Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-v5vhk Total loading time: 0 Render date: 2024-06-28T06:04:07.825Z Has data issue: false hasContentIssue false

Chapter 22 - Endocrine aspects of the male genitourinary system

from Section III - Anatomical endocrine pathology

Published online by Cambridge University Press:  13 April 2017

Ozgur Mete
Affiliation:
University of Toronto
Sylvia L. Asa
Affiliation:
University of Toronto
Get access
Type
Chapter
Information
Endocrine Pathology , pp. 834 - 857
Publisher: Cambridge University Press
Print publication year: 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bostwick, DG, Cheng, L, eds. Urologic Surgical Pathology, 3rd edn. Philadelphia PA: Elsevier, 2014.Google Scholar
Amin, MB, Grignon, DJ, Srigley, JR, Eble, JN. Urological Pathology. Philadelphia PA: Lippincott Williams & Wilkins, 2013.Google Scholar
Zhou, M, Magi-Galluzzi, C,eds. Genitourinary Pathology, 2nd edn. Philadelphia, PA: Elsevier-Saunders, 2015.Google Scholar
Eble, JN, Sauter, G, Epstein, JI, Sesterhenn, IA, eds. World Health Organization Classification of Tumours of the Urinary System and Male Genital Organs. Lyon: International Agency for Research on Cancer, 2004.Google Scholar
Snell, RS. Clinical Anatomy by Regions, 9th edn. Philadelphia PA: Lippincott Williams & Watkins, 2012.Google Scholar
Sosnik, H. Studies of the participation of the tunica albuginea and rete testis (TA and RT) in the quantitative structure of human testis. Gegenbaurs Morphol Jahrb 1985;131:347356.Google ScholarPubMed
Trainer, TD. Histology of the normal testis. Am J Surg Pathol 1987;11:797809.Google Scholar
Lovell-Badge, R, Robertson, E. XY female mice resulting from a heritable mutation in the primary testis determining gene, Tdy. Development 1990;109:635646.CrossRefGoogle ScholarPubMed
Gubbay, J, Collignon, J, Koopman, P, Capel, B, Economou, A, Munsterberg, A, Vivian, N, Goodfellow, P, Lovell-Badge, R. A gene mapping to the sex-determining region of the mouse Y chromosome is a member of the novel family of embryonically expressed genes. Nature 1990;346:245250.CrossRefGoogle Scholar
Josso, N, Rey, R, Picard, JY. Testicular anti-Müllerian hormine: clinical applications in DSD. Semin Reprod Med 2012;30:364373.Google Scholar
McClelland, K, Bowles, J, Koopman, P. Male sex determination: insights into molecular mechanisms. Asian J Androl 2012;14:164171.Google Scholar
Sadler, TW. Langmans Essential Medical Embryology, 12th edn. Philadelphia PA: Lippincott-Williams, 2004.Google Scholar
Nistal, M, Paniagua, R, Gonzalez-Peramato, P. Nonneoplastic diseases of the testis. In Bostwick, DG, Cheng, L, eds. Urologic Surgical Pathology, 3rd edn. Philadelphia PA: Elsevier, 2014:560735.Google Scholar
O'Shaughnessy, PJ, Baker, PJ, Johnston, H. The foetal Leydig cell: differentiation, function and regulation. Int J Androl 2006;29:9095.Google Scholar
Capel, B, Albrecht, KH, Washburn, LL, Eicher, EM. Migration of mesonephric cells into the mammalian gonad depends on Sry. Mech Dev 1999;84:127131.CrossRefGoogle ScholarPubMed
Bostwick, DG, Pacelli, A. The male reproductive system. In Kalman, K, Asa, SL, eds. Functional Endocrine Pathology, 2nd edn. Oxford: Blackwell, 1998:637663.Google Scholar
Rey, RA, Grinspon, RP. Normal male sexual differentiation and aetiology of disorders of sexual development. Best Pract Res Clin Endocrinol Metab 2011;25: 221238.Google Scholar
Catlin, EA, Powell, SM, Manganaro, TF. Sex specific fetal lung development and mullerian inhibiting substance. Am Rev Respir Dis 1990;141:466470.Google Scholar
Josso, N, Belville, C, di Clemente, N, Picard, JY. AMH and AMH receptor defects in persistent müllerian duct syndrome. Hum Reprod Update 2005;11:351356.CrossRefGoogle ScholarPubMed
Foresta, C, Zuccarello, D, Garoll, A, Ferlin, A. Role of hormones, genes and environment in human cryptorchidism. Endocr Rev 2008;29:560580.Google Scholar
Orth, JM. The role of follicle stimulating hormone in controlling Sertoli cell proliferation in testes of fetal rats. Endocrinology 1984;115:12481255.CrossRefGoogle ScholarPubMed
Woodhouse, CR. Undescended testes. In Woodhouse, CR, ed. Longterm Pediatric Urology. Oxford: Blackwell Scientific, 1991:167175.Google Scholar
Bay, K, Main, KM, Toppari, J, Skakkebaek, NE. Testicular decent: INSL3, testosterone, genes and the intrauterine milieu. Nat Rev Urol 2011;8:187196.Google Scholar
Hughes, IA, Acerini, CL. Factors controlling testis descent. Eur J Endocrinol 2008;159(suppl 1):S75S82.CrossRefGoogle ScholarPubMed
Svechnikov, Izzo, G, Landreh, L, Weisser, J, Soder, O. Endocrine disruptors and Leydig cell function. J Biomed Biotechnol 2010;pii:684504.Google Scholar
Waters, BL, Trainer, TD. Development of the human fetal testis. Pediatr Pathol Lab Med 1996;16:923.Google Scholar
Lennox, B, Ahmad, RN, Mack, WS. A method for determining the relative total length of the tubules in the testis. J Pathol 1970;102:229238.CrossRefGoogle ScholarPubMed
Chemes, HE, Dym, M, Raj, HG. Hormonal regulation of Sertoli cell differentiation. Biol Reprod 1979;21:251262.Google Scholar
Pelletier, RM. The blood–testis barrier: the junctional permeability, the proteins and the lipids. Prog Histochem Cytochem 2011;46:49127.Google Scholar
Josso, N, Picard, JY, Rey, R, Clemente, N. Testicular anti-Mullerian hormone: history, genetics, regulation and clinical applications. Pediatr Endocrinol Rev 2006;3:347358.Google Scholar
Hotaling, JM, Patel, Z. Male endocrine dysfunction. Urol Clin North Am 2014;41:3953.Google Scholar
Trainer, TD. Testis and excretory duct system. In Sternberg, S, ed. Histology for Pathologists, 2nd edn. Philadelphia: Lippincott-Raven, 1997:10191033.Google Scholar
Johnson, L, Petty, CS, Neaves, WB. Age-related variations in seminiferous tubules in men. A stereologic evaluation. J Androl 1986;7:316322.Google Scholar
Thonneau, P, Bujan, L, Multigner, L, Mieusset, R. Occupational heat exposure and male fertility: a review. Hum Reprod 1998;13:21222125.CrossRefGoogle ScholarPubMed
Dinges, HP, Zatloukal, K, Schmid, C, Mair, S, Wirnsberger, G. Co-expression of cytokeratin and vimentin filaments in rete testis and epididymis: an immunohistochemical study. Virchows Arch A Pathol Anat Histopathol 1991;418:119127.Google Scholar
Hinton, BT, Galdamez, MM, Sutherland, A, Bomgardner, D, Xu, B, Abdel-Fattah, R, Yang, L. How do you get six meters of epididymis inside a human scrotum? J Androl 2011;32:558564.Google Scholar
Berkowitz, GS, Lapinski, RH, Dolgin, SE, Gazella, JG, Bodian, CA, Holzman, IR. Prevalence and natural history of cryptorchidism. Pediatrics 1993;92:44.Google Scholar
Gill, B, Kogan, S. Cryptorchidism: current concepts. Pediatr Clin North Am 1997;44:12111227.Google Scholar
Lip, SZ, Murchison, LE, Cullis, PS, Govan, L, Carachi, R. A meta-analysis of the risk of boys with isolated cryptorchidism developing testicular cancer in later life. Arch Dis Child 2013;98:2026.Google Scholar
Lee, PA, O'Leary, LA, Songer, NJ, Coughlin, MT, Bellinger, MF, LaPorte, RE. Paternity after bilateral cryptorchidism: a controlled study. Arch Pediatr Adolesc Med 1997;151:260263.CrossRefGoogle ScholarPubMed
Lee, PA, O'Leary, LA, Songer, N, Coughlin, MT, Bellinger, MF, LaPorte, RE. Paternity after unilateral cryptorchidism. Pediatrics 1996;98:676679.Google Scholar
Kollin, C, Stukenborg, JB, Nurmio, M, Sundqvist, E, Gustafsson, T, Soder, O, Toppari, J, Norderskjold, A, Ritzen, EM. Boys with undescended testes: endocrine, volumetric and morphometric studies on testicular function before and after orchidopexy at nine months or three years of age. J Clin Endocrinol Metab 2012;97:45884595.Google Scholar
Rey, RA. Early orchiopexy to prevent germ cell loss during infancy in congenital cryptorchidism. J Clin Endocrinol Metab 2012;97:43584361.Google Scholar
Kraft, KH, Canning, DA, Snyder, HM 3rd, Kolon, TF. Undescended testis histology correlation with adult hormone levels and semen analysis. J Urol 2012;188(suppl):14291435.Google Scholar
Magi-Galluzzi, C, Levin, HS. Non-neoplastic diseases of the testis. In Zhou, M, Magi-Galluzzi, C, eds. Genitourinary Pathology, 2nd edn. Philadelphia, PA: Elsevier-Saunders, 2015:550559.Google Scholar
Olana Grasa, I, Llarena Ibarguren, R, Garcia-Olaverri Rodriguez, J, et al. Polyorchidism. Arch Esp Urol 2009;62:5962.Google Scholar
Konig, MP. Findings: small testicles. Schweiz Med Wochenschr 1987;117:731735.Google Scholar
Nistal, M, Gonzalez-Peramato, P, Paniagua, R. Congenital Leydig cell hyperplasia. Histopathology 1988;12:307317.CrossRefGoogle ScholarPubMed
Turner, G, Eastman, C, Casey, J, McLeay, A, Procopis, P, Turner, B. X-linked mental retardation linked with macro orchidism. J Med Genet 1975;12:367371.CrossRefGoogle ScholarPubMed
Ruvalcaba, RHA, Myhre, SA, Roosen-Runge, EC, Beckwith, JB. X-linked mental deficiency megalotestes syndrome. JAMA 1977;238:16461650.Google Scholar
Pirgon, O, Dundar, BN. Vanishing testes: a literature review. J Clin Res Pediatr Endocrinol 2012;4:116120.Google Scholar
Lee, PA, Houk, CP, Faisal Ahmed, S, Hughes, IA. Consensus statement on management of intersex disorders. Pediatrics 2006, 118:e488.Google Scholar
Sohval, AR. Hermaphroditism with atypical or mixed gonadal dysgenesis. Am J Med 1964;36:281292.Google Scholar
Swyer, GIM, Phil, D. Male pseudohermaphroditism: a hitherto undescribed form. Br Med J 1955;2:709712.Google Scholar
Hawkins, JR. Mutational analysis of SRY in XY females. Hum Mutat 1993;2:347350.Google Scholar
Rajfer, J, Mendelsohn, G, Arnheim, J, Jeffs, RD, Walsh, PC. Dysgenetic male pseudohermaphroditism. J Urol 1978;119:525527.Google Scholar
Looijenga, LH, Hersmus, R, de Leeuw, BH, Stoop, H, Cools, M, Oosterhuis, JW, Drop, SL, Wolffenbuttel, KP. Gonadal tumours and DSD. Best Pract Res Clin Endocrinol Metab 2010;24:291310.Google Scholar
Kersemaekers AM Honecker, F, Stoop, H, Cools, M, Molier, M, Wolffenbuttel, K, Bokemeyer, C, Li, Y, Lau, YF, Oosterhuis, JW, Looijenga, LH. Identification of germ cells at risk for neoplastic transformation in gonadoblastoma: an immunohistochemical study for OCT3/4 and TSPY. Hum Pathol 2005;36:512521.Google Scholar
Palma, I, Garibay, N, Pena-Yolanda, R, Contreras, A, Raya, A, Dominguez, C, Romero, M, Aristi, G, Queipo, G. Utility of OCT 3/4, TSPY and β-catenin as biological markers for gonadoblastoma formation and malignant germ cell tumour development in dysgenetic gonads. Dis Markers 2013;34:419424.Google Scholar
Van Niekirk, WA, Retief, RA. The gonads of human true hermaphrodites. Hum Genet 1981;58:117122.Google Scholar
Krob, G, Braun, A, Kuhnle, U. True hermaphroditism: geographical distribution, clinical findings, chromosomes and gonadal histology. Eur J Pediatr 1994;153:210.Google Scholar
Matsui, F, Shimada, K, Matsumoto, F, Itesako, T, Nara, K, Ida, S, Nakayama, M. Long-term outcome of ovotesticular disorder of sex development: A single center experience. Int J Urol 2011;18:231236.Google Scholar
Verkauscas, G, Jaubert, F, Lortat-Jacob, S, Malan, V, Thibaud, E, Nihoul-Fekete, C. The long term followup of 33 cases of true hermaphroditism: a 40 year experience with conservative gonadal surgery. J Urol 2007;177:726731.Google Scholar
Belville, C, Marechal, JD, Pennetier, S, Carmillo, P, Masgrau, L, Messika-Zeitoun, L, Galey, J, Machado, G, Treton, D, Gonzales, J, Picard, JY, Josso, N, Cate, RL, di Clemente, N. Natural mutations of the anti- müllerian type 2 receptor found in persistent müllerian duct syndrome affect ligand binding, signal transduction and cellular transport. Hum Mol Genet 2009;18:30023013.Google Scholar
Berthezene, F, Forest, MG, Grimaud, JA, Claustrat, B, Mornex, R. Leydig cell agenesis: a cause of male pseudohermaphroditism. N Engl J Med 1976;295:969972.Google Scholar
Brown, DM, Markland, C, Dehner, LP. Leydig cell hypoplasia: a cause of male pseudohermaphroditism. J Clin Endocrinol Metab 1978;45:17.Google Scholar
Perez-Palacios, G, Scaglia, HE, Kofman Alfaro, S, Saavedra, D, Ochoa, S, Larraza, O, Perez, AE. Inherited male pseudohermaphroditism due to gonadotropin unresponsiveness. Acta Endocrinol (Copenh) 1981;98:148155.Google Scholar
Imperato-McGinley, J, Guerrero, I, Gautier, T, Peterson, RE. Steroid 5 alpha-reductase deficiency in man: an inherited form of male pseudohermaphroditism. Science 1974;186:12131215.Google Scholar
Peterson, RE, Imperato-McGinley, J, Gautier, T, Sturla, E. Male pseudohermaphroditism due to steroid 5 alpha-reductase deficiency. Am J Med 1977;62:170191.Google Scholar
Quigley, CA, De Bellis, A, Marschke, KB, el-Awady, MK, Wilson, EM, French, FS. Androgen receptor defects: historical, clinical and molecular perspectives. Endocr Rev 1995;16:271321.Google Scholar
Hughes, IA, Davies, JD, Bunch, TI, Pasterski, V, Mastroyannopoulou, K, Macdougall, J. Androgen insensitivity syndrome. Lancet 2012, 380:14191428.Google Scholar
Matias, PM, Donner, P, Coelho R Thomaz, M, Peixoto, C, Macedo, S, Otto, N, Joschko, S, Scholz, P, Wegg, A, Bäsler, S, Schäfer, M, Egner, U, Carrondo, MA. Structural evidence for ligand specificity in the binding domain of the human androgen receptor. Implications for pathogenic gene mutations. J Biol Chem 2000;275:2616426171.Google Scholar
Danilovic, DLS, Correa, PHS, Costa, EMF, Melo, KFS, Mendonca, BB, Arnhold, IJP. Height and bone mineral density in androgen insensitivity syndrome with mutations in the androgen receptor gene. Osteoporos Int 2007;18:369374.Google Scholar
Rutgers, JL, Scully, RE. The androgen insensitivity syndrome (testicular feminization): a clinicopathologic study of 43 cases. Int J Gynecol Pathol 1991;10:126144.Google Scholar
Basaria, S. Male hypogonadism. Lancet 2014;383:12501263.Google Scholar
Liu, L, Banks, SM, Barnes, KM, Sherins, RJ. Two-year comparison of peripheral responses to pulsatile gonadotropin releasing hormone and exogenous gonadotropins from the inception of therapy in men with isolated hypogonadotropic hypoganadism. J Clin Endocrinol Metab 1988;67:11401145.Google Scholar
Wikstrom, AM, Dunkel, L. Klinefelter syndrome. Best Pract Res Clin Endocrinol Metab 2011;25:239250.Google Scholar
Colaco, P. Precocious puberty. Indian J Pediatr 1997;64:165175.Google Scholar
Fuqua, JS. Treatment and outcomes of precocious puberty: an update. J Clin Endocrinol Metab 2013;98:21982207.Google Scholar
Reiter, EO, Mauras, N, McCormick, K, Kulshreshtha, B, Amrhein, J, de Luca, F, O'Brien, S, Armstrong, J, Melezinkova, H. Bicalutamide plus anastrozole for the treatment of gonadotropin-independent precocious puberty in boys with testotoxicosis: a phase 2 open label pilot study (BATT). J Pediatr Endocrinol Metab 2010;23:9991099.Google Scholar
Jungwirth, A, Giwercman, A, Tournaye, H Diemer, T, Kopa, Z, Dohle, G, Krausz, C. European association of urology guidelines on male infertility: the 2012 update. Eur Urol 2012;62:324332.Google Scholar
Bachir, BG, Jarvi, K. Infectious inflammatory and immunologic conditions resulting in male infertility. Urol Clin North Am 2014;41:6781.Google Scholar
Hotaling, JM. Genetics of male infertility. Urol Clin North Am 2014;41:117.Google Scholar
Mclaren, JF. Infertility evaluation. Obstet Gynecol Clin North Am 2012;39:453463.Google Scholar
Dohle, GR, Elzanaty, S, van Casteren, NJ. Testicular biopsy: clinical practice and interpretation. Asian J Androl 2012;14:8893.Google Scholar
Johnsen, SG. Testicular biopsy score count-a method for registration of spermatogenesis in human testis: normal values and results in 335 hypogonadal males. Hormones 1970;1:2.Google Scholar
Sesterhenn, IA, Cheville, J, Woodward, PJ, Damjanov, I, Jacobsen, GK, Nistal, M, Paniagua, R, Renshaw, AA. Sex cord/gonadal stromal tumours. In Eble, JN, Sauter, G, Epstein, JI, Sesterhenn, IA, eds. World Health Organization Classification of Tumours of the Urinary System and Male Genital Organs. Lyon: International Agency for Research on Cancer, 2004:250258.Google Scholar
Washecka, R, Dresner, MI, Honda, SA. Testicular tumours in Carney's complex. J Urol 2002;167:12991302.Google Scholar
Young, RH, Koelliker, DD, Scully, RE. Sertoli cell tumours of the testis, not otherwise specified: a clinicopathologic analysis of 60 cases. Am J Surg Pathol 1998;22:709721.Google Scholar
Garrett, JE, Cartwright, PC, Snow, BW, Coffin, CM. Cystic testicular lesions in the pediatric population. J Urol 2000;63:928936.Google Scholar
Metcalfe, PD, Farivar-Mohseni, H, Farhat W McLorie, G, Khoury, A, Bägli, DJ. Pediatric testicular tumours: contemporary incidence and efficacy of testicular preserving surgery. J Urol 2003;170:24122415.Google Scholar
Kratzer, SS, Ulbright, TM, Talerman, A, Srigley, JR, Roth, LM, Wahle, GR, Moussa, M, Stephens, JK, Millos, A, Young, RH. Large cell calcifying Sertoli cell tumor of the testis: contrasting features of six malignant and six benign tumours and a review of the literature. Am J Surg Pathol 1997;21:12711280.Google Scholar
Ye, H, Ulbright, TM. Difficult differential diagnoses in testicular pathology. Arch Pathol Lab Med 2012;136:435446.Google Scholar
Papatsoris, AG, Triantafyllidis, A, Gekas A Karamouzis, MV, Rosenbaum, T. Leydig cell tumor of the testis. New cases and review of the current literature. Tumori 2004;90:422423.Google Scholar
Kim, I, Young, RH, Scully, RE. Leydig cell tumors of the testis. A clinicopathological analysis of 40 cases and review of the literature. Am J Surg Pathol 1985;9:177192.Google Scholar
Wilson, BE, Netzloff, ML. Primary testicular abnormalities causing precocious puberty Leydig cell tumor, Leydig cell hyperplasia and adrenal rest tumor. Ann Clin Lab Sci 1983;13:315320.Google Scholar
Matoska, J, Ondrus, D, Talerman, A. Malignant granulosa cell tumor of the testis associated with gynecomastia and long survival. Cancer 1992;69:17691772.Google Scholar
Young, RH, Lawrence, WD, Scully, RE. Juvenile granulosa cell tumor-another neoplasm associated with abnormal chromosomes and ambiguous genitalia: a report of three cases. Am J Surg Pathol 1985;9:737743.Google Scholar
Hu, A, Arya, M, Muneer, A, Mushtaq, I, Sebire, NJ. Testicular and paratesticular tumours in the prepubertal population. Lancet Oncol 2010;11:476483.Google Scholar
Ulbright, TM, Amin, MB, Young, RH. Atlas of Tumor Pathology, 3rd Series, Fascicle 25: Tumors of the Testis, Adnexa, Spermatic Cord and Scrotum. Washington, DC: Armed Forces Institute of Pathology, 1999.Google Scholar
Renshaw, AA, Gordon, M, Corless, CL. Immunohistochemistry of unclassified sex cord-stromal tumors of the testis with a predominance of spindle cells. Mod Pathol 1997;10:693700.Google Scholar
Wang, WP, Guo, C, Berney, DM, Ulbright, TM, Hansel, DE, Shen, R, Ali, T, Epstein, JI. Primary carcinoid tumors of the testis: a clinicopathologic study of 29 cases. Am J Surg Pathol 2010;34:519524.Google Scholar
Hosking, DH, Bowman, DM, McMorris, SL, Ramsey, EW. Primary carcinoid of the testis with metastasis. J Urol 1981;125:255256.Google Scholar
Tripkov, K. Non-neoplastic disease of the prostate. In Zhou, M, Magi-Galluzzi, C, eds. Genitourinary Pathology, 2nd edn. Philadelphia, PA: Elsevier-Saunders, 2015:168.Google Scholar
Epstein, JI, Netto, G. Gross anatomy and normal histology. In Epstein, JI, Netto, GJ, eds. Biopsy Interpretation of the Prostate, 3rd edn. Philadelphia, PA: Lippincott-Williams, 2002:1321.Google Scholar
Ayala, AG, Ro, JY, Babaian R Troncoso, P, Grignon, DJ. The prostatic capsule: does it exist? Its importance in the staging and treatment of prostatic carcinoma. Am J Surg Pathol 1989;13:2127.Google Scholar
Sung, MT, Eble, JN, Cheng, L. Invasion of fat justifies assignment of stage pT3a in prostatic adenocarcinoma. Pathology 2006;38: 309311.Google Scholar
McNeal, JE. The zonal anatomy of the prostate. Prostate 1981;2:3549.Google Scholar
Lawrentschuk, N, Haider, MA, Daljeet, N, Evans, A, Toi, A, Finelli, A, Trachtenberg, J, Zlotta, A, Fleshner, N. Prostatic evasive anterior tumours: the role of magnetic resonance imaging. BJU Int 2010;105:12311236.Google Scholar
Bostwick, DG, Hull, D, Ma, J, Hossain, D. Nonneoplastic diseases of the prostate. In Bostwick, DG, Cheng, L, eds. Urologic Surgical Pathology, 3rd edn. Philadelphia PA: Elsevier, 2014:381442.Google Scholar
Prins, GS. Molecular signaling pathways that regulate prostate development. Differentiation 2008;76:641659.Google Scholar
Bonkhoff, H, Stein, U, Remberger, K. The proliferative function of basal cells in the normal and hyperplastic human prostate. Prostate 1994;24:114118.Google Scholar
Abrahamsson, PA. Neuroendocrine cells in tumour growth of the prostate. Endocr Relat Cancer 1999;6:503519.Google Scholar
Humphrey, PA, Vollmer, RT. Corpora amylacea in adenocarcinoma of the prostate: prevalence in 100 prostatectomies and clinicopathologic correlations. Surg Pathol 1990;3:389396.Google Scholar
Bostwick, DG. Prostate specific antigen. Current role in diagnostic pathology of prostate cancer. Am J Clin Pathol 1994;102:S31S37.Google Scholar
Epstein, JI, Kuhajda, FP, Lieberman, PH. Prostate specific acid phosphatase immunoreactivity in adenocarcinomas of the urinary bladder. Hum Pathol 1986;17:939942.Google Scholar
Kinoshita, Y, Kuratsukuri, K, Landas, S Imaida, K, Rovito, PM Jr., Wang, CY, Haas, GP. Expression of prostate specific membrane antigen in normal and malignant human tissues. World J Surg 2006;30:628636.Google Scholar
Herawi, M, Parwani, AV, Irie, J, Epstein, JI. Small glandular proliferations on needle biopsies: most common benign mimickers of prostatic adenocarcinoma sent in for expert second opinion. Am J Surg Pathol 2005;29:874880.Google Scholar
Scheble, VJ, Braun, M, Beroukhim R Mermel, CH, Ruiz, C, Wilbertz, T, Stiedl, AC, Petersen, K, Reischl, M, Kuefer, R, Schilling, D, Fend, F, Kristiansen, G, Meyerson, M, Rubin, MA, Bubendorf, L, Perner, S. ERG rearrangement is specific to prostate cancer and does not occur in any other tumour. Mod Pathol 2010;23:10611067.Google Scholar
Wang, W, Epstein, JI. Small cell carcinoma of the prostate. A morphologic and immunohistochemical study of 95 cases. Am J Surg Pathol 1998;32:6571.Google Scholar
Kalos, M, Askaa, J, Hylander, BL Repasky, EA, Cai, F, Vedvick, T, Reed, SG, Wright, GL Jr., Fanger, GR. Prostein expression is highly restricted to normal and malignant prostate tissues. Prostate 2004;60:246256.Google Scholar
Downes, MR, Torlakovic, EE, Aldaoud, N, Zlotta, AR, Evans, AJ, van der Kwast, TH. Diagnostic utility of androgen receptor expression in discriminating poorly differentiated urothelial and prostate carcinoma. J Clin Pathol 2013;66:779786.Google Scholar
Gurel, B, Ali, TZ, Montgomery, EA, Begum, S, Hicks, J, Goggins, M, Eberhart, CG, Clark, DP, Bieberich, CJ, Epstein, JI, De Marzo, AM. NKX3.1 as a marker of prostatic origin in metastatic tumours. Am J Surg Pathol 2010;34:10971105.Google Scholar
Bostwick, DG, Cheng, L, Meiers, I. Neoplasms of the prostate. In Bostwick, DG, Cheng, L, eds. Urologic Surgical Pathology, 3rd edn. Philadelphia PA: Elsevier, 2014:443580.Google Scholar
Marks, LS, Fradet, Y, Deras, IL, Blase, A, Mathis, J, Aubin, SM, Cancio, AT, Desaulniers, M, Ellis, WJ, Rittenhouse, H, Groskopf, J. PCA3 molecular urine assay for prostate cancer in men undergoing repeat biopsy. Urology 2007;69:532.Google Scholar
Ploussard, G, Haese, A, van Poppel, H, Marberger, M, Stenzl, A, Mulders, PF, Huland, H, Bastien, L, Abbou, CC, Remzi, M, Tinzl, M, Feyerabend, S, Stillebroer, AB, Van Gils, MP, Schalken, JA, de La Taille, A. The prostate cancer gene 3 (PCA3) urine test in men with previous negative biopsies: does free to total prostate specific antigen ratio influence the performance of the PCA3 score in predicting positive biopsies. BJU Int 2010;106:1143.Google Scholar
Tomlins, SA, Aubin, SM, Siddiqui, J, Lonigro, RJ, Sefton-Miller, L, Miick, S, Williamsen, S, Hodge, P, Meinke, J, Blase, A, Penabella, Y, Day, JR, Varambally, R, Han, B, Wood, D, Wang, L, Sanda, MG, Rubin, MA, Rhodes, DR, Hollenbeck, B, Sakamoto, K, Silberstein, JL, Fradet, Y, Amberson, JB, Meyers, S, Palanisamy, N, Rittenhouse, H, Wei, JT, Groskopf, J, Chinnaiyan, AM. Urine TMPRSS2:ERG fusion transcript stratifies prostate cancer risk in men with elevated serum PSA. Sci Transl Med 2011;3:94ra72.CrossRefGoogle ScholarPubMed
Feldman, BJ, Feldman, D. The development of androgen independent prostate cancer. Nat Rev Cancer 2001;1:3445.Google Scholar
Dehm, SM, Tindall, DJ. Molecular regulation of androgen action in prostate cancer. J Cell Biochem 2006;99:333344.Google Scholar
Brinkmann, AO, Blok, LJ, de Ruiter, PE, Doesburg, P, Steketee, K, Berrevoets, CA, Trapman, J. Mechanisms of androgen receptor activation and function. J Steroid Biochem Mol Biol 1999;69:307313.Google Scholar
Ruizeveld de Winter, JA, Trapman, J, Vermey, M, Mulder, E, Zegers, ND, van der Kwast, TH. Androgen receptor expression in human tissues: an immunohistochemical study. J Histochem Cytochem 1991;39:927936.Google Scholar
Kimura, N, Mizokami, A, Onuma, T, Sasano, H, Nagura, H. Immunocytochemical localization of the androgen receptor with polyclonal antibody in paraffin embedded human tissues. J Histochem Cytochem 1993;41:671678.Google Scholar
Bianchini, D, de Bono, JS. Continued targeting of androgen receptor signalling: a rational and efficacious therapeutic strategy in metastatic castrate resistant prostate cancer. Eur J Cancer 2011;47(suppl 3):S189S194.Google Scholar
Powell, SM, Christiaens, V, Voulgaraki, D, Waxman, J, Claessens, F, Bevan, CL. Mechanisms of androgen receptor signalling via steroid receptor coactivator-1 in prostate. Endocrine related Cancer 2004;11:117130.Google Scholar
Bevan, CL, Parker, MG. the role of coactivators in steroid hormone action. Exp Cell Res 1999;253:349356.Google Scholar
Ramsay, AK, Leung, HY. Signalling pathways in prostate carcinogenesis: potentials for molecular targeted therapy. Clin Sci 2009;117:209228.Google Scholar
Lee, DK, Chang, C. Molecular communication between androgen receptor and general transcription machinery. J Steroid Biochem Mol Biol 2003;84:4149.CrossRefGoogle ScholarPubMed
Culig, Z, Klocker, K, Bartsch, G, Steiner, H, Hobisch, A. Androgen receptors in prostate cancer. J Urol 2003;170:13631369.Google Scholar
McNeal, JE. The pathobiology of nodular hyperplasia. In Bostwick, DG, ed. Pathology of the Prostate. New York: Churchill Livingstone, 1990:3136.Google Scholar
Oelke, M, Bachmann, A, Descazeaud, A, Emberton, M, Gravas, S, Michel, MC, N'dow, J, Nordling, J, de la Rosette, JJ. EAU guidelines on the treatment and follow up of non-neurogenic lower urinary tract symptoms including benign prostatic obstruction. Eur Urol 2013;64:118140.Google Scholar
Siegel, R, Ma, J, Zou, Z, Jemal, A. Cancer statistics, 2014. CA Cancer J Clin 2014;64:929.Google Scholar
Huggins, C, Hodges, CV. The effect of castration, of estrogen and of androgen injection on serum phosphatases in metastatic carcinoma of the prostate. Cancer Res 1941;1:293297.Google Scholar
Massard, C, Fizazi, K. Targeting continued androgen receptor signaling in prostate cancer. Clin Cancer Res 2011;17:38763883.Google Scholar
Locke, JA, Guns, ES, Lubik, AA, Adomat, HH, Hendy, SC, Wood, CA, Ettinger, SL, Gleave, ME, Nelson, CC. Androgen levels increase by intratumoral de novo steroidogenesis during progression of castration-resistant prostate cancer. Cancer Res 2008;68:64076415.Google Scholar
Attard, G, Reid, AHM, Yap TA Raynaud, F, Dowsett, M, Settatree, S, Barrett, M, Parker, C, Martins, V, Folkerd, E, Clark, J, Cooper, CS, Kaye, SB, Dearnaley, D, Lee, G, de Bono, JS. Phase 1 clinical trial of a selective inhibitor of CYP17, abiraterone acetate, confirms that castration resistant prostate cancer commonly remains hormone driven. J Clin Oncol 2008;26:45634571.Google Scholar
Chen, CD, Welsbie, DS, Tran, C, Baek, SH, Chen, R, Vessella, R, Rosenfeld, MG, Sawyers, CL. Molecular determinants of resistance to antiandrogen therapy. Nat Med 2004;10:3339.Google Scholar
Hara, T, Miyazaki, J, Araki, H, Yamaoka, M, Kanzaki, N, Kusaka, M, Miyamoto, M. Novel mutations of androgen receptor: a possible mechanism of bicalutamide withdrawal syndrome. Cancer Res 2003;63:149153.Google Scholar
Dehm, SM, Schmidt, LJ, Heemers, HV, Vessella, RL, Tindall, DJ. Splicing of a novel androgen receptor exon generates a constitutively active androgen receptor that mediates prostate cancer therapy resistance. Cancer Res 2008;68:54695477.Google Scholar
Guo, Z, Yang, X, Sun, F, Jiang, R, Linn, DE, Chen, H, Chen, H, Kong, X, Melamed, J, Tepper, CG, Kung, HJ, Brodie, AM, Edwards, J, Qiu, Y. A novel androgen receptor splice variant is up-regulated during prostate cancer progression and promotes androgen depletion-resistant growth. Cancer Res 2009;69:23052313.Google Scholar
Hu, R, Dunn, TA, Wei, S, Isharwal, S, Veltri, RW, Humphreys, E, Han, M, Partin, AW, Vessella, RL, Isaacs, WB, Bova, GS, Luo, J. Ligand-independent androgen receptor variants derived from splicing of cryptic exons signify hormone refractory prostate cancer. Cancer Res 2009;69:1622.CrossRefGoogle ScholarPubMed
Leibowitz-Amit, R, Joshua, AM. Targeting the androgen receptor in the management of castration-resistant prostate cancer: rationale, progress and future directions. Curr Oncol 2012;19:S2231.Google Scholar
Tran, C, Ouk, S, Clegg, NJ, Chen, Y, Watson, PA, Arora, V, Wongvipat, J, Smith-Jones, PM, Yoo, D, Kwon, A, Wasielewska, T, Welsbie, D, Chen, CD, Higano, CS, Beer, TM, Hung, DT, Scher, HI, Jung, ME, Sawyers, CL. Development of a second generation antiandrogen for treatment of advanced prostate cancer. Science 2009;324:787790.Google Scholar
Petraki, CD, Sfikas, CP. Histopathological changes induced by therapies in the benign prostate and prostate adenocarcinoma. Histol Histopathol 2007;1:107118.Google Scholar
Tetu, B. Morphological changes induce by androgen blockade in normal prostate and prostatic carcinoma. Best Prac Res Clin Endo Metab 2008;22:271283.Google Scholar
Vaillancourt, L, Tetu, B, Fradet, Y, Dupont, A, Gornez, J, Cusan, L, Suburu, ER, Diamond, P, Candas, B, Labrie, F. Effect of neoadjuvant endocrine therapy (combined androgen blockade) on normal prostate and prostatic carcinoma: a randomized study. Am J Surg Pathol 1996;20:8693.Google Scholar
Bostwick, DG, Qian, J. Effect of androgen deprivation therapy on prostatic intraepithelial neoplasia. Urology 2001;2(suppl 1):9193.Google Scholar
Evans, AJ, Ryan, P, van der Kwast, TH. Treatment effects in the prostate including those associated with traditional and emerging therapies. Adv Anat Pathol 2011;18:281293.Google Scholar
Weaver, MG, Abdul-Karim, FW, Srigley, JR, Bostwick, DG, Ro, JY, Ayala, AG. Paneth cell-like change of the prostate gland. A histological, immunohistochemical, and electron microscopic study. Am J Surg Pathol 1992;16:6268.Google Scholar
Tamas, EF, Epstein, JI. Prognostic significance of Paneth cell-like neuroendocrine differentiation in adenocarcinomas of the prostate. Am J Surg Pathol 2006;30:980985.Google Scholar
Abrahamsson, PA, Falkmer, S, Falt, K, Grimelius, L. The course of neuroendocrine differentiation in prostatic carcinomas: an immunohistochemical study testing chromogranin A as an “endocrine marker.” Path Res Pract 1989;185:373380.Google Scholar
Burchardt, T, Burchardt, M, Chen MW Cao, Y, de la Taille, A, Shabsigh, A, Hayek, O, Dorai, T, Buttyan, R. Transdifferentiation of prostate cancer cells to a neuroendocrine cell phenotype in vitro and in vivo. J Urol 1999;162:18001805.Google Scholar
Goulet-Salmon, B, Berthe, E, Franc, S, Chanel, S, Galateau-Salle, F, Kottler, M, Mahoudeau, J, Reznik, Y. Prostatic neuroendocrine tumor in multiple neuroendocrine neoplasia Type 2B. J Endocrinol Invest 2004;27:570573.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×