pathol 36: 438443.Google Scholar
Anlauf, M., Perren, A., et al. 2005. Precursor lesions in patients with multiple endocrine neoplasia type 1-associated duodenal gastrinomas. Gastroenterology 128:11871198.Google Scholar
Godwin, J.D., 2nd 1975. Carcinoid tumors. An analysis of 2837 cases. Cancer 36:560569.3.0.CO;2-4>CrossRefGoogle Scholar
Vinik, A.I., Thompson, N., et al. 1989. Clinical features of carcinoid syndrome and the use of somatostatin analogue in its management. Acta Oncol 28:389402.Google Scholar
Soga, J. 2003. Endocrinocarcinomas (carcinoids and their variants) of the duodenum. An evaluation of 927 cases. J Exp Clin Cancer Res 22:349363.Google Scholar
Donow, C., Pipeleers-Marichal, M., et al. 1991. Surgical pathology of gastrinoma. Site, size, multicentricity, association with multiple endocrine neoplasia type 1, and malignancy. Cancer 68:13291334.Google Scholar
Anlauf, M., Garbrecht, N., et al. 2006. Sporadic versus hereditary gastrinomas of the duodenum and pancreas: distinct clinico-pathological and epidemiological features. World J Gastroenterol 12:54405446.Google Scholar
Burke, A.P., Thomas, R.M., et al. 1997. Carcinoids of the jejunum and ileum: an immunohistochemical and clinicopathologic study of 167 cases. Cancer 79:10861093.Google Scholar
Garbrecht, N., Anlauf, M., et al. 2008. Somatostatin-producing neuroendocrine tumors of the duodenum and pancreas: incidence, types, biological behavior, association with inherited syndromes, and functional activity. Endocr Relat Cancer 15:229241.Google Scholar
Merchant, S.H., VanderJagt, T., et al. 2006. Sporadic duodenal bulb gastrin-cell tumors: association with Helicobacter pylori gastritis and long-term use of proton pump inhibitors. Am J Surg Pathol 30:15811587.Google Scholar
Sata, N., Tsukahara, M., et al. 2004. Primary small-cell neuroendocrine carcinoma of the duodenum: a case report and review of literature. World J Surg Oncol 2: 28.Google Scholar
Miura, S., Yoshidome, H., et al. 2008. Clinical implications of unusual NeuroD and mASH1 expression in a patient with primary large-cell neuroendocrine carcinoma of the duodenum: report of a case. Surg Today 38:857861.Google Scholar
Burke, A.P., Sobin, L.H., et al. 1990. Carcinoid tumors of the duodenum. A clinicopathologic study of 99 cases. Arch Pathol Lab Med 114:700704.Google Scholar
Capella, C., Rindi, R.C., et al. 1991. Histopathology, hormone, products and clinicopathologic profile of endocrine tumors of the upper small intestine. A study of 44 cases. Endocr Pathol:92–110.Google Scholar
Burke, A.P., Sobin, L.H., et al. 1990. Somatostatin-producing duodenal carcinoids in patients with von Recklinghausen’s neurofibromatosis. A predilection for black patients. Cancer 65:15911595.Google Scholar
Bornstein-Quevedo, L., Gamboa-Dominguez, A. 2001. Carcinoid tumors of the duodenum and ampulla of vater: a clinicomorphologic, immunohistochemical, and cell kinetic comparison. Hum Pathol 32:12521256.Google Scholar
Swanson, P.E., Dykoski, D., et al. 1986. Primary duodenal small-cell neuroendocrine carcinoma with production of vasoactive intestinal polypeptide. Arch Pathol Lab Med 110:317320.Google Scholar
Zamboni, G., Franzin, G., et al. 1990. Small-cell neuroendocrine carcinoma of the ampullary region. A clinicopathologic, immunohistochemical, and ultrastructural study of three cases. Am J Surg Pathol 14:703713.Google Scholar
Makhlouf, H.R., Burke, A.P., et al. 1999. Carcinoid tumors of the ampulla of Vater: a comparison with duodenal carcinoid tumors. Cancer 85:12411249.Google Scholar
Gucer, H., Mete, O. 2014. Endobronchial gangliocytic paraganglioma: not all keratin-positive endobronchial neuroendocrine neoplasms are pulmonary carcinoids. Endocr Pathol 25:356358.Google Scholar
Nassar, H., Albores-Saavedra, J., et al. 2005. High-grade neuroendocrine carcinoma of the ampulla of vater: a clinicopathologic and immunohistochemical analysis of 14 cases. Am J Surg Pathol 29:588594.Google Scholar
La Rosa, S., Rigoli, E., et al. 2004. CDX2 as a marker of intestinal EC-cells and related well-differentiated endocrine tumors. Virchows Arch 445:248254.Google Scholar
Watanabe, K., Hasegawa, H., et al. 1995. Two cases of duodenal gangliocytic paraganglioma: immunocytochemical characteristics. Fukushima J Med Sci 41:141152.Google Scholar
Perrone, T., Sibley, R.K., et al. 1985. Duodenal gangliocytic paraganglioma. An immunohistochemical and ultrastructural study and a hypothesis concerning its origin. Am J Surg Pathol 9:3141.Google Scholar
Pipeleers-Marichal, M., Somers, G., et al. 1990. Gastrinomas in the duodenums of patients with multiple endocrine neoplasia type 1 and the Zollinger–Ellison syndrome. N Engl J Med 322:723727.Google Scholar
Lubensky, I.A., Debelenko, L.V., et al. 1996. Allelic deletions on chromosome 11q13 in multiple tumors from individual MEN1 patients. Cancer Res 56:52725278.Google Scholar
Debelenko, L.V., Zhuang, Z., et al. 1997. Allelic deletions on chromosome 11q13 in multiple endocrine neoplasia type 1-associated and sporadic gastrinomas and pancreatic endocrine tumors. Cancer Res 57:22382243.Google Scholar
Anlauf, M., Perren, A., et al. 2007. Allelic deletion of the MEN1 gene in duodenal gastrin and somatostatin cell neoplasms and their precursor lesions. Gut 56:637644.CrossRefGoogle ScholarPubMed
Yu, F., Jensen, R.T., et al. 2000. Survey of genetic alterations in gastrinomas. Cancer Res 60:55365542.Google Scholar
Goebel, S.U., Heppner, C., et al. 2000. Genotype/phenotype correlation of multiple endocrine neoplasia type 1 gene mutations in sporadic gastrinomas. J Clin Endocrinol Metab 85:116123.Google Scholar
Fujimori, M., Ikeda, S., et al. 2001. Accumulation of beta-catenin protein and mutations in exon 3 of beta-catenin gene in gastrointestinal carcinoid tumor. Cancer Res 61:66566659.Google Scholar
Pizzi, S., Azzoni, C., et al. 2008. Adenomatous polyposis coli alteration in digestive endocrine tumours: correlation with nuclear translocation of beta-catenin and chromosomal instability. Endocr Relat Cancer 15:10131024.Google Scholar
Karasawa, Y., Sakaguchi, M., et al. 2001. Duodenal somatostatinoma and erythrocytosis in a patient with von Hippel–Lindau disease type 2A. Intern Med 40:3843.CrossRefGoogle Scholar
Norton, J.A., Jensen, R.T. 2004. Resolved and unresolved controversies in the surgical management of patients with Zollinger–Ellison syndrome. Ann Surg 240:757773.Google Scholar
Thompson, J.C., Lewis, B.G., et al. 1983. The role of surgery in the Zollinger–Ellison syndrome. Ann Surg 197:594607.Google Scholar
Weber, H.C., Venzon, D.J., et al. 1995. Determinants of metastatic rate and survival in patients with Zollinger–Ellison syndrome: a prospective long-term study. Gastroenterology 108:16371649.Google Scholar
Hwang, S., Lee, S.G., et al. 2008. Radical surgical resection for carcinoid tumors of the ampulla. J Gastrointest Surg 12:713717.Google Scholar
Senda, E., Fujimoto, K., et al. 2009. Minute ampullary carcinoid tumor with lymph node metastases: a case report and review of literature. World J Surg Oncol 7:9.Google Scholar
Inai, K., Kobuke, T., et al. 1989. Duodenal gangliocytic paraganglioma with lymph node metastasis in a 17-year-old boy. Cancer 63:25402545.Google Scholar
Modlin, I.M., Champaneria, M.C., et al. 2007. A three-decade analysis of 3911 small intestinal neuroendocrine tumors: the rapid pace of no progress. Am J Gastroenterol 102:14641473.Google Scholar
US National Cancer Institute 2007. The US National Cancer Institute, Surveillance Epidemiology and End Results (SEER) data base, 1973–2004. Bethesda, MD: US National Cancer Institute http://seer.cancer.gov/, accessed 15 September 2015).Google Scholar
Boudreaux, J.P., Klimstra, D.S., et al. 2010. The NANETS consensus guideline for the diagnosis and management of neuroendocrine tumors: well-differentiated neuroendocrine tumors of the jejunum, ileum, appendix, and cecum. Pancreas 39:753766.Google Scholar
Sherman, S.P., Li, C.Y., et al. 1979. Microproliferation of enterochromaffin cells and the origin of carcinoid tumors of the ileum: a light microscopic and immunocytochemical study. Arch Pathol Lab Med 103:639641.Google Scholar
Lundqvist, M., Wilander, E. 1987. A study of the histopathogenesis of carcinoid tumors of the small intestine and appendix. Cancer 60:201206.Google Scholar
Moyana, T.N., Satkunam, N. 1992. A comparative immunohistochemical study of jejunoileal and appendiceal carcinoids. Implications for histogenesis and pathogenesis. Cancer 70:10811088.Google Scholar
deVries, H., Wijffels, R.T., et al. 2005. Abdominal angina in patients with a midgut carcinoid, a sign of severe pathology. World J Surg 29:11391142.Google Scholar
Moertel, C.G., Sauer, W.G., et al. 1961. Life history of the carcinoid tumor of the small intestine. Cancer 14: 901912.Google Scholar
Richter, G., Stockmann, F., et al. 1986. Serotonin release into blood after food and pentagastrin. Studies in healthy subjects and in patients with metastatic carcinoid tumors. Gastroenterology 91:612618.Google Scholar
Cai, Y.C., Barnard, G., et al. 1997. Florid angiogenesis in mucosa surrounding an ileal carcinoid tumor expressing transforming growth factor-alpha. Am J Surg Pathol 21:13731377.Google Scholar
Papotti, M., Bongiovanni, M., et al. 2002. Expression of somatostatin receptor types 1–5 in 81 cases of gastrointestinal and pancreatic endocrine tumors. A correlative immunohistochemical and reverse-transcriptase polymerase chain reaction analysis. Virchows Arch 440:461475.Google Scholar
Zhao, J., de Krijger, R.R., et al. 2000. Genomic alterations in well-differentiated gastrointestinal and bronchial neuroendocrine tumors (carcinoids): marked differences indicating diversity in molecular pathogenesis. Am J Pathol 157:14311438.Google Scholar
Tonnies, H., Toliat, M.R., et al. 2001. Analysis of sporadic neuroendocrine tumours of the enteropancreatic system by comparative genomic hybridisation. Gut 48:536541.Google Scholar
Kim do, H., Nagano, Y., et al. 2008. Allelic alterations in well-differentiated neuroendocrine tumors (carcinoid tumors) identified by genome-wide single nucleotide polymorphism analysis and comparison with pancreatic endocrine tumors. Genes Chromosomes Cancer 47:8492.Google Scholar
Lollgen, R.M., Hessman, O., et al. 2001. Chromosome 18 deletions are common events in classical midgut carcinoid tumors. Int J Cancer 92:812815.Google Scholar
Francis, J.M., Kiezun, A., et al. 2013. Somatic mutation of CDKN1B in small intestine neuroendocrine tumors. Nat Genet 45:14831486.Google Scholar
Crona, J., Gustavsson, T., et al. 2015. Somatic mutations and genetic heterogeneity at the CDKN1B locus in small intestinal neuroendocrine tumors. Ann Surg Oncol PMID: 25586243 [Epub ahead of print].Google Scholar
Gledhill, A., Hall, P.A., et al. 1986. Enteroendocrine cell hyperplasia, carcinoid tumours and adenocarcinoma in long-standing ulcerative colitis. Histopathology 10:501508.Google Scholar
Greenstein, A.J., Balasubramanian, S., et al. 1997. Carcinoid tumor and inflammatory bowel disease: a study of eleven cases and review of the literature. Am J Gastroenterol 92:682685.Google Scholar
Sigel, J.E., Goldblum, J.R. 1998. Neuroendocrine neoplasms arising in inflammatory bowel disease: a report of 14 cases. Mod Pathol 11:537542.Google Scholar
McNeely, B., Owen, D.A., et al. 1992. Multiple microcarcinoids arising in chronic ulcerative colitis. Am J Clin Pathol 98:112116.CrossRefGoogle ScholarPubMed
Lyda, M.H., Noffsinger, A., et al. 1998. Multifocal neoplasia involving the colon and appendix in ulcerative colitis: pathological and molecular features. Gastroenterology 115:15661573.Google Scholar
Lyda, M.H., Fenoglio-Preiser, C.M. 1998. Adenoma-carcinoid tumors of the colon. Arch Pathol Lab Med 122:262265.Google Scholar
Yao, J.C., Phan, A.T., et al. 2008. Efficacy of RAD001 (everolimus) and octreotide LAR in advanced low- to intermediate-grade neuroendocrine tumors: results of a phase II study. J Clin Oncol 26:43114318.Google Scholar
Yao, J.C., Hassan, M., et al. 2008. One hundred years after carcinoid: epidemiology of and prognostic factors for neuroendocrine tumors in 35 825 cases in the United States. J Clin Oncol 26:30633072.Google Scholar
Yang, R., Cheung, M.C., et al. 2008. Primary solid tumors of the colon and rectum in the pediatric patient: a review of 270 cases. J Surg Res 161:209216.Google Scholar
Bernick, P.E., Klimstra, D.S., et al. 2004. Neuroendocrine carcinomas of the colon and rectum. Dis Colon Rectum 47:163169.Google Scholar
Stinner, B., Kisker, O., et al. 1996. Surgical management for carcinoid tumors of small bowel, appendix, colon, and rectum. World J Surg 20:183188.Google Scholar
Rosenberg, J.M., Welch, J.P. 1985. Carcinoid tumors of the colon. A study of 72 patients. Am J Surg 149:775779.Google Scholar
Jetmore, A.B., Ray, J.E., et al. 1992. Rectal carcinoids: the most frequent carcinoid tumor. Dis Colon Rectum 35:717725.Google Scholar
Anthony, L.B., Strosberg, J.R., et al. 2010. The NANETS consensus guidelines for the diagnosis and management of gastrointestinal neuroendocrine tumors (NETs): well-differentiated NETs of the distal colon and rectum. Pancreas 39:767774.Google Scholar
Berardi, R.S. 1972. Carcinoid tumors of the colon (exclusive of the rectum): review of the literature. Dis Colon Rectum 15:383391.Google Scholar
Caldarola, V.T., Jackman, R.J., et al. 1964. Carcinoid tumors of the rectum. Am J Surg 107: 844849.Google Scholar
Soga, J., Tazawa, K. 1971. Pathologic analysis of carcinoids. Histologic reevaluation of 62 cases. Cancer 28:990998.Google Scholar
Shia, J., Tang, L.H., et al. 2008. Is nonsmall cell type high-grade neuroendocrine carcinoma of the tubular gastrointestinal tract a distinct disease entity? Am J Surg Pathol 32:719731.Google Scholar
Federspiel, B.H., Burke, A.P., et al. 1990. Rectal and colonic carcinoids. A clinicopathologic study of 84 cases. Cancer 65:135140.Google Scholar
Srivastava, A., Hornick, J.L. 2009. Immunohistochemical staining for CDX-2, PDX-1, NESP-55, and TTF-1 can help distinguish gastrointestinal carcinoid tumors from pancreatic endocrine and pulmonary carcinoid tumors. Am J Surg Pathol 33:626632.Google Scholar
Chetritt, J., Sagan, C., et al. 1996. [Immunohistochemical study of 17 cases of rectal neuroendocrine tumors.] Ann Pathol 16:98103.Google Scholar
Konishi, T., Watanabe, T., et al. 2007. Prognosis and risk factors of metastasis in colorectal carcinoids: results of a nationwide registry over 15 years. Gut 56:863868.Google Scholar
Soga, J. 2005. Early-stage carcinoids of the gastrointestinal tract: an analysis of 1914 reported cases. Cancer 103:15871595.Google Scholar
Moertel, C.G., Dockerty, M.B., et al. 1968. Carcinoid tumors of the vermiform appendix. Cancer 21:270278.Google Scholar
Tchana-Sato, V., Detry, O., et al. 2006. Carcinoid tumor of the appendix: a consecutive series from 1237 appendectomies. World J Gastroenterol 12:66996701.Google Scholar
In’t Hof, K.H., van der Wal, H.C., et al. 2008. Carcinoid tumour of the appendix: an analysis of 1485 consecutive emergency appendectomies. J Gastrointest Surg 12:14361438.Google Scholar
Carr, N.J., Sobin, L.H. 2004. Neuroendocrine tumors of the appendix. Semin Diagn Pathol 21:108119.Google Scholar
Tang, L.H., Shia, J., et al. 2008. Pathologic classification and clinical behavior of the spectrum of goblet cell carcinoid tumors of the appendix. Am J Surg Pathol 32:14291443.Google Scholar
Pham, T.H., Wolff, B., et al. 2006. Surgical and chemotherapy treatment outcomes of goblet cell carcinoid: a tertiary cancer center experience. Ann Surg Oncol 13:370376.Google Scholar
Roy, P., Chetty, R. 2010. Goblet cell carcinoid tumors of the appendix: an overview. World J Gastrointest Oncol 2:251258.Google Scholar
Matsukuma, K.E., Montgomery, E.A. 2012. Tubular carcinoids of the appendix: the CK7/CK20 immunophenotype can be a diagnostic pitfall. J Clin Pathol 65:666668.Google Scholar
van Eeden, S., Offerhaus, G.J., et al. 2007. Goblet cell carcinoid of the appendix: a specific type of carcinoma. Histopathology 51:763773.Google Scholar
Chetty, R., Serra, S. 2010. Lipid-rich and clear cell neuroendocrine tumors (carcinoids) of the appendix: potential confusion with goblet cell carcinoid. Am J Surg Pathol 34:401404.Google Scholar
Stinner, B., Rothmund, M. 2005. Neuroendocrine tumours (carcinoids) of the appendix. Best Pract Res Clin Gastroenterol 19:729738.Google Scholar
Warner, R.R., O’Dorisio, M.,T 2002. Radiolabeled peptides in diagnosis and tumor imaging: clinical overview. Semin Nucl Med 32:7983.Google Scholar
Moertel, C.G., Weiland, L.H., et al. 1987. Carcinoid tumor of the appendix: treatment and prognosis. N Engl J Med 317:16991701.Google Scholar
Ando, H. 2010. Embryology of the biliary tract. Dig Surg 27:8789.Google Scholar
Nishihara, K., Nagai, E., et al. 1994. Small-cell carcinoma combined with adenocarcinoma of the gallbladder. A case report with immunohistochemical and flow cytometric studies. Arch Pathol Lab Med 118:177181.Google Scholar
Pitt, H.A., Dooley, W.C., et al. 1995. Malignancies of the biliary tree. Curr Probl Surg 32:190.Google Scholar
Kim, D.H., Song, M.H., et al. 2006. Malignant carcinoid tumor of the common bile duct: report of a case. Surg Today 36:485489.Google Scholar
Parwani, A.V., Geradts, J., et al. 2003. Immunohistochemical and genetic analysis of non-small cell and small cell gallbladder carcinoma and their precursor lesions. Mod Pathol 16:299308.Google Scholar
Albores-Saavedra, J., Soriano, J., et al. 1984. Oat cell carcinoma of the gallbladder. Hum Pathol 15: 639646.Google Scholar
McLean, C.A., Pedersen, J.S. 1991. Endocrine cell carcinoma of the gallbladder. Histopathology 19:173176.Google Scholar
Nishigami, T., Yamada, M., et al. 1996. Carcinoid tumor of the gall bladder. Intern Med 35:953956.Google Scholar
El Rassi, Z.S., Mohsine, R.M., et al. 2004. Endocrine tumors of the extrahepatic bile ducts. Pathological and clinical aspects, surgical management and outcome. Hepatogastroenterology 51:12951300.Google Scholar
Fujii, H., Aotake, T., et al. 2001. Small cell carcinoma of the gallbladder: a case report and review of 53 cases in the literature. Hepatogastroenterology 48:15881593.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×