Skip to main content Accessibility help
×
Home
  • Print publication year: 2000
  • Online publication date: April 2017

29B - Bone manifestations of endocrine disease

from Chapter 29 - Bone in endocrine disease
1.ADHR consortium. Autosomal dominant hypophosphataemic rickets is associated with mutations in FGF23. Nat Genet 2000;26:345348.
2.Yamashita, T.. Structural and biochemical properties of fibroblast growth factor 23. Ther Apher Dial 2005;9:313318.
3.Goetz, R., Nakada, Y., Hu, M.C., et al. Isolated C‐terminal tail of FGF23 alleviates hypophosphatemia by inhibiting FGF23‐FGFR‐Klotho complex formation. Proc Natl Acad Sci USA 2010;107:407441.
4.Jüppner, H., Wolf, M.. αKlotho: FGF23 coreceptor and FGF23-regulating hormone. J Clin Invest 2012;122:43364339.
5.Kuro, M. , O. Klotho in health and disease. Curr Opin Nephrol Hypertens 2012;21:362368.
6.Silver, J., Naveh-Many, T.. FGF-23 and secondary hyperparathyroidism in chronic kidney disease. Nat Rev Nephrol 2013;9:641649.
7.Shimada, T., Hasegawa, H., Yamazaki, Y., et al. FGF‐23 is a potent regulator of vitamin D metabolism and phosphate homeostasis. J Bone Miner Res 2004;19:429435.
8.Rowe, P.S.. The chicken or the egg: PHEX, FGF23 and SIBLINGs unscrambled. Cell Biochem Funct 2012;30:355375.
9.Feng, J.Q., Ward, L.M., Liu, S., et al. Loss of DMP1 causes rickets and osteomalacia and identifies a role for osteocytes in mineral metabolism. Nat Genet 2006;38:13101315.
10.Lorenz-Depiereux, B., Bastepe, M., Benet-Pages, A., et al. DMP1mutations in autosomal recessive hypophosphatemia implicate a bone matrix protein in the regulation of phosphate homeostasis. Nat Genet 2006;38:12481250.
11.Francis, F., Hennig, S., Korn, B., et al. A gene (PEX) with homologies to endopeptidases is mutated in patients with X-linked hypophosphatemic rickets. Nat Genet 1995;11:130136.
12.Quinn, S.J., Thomsen, A.R., Egbuna, O., et al. CaSR-mediated interactions between calcium and magnesium homeostasis in mice. Am J Physiol Endocrinol Metab 2013;304:E724E733.
13.Saito, H., Maeda, A., Ohtomo, S., et al. Circulating FGF‐23 is regulated by 1α,25-dihydroxyvitamin D3 and phosphorus in vivo. J Biol Chem 2005;280:25432549.
14.Wolf, M., Koch, T.A., Bregman, D.B.. Effects of iron deficiency anemia and its treatment on fibroblast growth factor 23 and phosphate homeostasis in women. J Bone Miner Res 2013;28:17931803.
15.Karsenty, G., Ferron, M.. The contribution of bone to whole-organism physiology. Nature 2012;481:314320.
16.DiGirolamo, D.J., Clemens, T.L., Kousteni, S.. The skeleton as an endocrine organ. Nat Rev Rheumatol 2012;8:674683.
17.Lian, J.B., Gundberg, C.M.. Osteocalcin. Biochemical considerations and clinical applications. Clin Orthop Relat Res 1988;226:267291.
18.Ducy, P., Desbois, C., Boyce, B., et al. Increased bone formation in osteocalcin-deficient mice. Nature 1996;382:448452.
19.Delmas, P.D., Eastell, R., Garnero, P., et al. The use of biochemical markers of bone turnover in osteoporosis. Committee of Scientific Advisors of the International Osteoporosis Foundation. Osteoporos Int 2000;11:S2S17.
20.Szulc, P., Delmas, P.D.. Biochemical markers of bone turnover: potential use in the investigation and management of postmenopausal osteoporosis. Osteoporos.Int 2008;19:16831704.
21.Hauschka, P.V., Lian, J.B., Cole, D.E., Gundberg, C.M.. Osteocalcin and matrix Gla protein: vitamin K-dependent proteins in bone. Physiol Rev 1989;69:9901047.
22.Hoang, Q.Q., Sicheri, F., Howard, A.J., Yang, D.S.. Bone recognition mechanism of porcine osteocalcin from crystal structure. Nature 2003;425:977980.
23.Frazao, C., Simes, D.C., Coelho, R., et al. Structural evidence of a fourth Gla residue in fish osteocalcin: biological implications. Biochemistry 2005;44:12341242.
24.Rubinacci, A.. Expanding the functional spectrum of vitamin K in bone. Focus on: “vitamin K promotes mineralization, osteoblast to osteocyte transition, and an anti-catabolic phenotype by {gamma}-carboxylation-dependent and-independent mechanisms.” Am J Physiol Cell Physiol 2009;297:C1336C1338.
25.Sokoll, L.J., Sadowski, J.A.. Comparison of biochemical indexes for assessing vitamin K nutritional status in a healthy adult population. Am J Clin Nutr 1996;63:566573.
26.Cairns, J.R., Price, P.A.. Direct demonstration that the vitamin K-dependent bone Gla protein is incompletely gamma-carboxylated in humans. J Bone Miner Res 1994;9:19891997.
27.Gundberg, C.M., Nieman, S.D., Abrams, S., Rosen, H.. Vitamin K status and bone health: an analysis of methods for determination of undercarboxylated osteocalcin. J Clin Endocrinol Metab 1998;83:32583266.
28.Lee, A.J., Hodges, S., Eastell, R.. Measurement of osteocalcin. Ann Clin Biochem 2000;37:432446.
29.Rogers, A., Hannon, R.A., Eastell, R.. Biochemical markers as predictors of rates of bone loss after menopause. J Bone Miner Res 2000;15:13981404.
30.Liu, G., Peacock, M.. Age-related changes in serum undercarboxylated osteocalcin and its relationships with bone density, bone quality, and hip fracture. Calcif Tissue Int 1998;62:286289.
31.Tsugawa, N., Shiraki, M., Suhara, Y., et al. Vitamin K status of healthy Japanese women: age-related vitamin K requirement for gamma-carboxylation of osteocalcin. Am J Clin Nutr 2006;83:380386.
32.Plantalech, L., Guillaumont, M., Vergnaud, P., et al. Impairment of gamma carboxylation of circulating osteocalcin (bone gla protein) in elderly women. J Bone Miner Res 1991;6:12111216.
33.Shea, M.K., Benjamin, E.J., Dupuis, J., et al. Genetic and non-genetic correlates of vitamins K and D. Eur J Clin Nutr 2009;63:458464.
34.Ferron, M., Wei, J, Yoshizawa, T, et al. Insulin signaling in osteoblasts integrates bone remodeling and energy metabolism. Cell 2010;142:296308.
35.Lee, N.K., Sowa, H, Hinoi, E, Ferron, M, et al. Endocrine regulation of energy metabolism by the skeleton. Cell 2007;130:456469.
36.Ducy, P., Amling, M, Takeda, S, et al. Leptin inhibits bone formation through a hypothalamic relay: a central control of bone mass. Cell 2000;100:197207.
37.Turner, R.T., Kalra, S.P., Wong, C.P., et al. Peripheral leptin regulates bone formation. J Bone Miner Res 2013;28:2234.
38.Yip, S.C., Saha, S., Chernoff, J.. PTP1B: a double agent in metabolism and oncogenesis. Trends Biochem Sci 2010;35:442449.
39.Misra, M., Miller, K.K., Cord, J., et al. Relationships between serum adipokines, insulin levels, and bone density in girls with anorexia nervosa. J Clin Endocrinol Metab 2007;92:20462052.
40.Pollock, N.K., Bernard, P.J., Gower, B.A.N., et al. Lower uncarboxylated osteocalcin concentrations in children with prediabetes is associated with β-cell function. J Clin Endocrinol Metab 2011;96:E1092E1099.
41.Iglesias, P., Arrieta, F, Piñera, M, et al. Serum concentrations of osteocalcin, procollagen type 1 N-terminal propeptide and β-Crosslaps in obese subjects with varying degrees of glucose tolerance. Clin Endocrinol 2011;75:184188.
42.Fernández-Real, J.M., Izquierdo, M., Ortega, F, et al. The relationship of serum osteocalcin concentration to insulin secretion, sensitivity, and disposal with hypocaloric diet and resistance training. J Clin Endocrinol Metab 2009;94:237245.
43.Bulló, M., Moreno-Navarrete, J.M., Fernández-Real, J.M., et al. Total and undercarboxylated osteocalcin predict changes in insulin sensitivity and β cell function in elderly men at high cardiovascular risk. Am J Clin Nutr 2012;95:249255.
44.Pittas, A.G., Harris, S.S., Eliades, M., et al. Association between serum osteocalcin and markers of metabolic phenotype. J Clin Endocrinol Metab 2009;94:827832.
45.Kanazawa, I., Yamaguchi, T, Yamauchi, M., et al. T 2011 serum undercarboxylated osteocalcin was inversely associated with plasma glucose level and fat mass in type 2 diabetes mellitus. Osteoporos Int 2011;22:187194.
46.Lihn, A.S., Pedersen, S.B., Richelsen, B.. Adiponectin: action, regulation and association to insulin sensitivity. Obes Rev 2005;6:1321.
47.Yoshida, M., Jacques, P.F., Meigs, J.B., et al. Effect of vitamin K supplementation on insulin resistance in older men and women. Diabetes Care 2008;31:20922096.
48.Dane, C., Dane, B., Cetin, A., et al. Comparison of the effects of raloxifene and low-dose hormone replacement therapy on bone mineral density and bone turnover in the treatment of postmenopausal osteoporosis. Gynecol Endocrinol 2007;23:398403.
49.Yasui, T., Uemura, H., Umino, Y., et al. Undercarboxylated osteocalcin concentration in postmenopausal women receiving hormone therapy daily and on alternate days. Menopause 2006;13:314322.
50.Kanaya, A.M., Herrington, D., Vittinghoff, E., et al. Glycemic effects of postmenopausal hormone therapy: the Heart and Estrogen/Progestin Replacement Study. A randomized, double-blind, placebo-controlled trial. Ann Intern Med 2003;138:19.
51.Margolis, K.L., Bonds, D.E., Rodabough, R.J., et al. Effect of oestrogen plus progestin on the incidence of diabetes in postmenopausal women: results from the Women’s Health Initiative Hormone Trial. Diabetologia 2004;47:11751187.
52.Aonuma, H., Miyakoshi, N., Hongo, M., et al. Low serum levels of undercarboxylated osteocalcin in postmenopausal osteoporotic women receiving an inhibitor of bone resorption. Tohoku J Exp Med 2009;218:201205.
53.Vestergaard, P.. Risk of newly diagnosed type 2 diabetes is reduced in users of alendronate. Calcif Tissue Int 2011;89:265270.
54.Schwartz, A.V., Schafer, A.L., Grey, A., et al. Effects of antiresorptive therapies on glucose metabolism: results from the FIT, HORIZON-PFT, and FREEDOM trials. J Bone Miner Res 2013;28:13481354.
55.Anastasilakis, A.D., Efstathiadou, Z., Plevraki, E., et al. Effect of exogenous intermittent recombinant human PTH 1–34 administration and chronic endogenous parathyroid hormone excess on glucose homeostasis and insulin sensitivity. Horm Metab Res 2008;40:702707.
56.Schafer, A.L., Sellmeyer, D.E., Schwartz, A.V., et al. Change in undercarboxylated osteocalcin is associated with changes in body weight, fat mass, and adiponectin: parathyroid hormone (1–84) or alendronate therapy in postmenopausal women with osteoporosis (the PaTH Study). J Clin Endocrinol Metab 2011;96:E19821989.
57.Kanazawa, I., Yamaguchi, T., Yamamoto, M., et al. Serum osteocalcin level is associated with glucose metabolism and atherosclerosis parameters in type 2 diabetes mellitus. J Clin Endocrinol Metab 2009;94:4549.
58.Song, H.J., Lee, J., Kim, Y.J., et al. β1-Selectivity of β-blockers and reduced risk of fractures in elderly hypertension patients. Bone 2012;51:10081015.
59.Rejnmark, L., Vestergaard, P., Mosekilde, L.. Treatment with beta-blockers, ACE inhibitors, and calcium-channel blockers is associated with a reduced fracture risk: a nationwide case–control study. J Hypertens 2006;24:581589.
60.Yang, S., Nguyen, N.D., Center, J.R., et al. Association between beta-blocker use and fracture risk: the Dubbo Osteoporosis Epidemiology Study. Bone 2011;48:451455.
61.Yang, S., Nguyen, N.D., Eisman, J.A., et al. Association between beta-blockers and fracture risk: a Bayesian meta-analysis. Bone 2012;51:969974.
62.Karsenty, G.. The mutual dependence between bone and gonads. J Endocrinol 2012;213:107114.
63.Oury, F., Ferron, M., Huizhen, W., et al. Osteocalcin regulates murine and human fertility through a pancreas-bone-testis axis. J Clin Invest 2013;123:24212433.
64.Oury, F., Khrimian, L., Denny, C.A. CA, et al. Maternal and offspring pools of osteocalcin influence brain development and functions. Cell 2013;155:228241.
65.Kobayashi, S., Takahashi, H.E., Ito, A., et al. Trabecular minimodeling in human iliac bone. Bone 2003;32:163169.
66.Lauretani, F., Bandinelli, S., Griswold, M.E., et al. Longitudinal changes in BMD and bone geometry in a population-based study. J Bone Miner Res 2008;23:400408.
67.Macdonald, H.M., Nishiyama, K.K., Kang, J., et al. Age-related patterns of trabecular and cortical bone loss differ between sexes and skeletal sites: a population-based HR-pQCT study. J Bone Miner Res 2011;26:5062.
68.Ruda, J.M., Hollenbeak, C.S., Stack, B.C. Jr. A systematic review of the diagnosis and treatment of primary hyperparathyroidism from 1995 to 2003. Otolaryngol Head Neck Surg 2005;132:359372.
69.Rodgers, S.E., Lew, J.I., Solórzano, C.C.. Primary hyperparathyroidism. Curr Opin Oncol 2008;20:5258.
70.Boehm, B.O., Rosinger, S., Belyi, D., et al. The parathyroid as a target for radiation damage. N Engl J Med 2011;365:676678.
71.Broome, J.T., Solorzano, C.C.. Lithium use and primary hyperparathyroidism. Endocr Pract 2011;17(suppl 1):3135.
72.Hemmer, S., Wasenius, V.M., Haglund, C.. Deletion of 11q23 and cyclin D1 overexpression are frequent aberrations in parathyroid adenomas. Am J Pathol 2001;158:13551362.
73.Rao, D.S., Honasoge, M., Divine, G.W., et al. Effect of vitamin D nutrition on parathyroid adenoma weight: pathogenetic and clinical implications. J Clin Endocrinol Metab 2000;85:10541058.
74.Björklund, P., Lindberg, D., Akerström, G., Westin, G.. Stabilizing mutation of CTNNB1/beta-catenin and protein accumulation analyzed in a large series of parathyroid tumors of Swedish patients. Mol Cancer 2008;7:53.
75.Chandrasekharappa, S.C., Guru, S.C., Manickam, P., et al. Positional cloning of the gene for multiple endocrine neoplasia-type 1. Science 1997;276:404407.
76.Pausova, Z., Soliman, E., Amizuka, N., et al. Role of the RET proto-oncogene in sporadic hyperparathyroidism and in hyperparathyroidism of multiple endocrine neoplasia type 2. J Clin Endocrinol Metab 1996;81:27112718.
77.Chen, J.D., Morrison, C., Zhang, C., et al. Hyperparathyroidism-jaw tumour syndrome. J Intern Med 2003;253:634642.
78.Pollak, M.R., Brown, E.M., Chou, Y.H., et al. Mutations in the human Ca2+-sensing receptor gene cause familial hypocalciuric hypercalcemia and neonatal severe hyperparathyroidism. Cell 1993;75:1297.
79.Nesbit, M.A., Hannan, F.M., Howles, S.A., et al. Mutations affecting G-Protein Subunit a11 in Hypercalcemia and Hypocalcemia N Engl J Med 2013;368:24762486.
80.Potts, J.T. Jr. A short history of parathyroid hormone, its biological role, and pathophysiology of hormone excess. J Clin Densitom 2013;16:47.
81.Tregear, G.W., Van Rietschoten, J., Greene, E., et al. Bovine parathyroid hormone: minimum chain length of synthetic peptide required for biological activity. Endocrinology 1973;93:13491353.
82.Goltzman, D., Peytremann, A., Callahan, E., et al. Analysis of the requirements for parathyroid hormone action in renal membranes with the use of inhibiting analogues. J Biol Chem 1975;250:31993203.
83.Jüppner, H., Abou-Samra, A.B., Freeman, M., et al. A G protein-linked receptor for parathyroid hormone and parathyroid hormone-related peptide. Science 1991;254:10241991.
84.Vilardaga, J.P., Romero, G., Friedman, P.A., et al. Molecular basis of parathyroid hormone receptor signaling and trafficking: a family B GPCR paradigm. Cell Mol Life Sci 2011;68:113.
85.Rouleau, M.F., Mitchell, J., Goltzman, D.. In vivo distribution of parathyroid hormone receptors in bone: evidence that a predominant osseous target cell is not the mature osteoblast. Endocrinology 1988;123:187191.
86.Boyle, W.J., Simonet, W.S., Lacey, D.L.. Osteoclast differentiation and activation. Nature 2003;423:337342.
87.Lee, S-K, Lorenzo, J.. Parathyroid hormone stimulates TRANCE and inhibits osteoprotegerin messenger ribonucleic acid expression in murine bone marrow cultures: correlation with osteoclast-like cell formation. Endocrinology 1999;140:35523561.
88.Locklin, R.M., Khosla, S., Turner, R.T., et al. Mediators of the biphasic responses of bone to intermittent and continuously administered parathyroid hormone. J Cell Biochem 2003;89:180189.
89.Silverberg, S.J., Shane, E., De LaCruz, L., et al. Skeletal disease in primary hyperparathyroidism. J.Bone Miner Res 1989;4:283.
90.Silva, B.C., Costa, A.G., Cusano, N.E., et al. Catabolic and anabolic actions of parathyroid hormone on the skeleton. Endocrinol Invest 2011;34:801810.
91.Silverberg, S.J., Locker, F.G., Bilezikian, J.P.. Vertebral osteopenia: a new indication for surgery in primary hyperparathyroidism. J Clin Endocrinol Metab 1996;81:40074012.
92.Hansen, S., Beck Jensen, J.E., Rasmussen, L., et al. Effects on bone geometry, density, and microarchitecture in the distal radius but not the tibia in women with primary hyperparathyroidism: a case–control study using HR-pQCT. J Bone Miner Res 2010;25:19411947.
93.Hedback, G., Oden, A., Tisell, L.E.. The influence of surgery on the risk of death in patients with primary hyperparathyroidism. World J Surg 1991;15:399407.
94.Wermers, R.A., Khosla, S., Atkinson, E.J., et al. Survival after the diagnosis of hyperparathyroidism: a population-based study. Am J Med 1998;104:115122.
95.Marx, S.J.. Hyperparathyroid and hypoparathyroid disorders. N Engl J Med 2000;343:18631875.
96.Brandi, M.L., Gagel, R.F., Angeli, A., et al. Guidelines for diagnosis and therapy of MEN type 1 and type 2. J Clin Endocrinol Metab 2001;86:56585671.
97.Brandi, M.L., Falchetti, A.. Genetics of primary hyperparathyroidism. Urol Int 2004;72(suppl 1): 1116.
98.Nissen, P.H., Christensen, S.E., Heickendorff, L., et al. Molecular genetic analysis of the calcium sensing receptor gene in patients clinically suspected to have familial hypocalciuric hypercalcemia: phenotypic variation and mutation spectrum in a Danish population. J Clin Endocrinol Metab 2007;92:43734379.
99.Carling, T., Udelsman, R.. Parathyroid surgery in familial hyperparathyroid disorders. J Intern Med 2005;257:2737.
100.Hannan, F.M., Nesbit, M.A., Christie, P.T., et al. A homozygous inactivating calcium-sensing receptor mutation, Pro339Thr, is associated with isolated primary hyperparathyroidism: correlation between location of mutations and severity of hypercalcaemia. Clin Endocrinol (Oxf) 2010;73:715722.
101.Simonds, W.F., James-Newton, L.A., Agarwal, S.K., et al. Familial isolated hyperparathyroidism: clinical and genetic characteristics of thirty-six kindreds. Medicine (Baltimore) 2002;81:126.
102.Eastell, R., Arnold, A., Brandi, M.L., et al. Diagnosis of asymptomatic primary hyperparathyroidism: proceedings of the third international workshop. J Clin Endocrinol Metab 2009;94:340350.
103.Silverberg, S.J., Lewiecki, E.M., Mosekilde, L., et al. Presentation of asymptomatic primary hyperparathyroidism:proceedings of the Third International Workshop. J Clin Endocrinol Metab 2009;94:351365.
104.Bilezikian, J.P., Brandi, M.L., Rubin, M., et al. Primary hyperparathyroidism:new concepts in clinical, densitometric and biochemical features. J Intern Med 2005;257:617.
105.Christensen, S., Nissen, P.H., Vestergaard, P., et al. Discriminative power of three indices of renal calcium excretion for the distinction between familial hypocalciuric hypercalcaemia and primary hyperparathyroidism: a follow-up study on methods. Clin Endocrinol (Oxf) 2008;69:713720.
106.Khan, A., Bilezikian, J.P.. Primary hyperparathyroidism: pathophysiology and impact on bone. CMAJ 2000;163:184187.
107.Siilin, H., Lundgren, E., Mallmin, H., et al. Prevalence of primary hyperparathyroidism and impact on bone mineral density in elderly men: MrOs Sweden. World J Surg 2011;35:12661272.
108.Miller, P.D., Bilezikian, J.P.. Bone densitometry in asymptomatic primary hyperparathyroidism. J Bone Miner Res 2002;17(suppl 2):N98N102.
109.Tamura, Y., Araki, A., Chiba, Y., et al. Remarkable increase in lumbar spine bone mineral density and amelioration in biochemical markers of bone turnover after parathyroidectomy in elderly patients with primary hyperparathyroidism: a 5-year follow-up study. J Bone Miner Metab 2007;25:226231.
110.Rejnmark, L., Vestergaard, P., Mosekilde, L.. Nephrolithiasis and renal calcifications in primary hyperparathyroidism. J Clin Endocrinol Metab 2011;96:23772385.
111.Vestergaard, P., Mosekilde, L.. Fractures in patients with primary hyperparathyroidism: nationwide follow-up study of 1201 patients. World J Surg 2003;27:343349.
112.Vestergaard, P., Mosekilde, L.. Parathyroid surgery is associated with a decreased risk of hip and upper arm fractures in primary hyperparathyroidism: a controlled cohort study. J Int Med 2004;255:108114.
113.Frokjaer, V.G., Mollerup, C.L.. Primary hyperparathyroidism: renal calcium excretion in patients with and without renal stone disease before and after parathyroidectomy. World J Surg 2002;26:532535.
114.Vestergaard, P., Mosekilde, L.. Cohort study on effects of parathyroid surgery on multiple outcomes in primary hyperparathyroidism. Br Med J 2003;327:530534.
115.Vestergaard, P., Mollerup, C.L., Frokjaer, V.G., et al. Cardiovascular events before and after surgery for primary hyperparathyroidism. World J Surg 2003;27:216222.
116.Bilezikian, J.P., Khan, A.A., Potts, J.T. Jr. Guidelines for the management of asymptomatic primary hyperparathyroidism: summary statement from the third international workshop. J Clin Endocrinol Metab 2009;94:335339.
117.Cupisti, K., Raffel, A., Dotzenrath, C., et al. Primary hyperparathyroidism in the young age group: particularities of diagnostic and therapeutic schemes. World J Surg 2004;28:11531156.
118.Nakajima, K., Tamai, M., Okaniwa, S., et al. Humoral hypercalcemia associated with gastric carcinoma secreting parathyroid hormone: a case report and review of the literature. Endocr J 2013;60:557562.
119.Mizobuchi, M., Towler, D., Slatopolsky, E.. Vascular calcification:the killer of patients with chronic kidney disease. J Am Soc Nephrol 2009;20:14531464.
120.Moe, S., Drüeke, T., Cunningham, J., et al. Kidney Disease: Improving Global Outcomes (KDIGO). Definition, evaluation, and classification of renal osteodystrophy:a position statement from Kidney Disease: Improving Global Outcomes (KDIGO). Kidney Int 2006;69:19451953.
121.Shore, R.M., Chesney, R.W.. Rickets: part I. Pediatr Radiol 2013;43:140151.
122.Shore, R.M., Chesney, R.W.. Rickets: part II. Pediatr Radiol 2013;43:152172.
123.Greene-Finestone, L.S., Berger, C., de Groh, M., et al. 25-Hydroxyvitamin D in Canadian adults: biological, environmental, and behavioral correlates. Osteoporos Int 2011;22:13891399.
124.Berger, C., Greene-Finestone, L.S., Langsetmo, L., et al. Temporal trends and determinants of longitudinal change in 25-hydroxyvitamin D and parathyroid hormone levels. J Bone Miner Res 2012;27:13811389.
125.Prentice, A.. Nutritional rickets around the world. J Steroid Biochem Mol Biol 2013;136:201206.
126.Hahn, T.J., Halstead, L.R.. Anticonvulsant drug-induced osteomalacia: alterations in mineral metabolism and response to vitamin D3 administration Calcif Tissue.Int 1979;27:1318.
127.Drezner, M.K.. Treatment of anticonvulsant drug-induced bone disease. Epilepsy Behav 2004;5(suppl 2):S41S47.
128.Glorieux, F.H., Edouard, T., St-Arnaud, R.. Pseudo-vitamin D deficiency. In Feldman, D, ed. Vitamin D, 3rd edn. London: Elsevier, 2011:11871195.
129.Liberman, U.A., Marx, S.J.. Vitamin D-dependent rickets. In Favus, MJ, ed. Primer on the Metabolic Bone Diseases and Disorders of Mineral Metabolism, 5th edn. Washington, DC: American Society for Bone and Mineral Research, 2003:407413.
130.Marx, S.J., Bliziotes, M.M., Nanes, M.. Analysis of the relation between alopecia and resistance to 1,25-dihydroxyvitamin D. Clin Endocrinol (Oxf) 1986;25:373381.
131.Thacher, D., Fischer, P.R., Strand, M.A., Pettifor, J.M. Nutritional rickets around the world: causes and future directions Ann Trop Paediatr 2006;26:116.
132.Bai, X., Miao, D., Goltzman, D., Karaplis, A.C.. Early lethality in Hyp mice with targeted deletion of Pth gene. Endocrinology 2007;148:49744983.
133.Lorenz-Depiereux, B., Schnabel, D., Tiosano, D., et al. Loss-of-function ENPP1 mutations cause both generalized arterial calcification of infancy and autosomal-recessive hypophosphatemic rickets. Am J Hum Genet 2010;86:267272.
134.Shimada, T., Mizutani, S., Muto, T., et al. Cloning and characterization of FGF23 as a causative factor of tumor-induced osteomalacia. Proc Natl Acad. Sci USA 2001;98:65006505.
135.Weidner, N., Cruz, D. Santa. Phosphaturic mesenchymal tumors. A polymorphous group causing osteomalacia or rickets. Cancer 1987;59:144154.
136.Konishi, K., Nakamura, M., Yamakawa, H., et al. Hypophosphatemic osteomalacia in von Recklinghausen neurofibromatosis. Am J Med Sci 1991;301:322328.
137.White, K.E.. Autosomal dominant hypophosphataemic rickets is associated with mutations in FGF23. Nat Genet 2000;26:345348.
138.Izzedine, H., Launay-Vacher, V., Isnard-Bagnis, C., Deray, G.. Drug-induced Fanconi’s syndrome. Am J Kidney Dis 2003;41:292309.
139.Fraser, W.D.. Hyperparathyroidism. Lancet 2009;374:145158.
140.Gavalas, N.G., Kemp, E.H., Krohn, K.J.E., et al. The calcium-sensing receptor is a target of autoantibodies in patients with autoimmune polyendocrine syndrome type 1. J Clin Endocrinol Metab 2007;92:21072114.
141.Ahonen, P., Myllarniemi, S., Sipila, I., Perheentupa, J.. Clinical variation of autoimmune polyendocrinopathy-candidiadis-ectodermal dystrophy (APECED) in a series of 68 patients. N Engl J Med 1990;322:18291836.
142.Eisenbarth, G.S., Gottlieb, P.A.. Autoimmune polyendocrine syndromes. N Engl J Med 2004;350:20682079.
143.de Sèze, S., Solnica, J., Mitrovic, D., et al. Joint and bone disorders and hypoparathyroidism in hemochromatosis. Semin Arthritis Rheum 1972;2:7194.
144.Toumba, M., Sergis, A., Kanaris, C., et al. Endocrine complications in patients with thalassemia major. Pediatr Endocrinol Rev 2007;5:642648.
145.Carpenter, T.O., Carnes, D.L. Jr., Anast, C.S.. Hypoparathyroidism in Wilson’s disease. N Engl J Med 1983;309:873877.
146.Badell, A., Servitje, O., Graells, J., et al. Hypoparathyroidism and sarcoidosis. Br J Dermatol 1998;138:915917.
147.Winer, K.K., Zhang, B., Shrader, J.A., et al. Synthetic human parathyroid hormone 1–34 replacement therapy: a randomized crossover trial comparing pump versus injections in the treatment of chronic hypoparathyroidism. J Clin Endocrinol Metab 2012;97:391399.
148.Miao, D., He, B., Lanske, B., et al. Skeletal abnormalities in Pth-null mice are influenced by dietary calcium. Endocrinology 2004;145:20462053.
149.Miao, D., Li, J., Xue, Y., et al. Parathyroid hormone-related peptide is required for increased trabecular bone volume in parathyroid hormone-null mice. Endocrinology 2004;145:35543562.
150.Cohen, A., Dempster, D.W., Muller, R. R, et al. Assessment of trabecular and cortical architecture and mechanical competence of bone by high-resolution peripheral computed tomography: comparison with transiliac bone biopsy. Osteoporos Int 2010;21:263273.
151.Duan, Y., De Luca, V., Seeman, E.. Parathyroid hormone deficiency and excess; similar effects on trabecular bone but differing effects on cortical bones. J Clin Endocr Metab 1999;84:718722.
152.Mendonça, M.L., Pereira, F.A., Nogueira-Barbosa, M.H., et al. Increased vertebral morphometric fracture in patients with postsurgical hypoparathyroidism despite normal bone mineral density. BMC Endocr Disord 2013;13:1.
153.Pollak, M.R., Brown, E.M., Estep, H.L., et al. Autosomal dominant hypocalcemia caused by a calcium-sensing receptor gene mutation. Nat Genet 1994;8:303307.
154.Chase, R.L., Melson, G.L., Aurbach, G.D.. Pseudohypoparathyroidism: defective excretion of 3′,5′-AMP in response to parathyroid hormone. J Clin Invest 1969;48:18321844.
155.Weinstein, L.S., ShuHua, Y., Warner, D.R., et al. Endocrine manifestations of stimulatory G protein alpha-subunit mutations and the role of genomic imprinting. Endocr Rev 2001;22:675705.
156.Mantovani, G., de Sanctis, L., Barbieri, A.M., et al. Pseudohypoparathyroidism and GNAS epigenetic defects: clinical evaluation of Albright hereditary osteodystrophy and molecular analysis in 40 patients. J Clin Endocrinol Metab 2010;95:651658.
157.Drezner, M., Neelon, F.A., Lebovitz, H.E.. Pseudohypoparathyroidism type II: a possible defect in the reception of the cyclic AMP signal. N Engl J Med 1973;289:1056.
158.Karaplis, A.C., He, B., Nguyen, M.T., et al. Inactivating mutation in the human parathyroid hormone receptor type I gene in Blomstrand’s chondrodysplasia. Endocrinology 1998;139:52555258.
159.Duchatelet, S., Ostergaard, E., Cortes, D., et al. Recessive mutations in PTHR1 cause contrasting skeletal dysplasias in Eiken and Blomstrand syndromes. Hum Mol Genet 2005;14:15.
160.Couvineau, A., Wouters, V., Bertrand, G., et al. PTHR1 mutations associated with Ollier disease result in receptor loss of function Hum Mol Genet 2008;17:27662775.
161.Silve, C., Jüppner, H.. Ollier disease Orphanet J Rare Dis 2006;1:37.
162.Kanis, J.A., Johnell, O., Oden, A., et al. Ten year probabilities of osteoporotic fractures according to BMD and diagnostic thresholds. Osteoporos Int 2001;12:989995.
163.Seeman, E., Bianchi, G., Khosla, S., et al. Bone fragility in men: where are we? Osteoporos Int 2006;17:15771583.
164.Berger, C., Langsetmo, L., Joseph, L., et al. Change in bone mineral density as a function of age in women and men and association with the use of antiresorptive agents. CMAJ 2008;178:16601668.
165.Srivastava, S., Toraldo, G., Weitzmann, M.N., et al. Estrogen decreases osteoclast formation by down-regulating receptor activator of NF-kappa B ligand (RANKL)-induced JNK activation. J Biol Chem 2001;276:88368840.
166.Robinson, L.J., Yaroslavskiy, B.B., Griswold, R.D., et al. Estrogen inhibits RANKL-stimulated osteoclastic differentiation of human monocytes through estrogen and RANKL-regulated interaction of estrogen receptor-α with BCAR1 and Traf6. Exp Cell Res 2009;315:12871301.
167.Eghbali-Fatourechi, G., Khosla, S., Sanyal, A., et al. Role of RANK ligand in mediating increased bone resorption in early postmenopausal women. J Clin Invest 2003;111:12211230.
168.Hofbauer, L.C., Khosla, S., Dunstan, C.R., et al. Estrogen stimulates gene expression and protein production of osteoprotegerin in human osteoblastic cells. Endocrinology 1999;140:43674370.
169.Manolagas, S.C., Jilka, R.L.. Mechanisms of disease: bone marrow, cytokines, and bone remodeling: emerging insights into the pathophysiology of osteoporosis. N Engl J Med 1995;332:305311.
170.Tanaka, S., Takahashi, N., Udagawa, N., et al. Macrophage colony-stimulating factor is indispensable for both proliferation and differentiation of osteoclast progenitors. J Clin Invest 1993;91:257263.
171.Kimble, R.B., Vannice, J.L., Bloedow, D.C., et al. Interleukin-1 receptor antagonist decreases bone loss and bone resorption in ovariectomized rats. J Clin Invest 1994;93:19591967.
172.Ammann, P., Rizzoli, R., Bonjour, J.P., et al. Transgenic mice expressing soluble tumor necrosis factor-receptor are protected against bone loss caused by estrogen deficiency. J Clin Invest 1997;99:16991703.
173.Kimble, R.B., Srivastava, S., Ross, F.P., et al. Estrogen deficiency increases the ability of stromal cells to support murine osteoclastogenesis via an interleukin-1- and tumor necrosis factor-mediated stimulation of macrophage colony-stimulating factor production. J Biol Chem 1996;271:2889028897.
174.Kousteni, S., Bellido, T., Plotkini, L.I., et al. Nongenotropic, sex-nonspecific signaling through the estrogen or androgen receptors: dissociation from transcriptional activity. Cell 2001;104:719730.
175.Manolagas, S.C., O’Brien, C.A., Almeida, M. The role of estrogen and androgen receptors in bone health and disease. Nat Rev Endocrinol 2013;9:699712.
176.Di Gregorio, G.B., Yamamoto, M., Ali, A.A., et al. Attenuation of the self-renewal of transit-amplifying osteoblast progenitors in the murine bone marrow by 17β-estradiol J Clin Invest 2001;107:803812.
177.Jilka, R.L., Takahashi, K., Munshi, M., et al. Loss of estrogen upregulates osteoblastogenesis in the murine bone marrow evidence for autonomy from factors released during bone resorption. J Clin Invest 1998;101:19421950.
178.Kousteni, S., Han, L., Chen, J.R., et al. Kinase-mediated regulation of common transcription factors accounts for the bone-protective effects of sex steroids. J Clin Invest 2003;111:16511664.
179.Kim, B.J., Bae, S.J., Lee, S.Y., et al. TNF-αmediates the stimulation of sclerostin expression in an estrogen-deficient condition. Biochem Biophys Res Commun 2012;424:170175.
180.Tyagi, A.M., Srivastava, K., Mansoori, M.N., et al. Estrogen deficiency induces the differentiation of IL-17 secreting Th17 cells: a new candidate in the pathogenesis of osteoporosis. PLOS ONE 2012;7:e44552.
181.Roussouw, J.E., Anderson, G.L., Prentice, R.L., et al. Risks and benefits of estrogen plus progestin in healthy postmenopausal women: principal results from the Women’s Health Initiative randomized controlled trial. JAMA 2002;288:321333.
182.Stevenson, J.C., Panay, N., Pexman-Fieth, C.. Oral estradiol and dydrogesterone combination therapy in postmenopausal women: review of efficacy and safety, Maturitas 2013;76:1021.
183.Kanis, J.A., Oden, A., Johnell, O., et al. The use of clinical risk factors enhances the performance of BMD in the prediction of hip and osteoporotic fractures in men and women. Osteoporos Int 2007;18:10331046.
184.Kanis, J.A., Oden, A., Johansson, H., et al. FRAX and its applications to clinical practice. Bone 2009;44:734743.
185.Finkelstein, J.S., Klibanski, A., Neer, R.M., et al. Osteoporosis in men with idiopathic hypogonadotropic hypogonadism. Ann Intern. Med 1987;106:354361.
186.Marcus, R., Leary, D., Schneider, D.L., et al. The contribution of testosterone to skeletal development and maintenance: lessons from the androgen insensitivity syndrome. J Clin Endocrinol Metab 2000;85:10321037.
187.Rochira, V., Balestrieri, A., Madeo, B., et al. Osteoporosis and male age related hypogonadism: role of sex steroids on bone (patho)physiology. Eur J Endocr 2006;154:175185.
188.Carani, C., Qin, K., Simoni, M., et al. Effect of testosterone and estradiol in a man with aromatase deficiency. N Engl J Med 1997;337:9195.
189.Bilezikian, J.P., Morishima, A., Bell, J., et al. Increased bone mass as a result of estrogen therapy in a man with aromatase deficiency. N Engl J Med 1998;339:599603.
190.Rochira, V., Faustini-Fustini, M., Balestrieri, A., Carani, C.. Estrogen replacement therapy in a man with congenital aromatase deficiency: effects of different doses of transdermal estradiol on bone mineral density and hormonal parameters. J Clin Endocrinol Metab 2000;85:18411845.
191.Herrmann, B.L., Saller, B., Janssen, O.E., et al. Impact of estrogen replacement therapy in a male with congenital aromatase deficiency caused by a novel mutation in the CYP19 gene. J Clin Endocrinol Metab 2002;87:54765484.
192.Maffei, L., Murata, Y., Rochira, V., et al. Dysmetabolic syndrome in a man with a novel mutation of the aromatase gene: effects of testosterone, alendronate, and estradiol treatment. J Clin Endocrinol Metab 2004;89:6170.
193.Bouillon, R., Bex, M., Vanderschueren, D., Boonen, S.. Estrogens are essential for male pubertal periosteal bone expansion. J Clin Endocrinol Metab 2004;89:60256029.
194.Falahati-Nini, A., Riggs, B.L., Atkinson, E.J., et al. Relative contributions of testosterone and estrogen in regulating bone resorption and formation in normal elderly men. J Clin Invest 2000;106:15531560.
195.Vandenput, L., Ohlsson, C.. Estrogens as regulators of bone health in men. Nat Rev Endocrinol 2009;5:437443.
196.Mosekilde, L., Vestergaard, P., Rejnmark, L.. The pathogenesis, treatment and prevention of osteoporosis in men. Drugs 2013;73:1529.
197.Angeli, A., Guglielmi, G., Dovio, A., et al. High prevalence of asymptomatic vertebral fractures in post-menopausal women receiving chronic glucocorticoid therapy: a cross-sectional outpatient study. Bone 2006;39:253259.
198.Jia, D., O’Brien, C.A., Stewart, S.A., et al. Glucocorticoids act directly on osteoclasts to increase their life span and reduce bone density. Endocrinology 2006;147:55925599.
199.Weinstein, R.S., Jilka, R.L., Parfitt, A.M., Manolagas, S.C.. Inhibition of osteoblastogenesis and promotion of apoptosis of osteoblasts and osteocytes by glucocorticoids: potential mechanisms of their deleterious effects on bone. J Clin Invest 1998;102:274282.
200.Seeman, E., Delmas, P.D.. Bone quality: the material and structural basis of bone strength and fragility. N Engl J Med 2006;354:22502261.
201.Mazziotti, C.A.G., Angeli, A., Bilezikian, J.P., et al. Glucocorticoid-induced osteoporosis: an update, Trends Endocrinol Metab 2006;17:144149.
202.O’Brien, C.A., Jia, D., Plotkin, L.I., et al. Glucocorticoids act directly on osteoblasts and osteocytes to induce their apoptosis and reduce bone formation and strength. Endocrinology 2004;145:18351841.
203.Van Staa, T.P., Laan, R.F., Barton, I.P., et al. Bone density threshold and other predictors of vertebral fracture in patients receiving oral glucocorticoid therapy. Arthritis Rheum 2003;48:32243229.
204.van Staa, T.P.. The pathogenesis, epidemiology and management of glucocorticoid induced osteoporosis. Calcif Tissue Int 2006;79:129137.
205.Cooper, M.S. Sensitivity of bone to glucocorticoids Clin Sci 2004;107:111123.
206.Blalock, S.J., Norton, L.L., Patel, R.A., Dooley, M.A.. Patient knowledge, beliefs, and behavior concerning the prevention and treatment of glucocorticoid-induced osteoporosis Arthritis Rheum 2005;53:732739.
207.Steinbuch, M., Youket, T.E., Cohen, S.. Oral glucocorticoid use is associated with an increased risk of fracture. Osteoporos Int 2004;15:323328.
208.Kanis, J.A., Johansson, H., Oden, A., et al. A meta-analysis of prior corticosteroid use and fracture risk. J Bone Miner Res 2004;19:893899.
209.Buehring, B., Viswanathan, R., Binkley, N., Busse, W.. Glucocorticoid-induced osteoporosis: an update on effects and management. J Allergy Clin Immunol 2013;132:10191030.
210.Vestergaard, P., Mosekild, L.. Hyperthyroidism, bone mineral, fracture risk-a meta-analysis. Thyroid, 2003;13:585593.
211.Bassett, J.H.D., Williams, G.R.. The molecular actions of thyroid hormone in bone. Trends Endocrinol Metab 2003;14:356364.
212.Bianco, A.C., Salvatore, D., Gereben, B., et al. Biochemistry, cellular and molecular biology, and physiological roles of the iodothyronine selenodeiodinases, Endocrine Rev 2002;23:3889.
213.Wexler, J.A., Sharretts, J., Thyroid and bone. Endocrinol Metab Clin 2007;36:673705.
214.O’Shea, P.J., Harvey, C.B., Suzuki, H., et al. A thyrotoxic skeletal phenotype of advanced bone formation in mice with resistance to thyroid hormone. Mol Endocrinol 2003;17:14101424.
215.O’Shea, P.J., Bassett, J.H.D., Sriskantharajah, S., et al. Contrasting skeletal phenotypes in mice with an identical mutation targeted to thyroid hormone receptor α1 or β. Mol Endocrinol 2005;19:30453059.
216.Bassett, J.H.D., Williams, G.R.. The skeletal phenotypes of TRα and TBβ mutant mice. J Mol Endocrinol 2009;42:269282.
217.Bassett, J.H.D., Nordstrom, K., Boyde, A., et al. Thyroid status during skeletal development determines adult bone structure and mineralization. Mol Endocrinol 2007;21:18931904.
218.Grimnes, G., Emaus, N., Joakimsen, R.M., et al. The relationship between serum TSH and bone mineral density inmen and postmenopausalwomen: the Tromsø study. Thyroid 2008;vol. 18:11471155.
219.Abe, E., Marians, R.C., Yu, W., et al. TSH is a negative regulator of skeletal remodeling. Cell 2003 115:151162.
220.Davies, T., Marians, R., Latif, R., The TSH receptor reveals itself. J Clin Invest 2002;110:161164.
221.Sun, L., Davies, T.F., Blair, H.C., et al. TSH and bone loss. Ann N Y Acad Sci 2006;1068:309318.
222.Morimura, T., Tsunekawa, K., Kasahara, T., et al. Expression of type 2 iodothyronine deiodinase in human osteoblast is stimulated by thyrotropin. Endocrinolog, 2005; 146:20772084.
223.Mosekilde, L., Eriksen, E.F., Charles, P.. Effects of thyroid hormones on bone and mineral metabolism. Endocrinol Metab Clin North Am 1990;19:3563.
224.Greenspan, S.L., Greenspan, F.S.. The effect of thyroid hormone on skeletal integrity. Ann Intern Med 1999;130:750758.
225.Allain, T.J., McGregor, A.M.. Thyroid hormones and bone. J Endocrinol 1993;139:918.
226.Langdahl, B.L., Loft, A.G.R., Eriksen, E.F., et al. Bone mass, bone turnover and body composition in former hypothyroid patients receiving replacement therapy. Eur J Endocrinol, 1996; 134:702709.
227.Karga, H., Papapetrou, P.D., Korakovouni, A., et al. Bone mineral density in hyperthyroidism. Clin Endocrinol, 2004;61:466472