Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-hfldf Total loading time: 0 Render date: 2024-05-29T01:34:31.766Z Has data issue: false hasContentIssue false

Chapter 16 - Adrenal medulla and extra-adrenal paraganglia

from Section III - Anatomical endocrine pathology

Published online by Cambridge University Press:  13 April 2017

Ozgur Mete
Affiliation:
University of Toronto
Sylvia L. Asa
Affiliation:
University of Toronto
Get access
Type
Chapter
Information
Endocrine Pathology , pp. 628 - 676
Publisher: Cambridge University Press
Print publication year: 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Crowder, R.. The development of the adrenal gland in man, with special reference to origin and ultimate location of cell types and evidence in favour of the “cell migration” theory. Contrib Embryol 1957;36:242251.Google Scholar
Cooper, M.J., Hutchins, G.M., Israel, M.A.. Histogenesis of the human adrenal medulla. An evaluation of the ontogeny of chromaffin and nonchromaffin lineages. Am J Pathol 1990;137:605615.Google Scholar
Magro, G., Grasso, S.. Immunohistochemical identification and comparison of glial cell lineage in foetal, neonatal, adult and neoplastic human adrenal medulla. Histochem J 1997;29:293299.Google Scholar
Mills, S.E.. Histology for Pathologists, 3rd edn. Philadelphia PA: Lippincott Williams & Wilkins, 2007.Google Scholar
Coupland, R.. The Natural History of the Chromaffin Cell. London: Longmans Green, 1965.Google Scholar
Zuckerkandl, E.. The development of the chromaffin organs and of the suprarenal glands. In Keibel, F, Mall, FP, eds. Manual of Human Embryology. Philadelphia, PA: JB Lippincott, 1912:157159.Google Scholar
Anderson, D.J.. Cellular “neoteny”: a possible developmental basis for chromaffin cell plasticity. Trends Genet 1989;5:174178.CrossRefGoogle ScholarPubMed
Renard, J., Clerici, T., Licker, M., et al. Pheochromocytoma and abdominal paraganglioma. J Visc Surg 2011;148:e409416.CrossRefGoogle ScholarPubMed
Lack, E.E.. Atlas of Tumor Pathology, 4th Series, Fascicle 8: Tumors of the Adrenal Glands and Extraadrenal Paraganglia.Bethesda, MD: ARP Press, 2007.CrossRefGoogle Scholar
Hervonen, A., Vaalasti, A., Partanen, M., et al. Effects of ageing on the histochemically demonstrable catecholamines and acetylcholinesterase of human sympathetic ganglia. J Neurocytol 1978;7:1123.CrossRefGoogle ScholarPubMed
Hervonen, A., Partanen, S., Vaalasti, A., et al. The distribution and endocrine nature of the abdominal paraganglia of adult man. Am J Anat 1978;153:563572.CrossRefGoogle ScholarPubMed
Baljet, B., Boekelaar, A.B., Groen, G.J.. Retroperitoneal paraganglia and the peripheral autonomic nervous system in the human fetus. Acta Morphol Neerl Scand 1985;23:137149.Google ScholarPubMed
Guild, S.R.. The glomus jugulare, a nonchromaffin paraganglion, in man. Ann Otol Rhinol Laryngol 1953;62:10451071.CrossRefGoogle ScholarPubMed
Zak, F.G., Lawson, F.Z.W. The Paraganglionic Chemoreceptor System: Physiology, Pathology and Clinical Medicine. New York: Springer-Verlag, 1982.Google Scholar
Subramanian, A., Maker, V.K.. Organs of Zuckerkandl: their surgical significance and a review of a century of literature. Am J Surg 2006;192:224234.CrossRefGoogle Scholar
Tanaka, T., Yoshimi, N., Iwata, H., et al. Fine-needle aspiration cytology of pheochromocytoma–ganglioneuroma of the organ of Zuckerkandl. Diagn Cytopathol 1989;5:6468.CrossRefGoogle ScholarPubMed
Kreiner, E.. Weight and shape of the human adrenal medulla in various age groups. Virchows Arch A Pathol Anat Histopathol 1982;397:715.Google Scholar
Schinner, S., Bornstein, S.R.. Cortical-chromaffin cell interactions in the adrenal gland. Endocr Pathol 2005;16:9198.CrossRefGoogle ScholarPubMed
Colombo-Benkmann, M., Klimaschewski, L., Heym, C.. Immunohistochemical heterogeneity of nerve cells in the human adrenal gland with special reference to substance P. J Histochem Cytochem 1996;44:369375.Google Scholar
Lack, E.E.. Pathology of Adrenal and Extra-adrenal Paraganglia. Philadelphia PA: WB Saunders, 1994:232245.Google Scholar
Nakajima, T., Watanabe, S., Sato, Y., et al. An immunoperoxidase study of S-100 protein distribution in normal and neoplastic tissues. Am J Surg Pathol 1982;6:715727.CrossRefGoogle ScholarPubMed
Kohn, A.. Die chromaffinen Zellen des sympathicus. Anat Anz 1898;15:399400.Google Scholar
Pick, L.. Das Ganglioma embryonale sympathicum (Sympathoma embryonale), eine typische bösartige geschwuestform des sympathischen nervensystems. Berl Klin Wochenschr 1912;49:1622.Google Scholar
Tannenbaum, M.. Ultrastructural pathology of adrenal medullary tumors. Pathol Annu 1970;5:145171.Google ScholarPubMed
Coupland, R.E., Hopwood, D.. The mechanism of the differential staining reaction for adrenaline- and noreadrenaline-storing granules in tissues fixed in glutaraldehyde. J Anat 1966;100:227243.Google Scholar
Lundberg, J.M., Hamberger, B., Schultzberg, M., et al. Enkephalin- and somatostatin-like immunoreactivities in human adrenal medulla and pheochromocytoma. Proc Natl Acad Sci USA 1979;76:40794083.Google Scholar
Hervonen, A.. Development of catecholamine-storing cells in human fetal paraganglia and adrenal medulla. A histochemical and electron microscopical study. Acta Physiol Scand Suppl 1971;368:194.Google Scholar
Verna, A.. Ultrastructure of the carotid body in the mammals. Int Rev Cytol 1979;60:271330.Google Scholar
Unsicker, K., Huber, K., Schober, A., et al. Resolved and open issues in chromaffin cell development. Mech Dev 2013;130:324329.Google Scholar
Moriguchi, T., Takako, N., Hamada, M., et al. Gata3 participates in a complex transcriptional feedback network to regulate sympathoadrenal differentiation. Development 2006;133:38713881.Google Scholar
Pachnis, V., Mankoo, B., Costantini, F.. Expression of the c-ret proto-oncogene during mouse embryogenesis. Development 1993;119:10051017.Google Scholar
Allmendinger, A., Stoeckel, E., Saarma, M., et al. Development of adrenal chromaffin cells is largely normal in mice lacking the receptor tyrosine kinase c-Ret. Mech Dev 2003;120:299304.Google Scholar
Powers, J.F., Brachold, J.M., Tischler, A.S.. Ret protein expression in adrenal medullary hyperplasia and pheochromocytoma. Endocr Pathol 2003;14:351361.Google Scholar
Tischler, A.S., DeLellis, R.A., Biales, B., et al. Nerve growth factor-induced neurite outgrowth from normal human chromaffin cells. Lab Invest 1980;43:399409.Google Scholar
Tischler, A.S., Lee, Y.C., Perlman, R.L., et al. Production of “ectopic” vasoactive intestinal peptide-like immunoreactivity in normal human chromaffin cell cultures. Life Sci 1985;37:18811886.Google Scholar
Powers, J.F., Picard, K.L., Tischler, A.S.. RET expression and neuron-like differentiation of pheochromocytoma and normal chromaffin cells. Horm Metab Res 2009;41:710714.Google Scholar
Tischler, A.S., DeLellis, R.A., Slayton, V.W., et al. Enkephalin-like immunoreactivity in human adrenal medullary cultures. Lab Invest 1983;48:1318.Google Scholar
Chung, K.F., Sicard, F., Vukicevic, V., et al. Isolation of neural crest derived chromaffin progenitors from adult adrenal medulla. Stem Cells 2009;27:26022613.Google Scholar
Santana, M.M., Chung, K.F., Vukicevic, V., et al. Isolation, characterization, and differentiation of progenitor cells from human adult adrenal medulla. Stem Cells Transl Med 2012;1:783791.Google Scholar
Tian, H., Hammer, R.E., Matsumoto, A.M., et al. The hypoxia-responsive transcription factor EPAS1 is essential for catecholamine homeostasis and protection against heart failure during embryonic development. Genes Dev 1998;12:33203324.Google Scholar
Steele, R.H., Hinterberger, H.. Catecholamines and 5-hydroxytryptamine in the carotid body in vascular, respiratory, and other diseases. J Lab Clin Med 1972;80:6370.Google ScholarPubMed
Dixon, J.S., Jen, P.Y., Gosling, J.A.. Immunohistochemical characteristics of human paraganglion cells and sensory corpuscles associated with the urinary bladder. A developmental study in the male fetus, neonate and infant. J Anat 1998;192:407415.Google Scholar
Tischler, A.S., Semple, J.. Adrenal medullary nodules in Beckwith–Wiedemann syndrome resemble extra-adrenal paraganglia. Endocr Pathol 1996;7:265272.Google Scholar
Smith-Hicks, C.L., Sizer, K.C., Powers, J.F., et al. C-cell hyperplasia, pheochromocytoma and sympathoadrenal malformation in a mouse model of multiple endocrine neoplasia type 2B. EMBO J 2000;19:612622.CrossRefGoogle Scholar
Nosé, V., Asa, S.L., Erickson, L.A., et al. Diagnostic Pathology: Endocrine. New York: Lippincott Williams & Wilkins (Amirsys), 2012.Google Scholar
Grogan, R.H., Pacak, K., Pasche, L., et al. Bilateral adrenal medullary hyperplasia associated with an SDHB mutation. J Clin Oncol 2011;29:e200e202.CrossRefGoogle ScholarPubMed
Rudy, F.R., Bates, R.D., Cimorelli, A.J., et al. Adrenal medullary hyperplasia: a clinicopathologic study of four cases. Hum Pathol 1980;11:650657.Google Scholar
Arias-Stella, J., Valcarcel, J.. The human carotid body at high altitudes. Pathol Microbiol (Basel) 1973;39:292297.Google ScholarPubMed
Heath, D., Smith, P., Jago, R.. Hyperplasia of the carotid body. J Pathol 1982;138:115127.Google Scholar
Lack, E.E.. Carotid body hypertrophy in patients with cystic fibrosis and cyanotic congenital heart disease. Hum Pathol 1977;8:3951.Google Scholar
Qupty, G., Ishay, A., Peretz, H., et al. Pheochromocytoma due to unilateral adrenal medullary hyperplasia. Clin Endocrinol (Oxf) 1997;47:613617.Google Scholar
Jansson, S., Khorram-Manesh, A., Nilsson, O., et al. Treatment of bilateral pheochromocytoma and adrenal medullary hyperplasia. Ann N Y Acad Sci 2006;1073:429435.Google Scholar
Fitch, R., Smith, P., Heath, D.. Nerve axons in carotid body hyperplasia. A quantitative study. Arch Pathol Lab Med 1985;109:234237.Google Scholar
DeLellis, R.A., Philipp, U., Heitz, P., Eng, C., eds. World Health Organization Classification of Tumours: Pathology and Genetics of Tumours of Endocrine Organs. Lyon: International Agency for Research on Cancer, 2004.Google Scholar
Harding, J.L., Yeh, M.W., Robinson, B.G., et al. Potential pitfalls in the diagnosis of phaeochromocytoma. Med J Aust 2005;182:637640.Google Scholar
Beltsevich, D.G., Kuznetsov, N.S., Kazaryan, A.M., et al. Pheochromocytoma surgery: epidemiologic peculiarities in children. World J Surg 2004;28:592596.Google Scholar
Waguespack, S.G., Rich, T., Grubbs, E., et al. A current review of the etiology, diagnosis, and treatment of pediatric pheochromocytoma and paraganglioma. J Clin Endocrinol Metab 2010;95:20232037.Google Scholar
Neumann, H.P., Bausch, B., McWhinney, S.R., et al. Germ-line mutations in nonsyndromic pheochromocytoma. N Engl J Med 2002;346:14591466.Google Scholar
Kaltsas, G.A., Papadogias, D., Grossman, A.B.. The clinical presentation (symptoms and signs) of sporadic and familial chromaffin cell tumours (phaeochromocytomas and paragangliomas). Front Horm Res 2004;31:6175.Google Scholar
Thompson, L.D.. Foundations in Diagnostic Pathology: Endocrine Pathology. Philadelphia, PA: Elsevier, 2006.Google Scholar
Manger, W.M.. The protean manifestations of pheochromocytoma. Horm Metab Res 2009;41:658663.Google Scholar
Bravo, E.L.. Pheochromocytoma: new concepts and future trends. Kidney Int 1991;40:544556.Google Scholar
Eisenhofer, G., Tischler, A.S., de Krijger, R.R.. Diagnostic tests and biomarkers for pheochromocytoma and extra-adrenal paraganglioma: from routine laboratory methods to disease stratification. Endocr Pathol 2012;23:414.Google Scholar
Ballav, C., Naziat, A., Mihai, R., et al. Mini-review: pheochromocytomas causing the ectopic ACTH syndrome. Endocrine 2012;42:6973.Google Scholar
Yi, D.W., Kim, S.Y., Shin, D.H., et al. Pheochromocytoma crisis after a dexamethasone suppression test for adrenal incidentaloma. Endocrine 2010;37:213219.Google Scholar
Jalil, N.D., Pattou, F.N., Combemale, F., et al. Effectiveness and limits of preoperative imaging studies for the localisation of pheochromocytomas and paragangliomas: a review of 282 cases. French Association of Surgery (AFC), and The French Association of Endocrine Surgeons (AFCE). Eur J Surg 1998;164:2328.Google Scholar
Lumachi, F., Tregnaghi, A., Zucchetta, P., et al. Sensitivity and positive predictive value of CT, MRI and 123I-MIBG scintigraphy in localizing pheochromocytomas: a prospective study. Nucl Med Commun 2006;27:583587.Google Scholar
Sahdev, A., Sohaib, A., Monson, J.P., et al. CT and MR imaging of unusual locations of extra-adrenal paragangliomas (pheochromocytomas). Eur Radiol 2005;15:8592.Google Scholar
Welch, T.J., Sheedy, P.F., 2nd, J.A. van Heerden, , et al. Pheochromocytoma: value of computed tomography. Radiology 1983;148:501503.Google Scholar
Baid, S.K., Lai, E.W., Wesley, R.A., et al. Brief communication: radiographic contrast infusion and catecholamine release in patients with pheochromocytoma. Ann Intern Med 2009;150:2732.Google Scholar
Mukherjee, J.J., Peppercorn, P.D., Reznek, R.H., et al. Pheochromocytoma: effect of nonionic contrast medium in CT on circulating catecholamine levels. Radiology 1997;202:227231.Google Scholar
Mannelli, M., Colagrande, S., Valeri, A., et al. Incidental and metastatic adrenal masses. Semin Oncol 2010;37:649661.Google Scholar
Eisenhofer, G., Rivers, G., Rosas, A.L., et al. Adverse drug reactions in patients with phaeochromocytoma: incidence, prevention and management. Drug Saf 2007;30:10311062.Google Scholar
Fiebrich, H.B., Brouwers, A.H., Kerstens, M.N., et al. 6-[F-18]Fluoro-l-dihydroxyphenylalanine positron emission tomography is superior to conventional imaging with (123)I-metaiodobenzylguanidine scintigraphy, computer tomography, and magnetic resonance imaging in localizing tumors causing catecholamine excess. J Clin Endocrinol Metab 2009;94:39223930.Google Scholar
Furuta, N., Kiyota, H., Yoshigoe, F., et al. Diagnosis of pheochromocytoma using [123I]-compared with [131I]-metaiodobenzylguanidine scintigraphy. Int J Urol 1999;6:119124.Google Scholar
Ilias, I., Chen, C.C., Carrasquillo, J.A., et al. Comparison of 6-18F-fluorodopamine PET with 123I-metaiodobenzylguanidine and 111in-pentetreotide scintigraphy in localization of nonmetastatic and metastatic pheochromocytoma. J Nucl Med 2008;49:16131619.Google Scholar
Milardovic, R., Corssmit, E.P., Stokkel, M.. Value of 123I-MIBG scintigraphy in paraganglioma. Neuroendocrinology 2010;91:94100.CrossRefGoogle ScholarPubMed
Timmers, H.J., Chen, C.C., Carrasquillo, J.A., et al. Comparison of 18F-fluorolDOPA, 18F-fluoro-deoxyglucose, and 18F-fluorodopamine PET and 123I-MIBG scintigraphy in the localization of pheochromocytoma and paraganglioma. J Clin Endocrinol Metab 2009;94:47574767.Google Scholar
Timmers, H.J., Taieb, D., Pacak, K.. Current and future anatomical and functional imaging approaches to pheochromocytoma and paraganglioma. Horm Metab Res 2012;44:367372.Google Scholar
Wiseman, G.A., Pacak, K., O’Dorisio, M.S., et al. Usefulness of 123I-MIBG scintigraphy in the evaluation of patients with known or suspected primary or metastatic pheochromocytoma or paraganglioma: results from a prospective multicenter trial. J Nucl Med 2009;50:14481454.Google Scholar
Timmers, H.J., Chen, C.C., Carrasquillo, J.A., et al. Staging and functional characterization of pheochromocytoma and paraganglioma by 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography. J Natl Cancer Inst 2012;104:700708.CrossRefGoogle Scholar
Ilias, I., Yu, J., Carrasquillo, J.A., et al. Superiority of 6-[18F]-fluorodopamine positron emission tomography versus [131I]-metaiodobenzylguanidine scintigraphy in the localization of metastatic pheochromocytoma. J Clin Endocrinol Metab 2003;88:40834087.Google Scholar
Timmers, H.J., Eisenhofer, G., Carrasquillo, J.A., et al. Use of 6-[18F]-fluorodopamine positron emission tomography (PET) as first-line investigation for the diagnosis and localization of non-metastatic and metastatic phaeochromocytoma (PHEO). Clin Endocrinol (Oxf) 2009;71:1117.Google Scholar
Rufini, V., Treglia, G., Castaldi, P., et al. Comparison of 123I-MIBG SPECT-CT and 18F-DOPA PET-CT in the evaluation of patients with known or suspected recurrent paraganglioma. Nucl Med Commun 2011;32:575582.Google Scholar
Taieb, D., Timmers, H.J., Hindie, E., et al. EANM 2012 guidelines for radionuclide imaging of phaeochromocytoma and paraganglioma. Eur J Nucl Med Mol Imaging 2012;39:19771995.Google Scholar
Gimenez-Roqueplo, A.P., Dahia, P.L., Robledo, M.. An update on the genetics of paraganglioma, pheochromocytoma, and associated hereditary syndromes. Horm Metab Res 2012;44:328333.Google Scholar
Lorenzo, F.R., Yang, C., Ng Tang Fui, M., et al. A novel EPAS1/HIF2A germline mutation in a congenital polycythemia with paraganglioma. J Mol Med (Berl) 2013;91:507512.Google Scholar
Zhuang, Z., Yang, C., Lorenzo, F., et al. Somatic HIF2A gain-of-function mutations in paraganglioma with polycythemia. N Engl J Med 2012;367:922930.Google Scholar
Letouze, E., Martinelli, C., Loriot, C., et al. SDH mutations establish a hypermethylator phenotype in paraganglioma. Cancer Cell 2013;23:739752.Google Scholar
Jamilloux, Y., Favier, J., Pertuit, M., et al. A MEN1 syndrome with a paraganglioma. Eur J Hum Genet 2014;22:283285.Google Scholar
Burnichon, N., Buffet, A., Parfait, B., et al. Somatic NF1 inactivation is a frequent event in sporadic pheochromocytoma. Hum Mol Genet 2012;21:53975405.Google Scholar
Crona, J., Delgado Verdugo, A., Maharjan, R., et al. Somatic mutations in HRAS in sporadic pheochromocytoma and paraganglioma identified by exome sequencing. J Clin Endocrinol Metab 2013;98:E1266E1271.Google Scholar
Lee, S., Nakamura, E., Yang, H., et al. Neuronal apoptosis linked to EglN3 prolyl hydroxylase and familial pheochromocytoma genes: developmental culling and cancer. Cancer Cell 2005;8:155167.Google Scholar
Jimenez-Heffernan, J.A., Vicandi, B., Lopez-Ferrer, P., et al. Cytologic features of pheochromocytoma and retroperitoneal paraganglioma: a morphologic and immunohistochemical study of 13 cases. Acta Cytol 2006;50:372378.Google Scholar
Linnoila, R.I., Keiser, H.R., Steinberg, S.M., et al. Histopathology of benign versus malignant sympathoadrenal paragangliomas: clinicopathologic study of 120 cases including unusual histologic features. Hum Pathol 1990;21:11681180.Google Scholar
Strong, V.E., Kennedy, T., Al-Ahmadie, H., et al. Prognostic indicators of malignancy in adrenal pheochromocytomas: clinical, histopathologic, and cell cycle/apoptosis gene expression analysis. Surgery 2008;143:759768.CrossRefGoogle ScholarPubMed
Koch, C.A., Mauro, D., Walther, M.M., et al. Pheochromocytoma in von Hippel–Lindau disease: distinct histopathologic phenotype compared to pheochromocytoma in multiple endocrine neoplasia type 2. Endocr Pathol 2002;13:1727.Google Scholar
Wieneke, J.A., Thompson, L.D., Heffess, C.S.. Corticomedullary mixed tumor of the adrenal gland. Ann Diagn Pathol 2001;5:304308.Google Scholar
Feldman, S.A., Eiden, L.E.. The chromogranins: their roles in secretion from neuroendocrine cells and as markers for neuroendocrine neoplasia. Endocr Pathol 2003;14:323.Google Scholar
Haak, H.R., Fleuren, G.J.. Neuroendocrine differentiation of adrenocortical tumors. Cancer 1995;75:860864.Google Scholar
Lloyd, R.V., Sisson, J.C., Shapiro, B., et al. Immunohistochemical localization of epinephrine, norepinephrine, catecholamine-synthesizing enzymes, and chromogranin in neuroendocrine cells and tumors. Am J Pathol 1986;125:4554.Google Scholar
Lloyd, R.V., Blaivas, M., Wilson, B.S.. Distribution of chromogranin and S100 protein in normal and abnormal adrenal medullary tissues. Arch Pathol Lab Med 1985;109:633635.Google Scholar
Korpershoek, E., Favier, J., Gaal, J., et al. SDHA immunohistochemistry detects germline SDHA gene mutations in apparently sporadic paragangliomas and pheochromocytomas. J Clin Endocrinol Metab 2011;96:E1472-6.Google Scholar
van Nederveen, F.H., Gaal, J., Favier, J., et al. An immunohistochemical procedure to detect patients with paraganglioma and phaeochromocytoma with germline SDHB, SDHC, or SDHD gene mutations: a retrospective and prospective analysis. Lancet Oncol 2009;10:764771.Google Scholar
Papathomas, T.G., Oudijk, L., Persu, A., et al. SDHB/SDHA immunohistochemistry in pheochromocytomas and paragangliomas: a multicenter interobserver variation analysis using virtual microscopy: a Multinational Study of the European Network for the Study of Adrenal Tumors (ENS@T). Mod Pathol 2015;28:807821.Google Scholar
Menara, M., Oudijk, L., Badoual, C., et al. SDHD immunohistochemistry: a new tool to validate SDHx mutations in pheochromocytoma/paraganglioma. J Clin Endocrinol Metab 2015;100:E287E291.Google Scholar
Comino-Mendez, I., Gracia-Aznarez, F.J., Schiavi, F., et al. Exome sequencing identifies MAX mutations as a cause of hereditary pheochromocytoma. Nat Genet 2011;43:663667.Google Scholar
Edstrom, E., Mahlamaki, E., Nord, B., et al. Comparative genomic hybridization reveals frequent losses of chromosomes 1p and 3q in pheochromocytomas and abdominal paragangliomas, suggesting a common genetic etiology. Am J Pathol 2000;156:651659.Google Scholar
de Krijger, R.R., van Nederveen, F.H.. Benign and malignant pheochromocytomas and paragangliomas. In Hunt, J., ed. Molecular Pathology of Endocrine Diseases. New York: Springer, 2010:205212.Google Scholar
Gimenez-Roqueplo, A.P., Tischler, A.S.. Pheochromocytoma and paraganglioma: progress on all fronts. Endocr Pathol 2012;23:13.Google Scholar
Shankavaram, U., Fliedner, S.M., Elkahloun, A.G., et al. Genotype and tumor locus determine expression profile of pseudohypoxic pheochromocytomas and paragangliomas. Neoplasia 2013;15:435447.Google Scholar
Eisenhofer, G., Bornstein, S.R., Brouwers, F.M., et al. Malignant pheochromocytoma: current status and initiatives for future progress. Endocr Relat Cancer 2004;11:423436.Google Scholar
Raue, F., Frank-Raue, K.. Genotype–phenotype correlation in multiple endocrine neoplasia type 2. Clinics (Sao Paulo) 2012;67(suppl 1):6975.Google Scholar
Frank-Raue, K., Rondot, S., Schulze, E., et al. Change in the spectrum of RET mutations diagnosed between 1994 and 2006. Clin Lab 2007;53:273282.Google Scholar
Webb, T.A., Sheps, S.G., Carney, J.A.. Differences between sporadic pheochromocytoma and pheochromocytoma in multiple endocrime neoplasia, type 2. Am J Surg Pathol 1980;4:121126.CrossRefGoogle ScholarPubMed
Welander, J., Söderkvist, P., Gimm, O.. Genetics and clinical characteristics of hereditary pheochromocytomas and paragangliomas. Endocr Relat Cancer 2011;18:R253276.Google Scholar
Leung, K., Stamm, M., Raja, A., et al. Pheochromocytoma: the range of appearances on ultrasound, CT, MRI, and functional imaging. AJR Am J Roentgenol 2013;200:370378.Google Scholar
Lenders, J.W., Eisenhofer, G., Mannelli, M., et al. Phaeochromocytoma. Lancet 2005;366:665675.Google Scholar
Barontini, M., Dahia, P.L.. VHL disease. Best Pract Res Clin Endocrinol Metab 2010;24:401413.Google Scholar
Ricketts, C.J., Shuch, B., Vocke, C.D., et al. Succinate dehydrogenase kidney cancer: an aggressive example of the Warburg effect in cancer. J Urol 2012;188:20632071.Google Scholar
Carney, J.A., Sheps, S.G., Go, V.L., et al. The triad of gastric leiomyosarcoma, functioning extra-adrenal paraganglioma and pulmonary chondroma. N Engl J Med 1977;296:15171518.CrossRefGoogle ScholarPubMed
Carney, J.A.. Gastric stromal sarcoma, pulmonary chondroma, and extra-adrenal paraganglioma (Carney triad): natural history, adrenocortical component, and possible familial occurrence. Mayo Clin Proc 1999;74:543552.Google Scholar
Carney, J.A.. Carney triad: a syndrome featuring paraganglionic, adrenocortical, and possibly other endocrine tumors. J Clin Endocrinol Metab 2009;94: 36563662.Google Scholar
Haller, F., Moskalev, E.A., Faucz, F.R., et al. Aberrant DNA hypermethylation of SDHC: a novel mechanism of tumor development in Carney triad. Endocr Relat Cancer 2014;21:567577.Google Scholar
Carney, J.A., Stratakis, C.A.. Familial paraganglioma and gastric stromal sarcoma: a new syndrome distinct from the Carney triad. Am J Med Genet 2002;108:132139.Google Scholar
Baysal, B.E., Ferrell, R.E., Willett-Brozick, J.E., et al. Mutations in SDHD, a mitochondrial complex II gene, in hereditary paraganglioma. Science 2000;287:848851.Google Scholar
Hensen, E.F., Bayley, J.P.. Recent advances in the genetics of SDH-related paraganglioma and pheochromocytoma. Fam Cancer 2011;10:355363.Google Scholar
Niemann, S., Muller, U.. Mutations in SDHC cause autosomal dominant paraganglioma. Nat Genet 2000;26:141150.Google Scholar
Astuti, D., Latif, F., Dallol, A., et al. Gene mutations in the succinate dehydrogenase subunit SDHB cause susceptibility to familial pheochromocytoma and to familial paraganglioma. Am J Hum Genet 2001;69:4954.Google Scholar
Hao, H.X., Khalimonchuk, O., Schraders, M., et al. SDH5, a gene required for flavination of succinate dehydrogenase, is mutated in paraganglioma. Science 2009;325:11391142.CrossRefGoogle ScholarPubMed
Bayley, J.P., Kunst, H.P., Cascon, A., et al. SDHAF2 mutations in familial and sporadic paraganglioma and phaeochromocytoma. Lancet Oncol 2010;11:366372.Google Scholar
Parfait, B., Chretien, D., Rotig, A., et al. Compound heterozygous mutations in the flavoprotein gene of the respiratory chain complex II in a patient with Leigh syndrome. Hum Genet 2000;106:236243.Google Scholar
Burnichon, N., Briere, J.J., Libe, R., et al. SDHA is a tumor suppressor gene causing paraganglioma. Hum Mol Genet 2010;19:30113020.CrossRefGoogle ScholarPubMed
Dwight, T., Mann, K., Benn, D.E., et al. Familial SDHA mutation associated with pituitary adenoma and pheochromocytoma/paraganglioma. J Clin Endocrinol Metab 2013;98:E1103E1108.Google Scholar
Xekouki, P., Pacak, K., Almeida, M., et al. Succinate dehydrogenase (SDH) D subunit (SDHD) inactivation in a growth-hormone-producing pituitary tumor: a new association for SDH? J Clin Endocrinol Metab 2012;97:E357366.Google Scholar
Lopez-Jimenez, E., de Campos, J.M., Kusak, E.M., et al. SDHC mutation in an elderly patient without familial antecedents. Clin Endocrinol (Oxf) 2008;69:906910.Google Scholar
Qin, Y., Yao, L., King, E.E., et al. Germline mutations in TMEM127 confer susceptibility to pheochromocytoma. Nat Genet 2010;42:229233.Google Scholar
Neumann, H.P., Sullivan, M., Winter, A., et al. Germline mutations of the TMEM127 gene in patients with paraganglioma of head and neck and extraadrenal abdominal sites. J Clin Endocrinol Metab 2011;96:E12791282.Google Scholar
Yao, L., Schiavi, F., Cascon, A., et al. Spectrum and prevalence of FP/TMEM127 gene mutations in pheochromocytomas and paragangliomas. JAMA 2010;304:26112619.CrossRefGoogle ScholarPubMed
Burnichon, N., Cascon, A., Schiavi, F., et al. MAX mutations cause hereditary and sporadic pheochromocytoma and paraganglioma. Clin Cancer Res 2012;18:28282837.Google Scholar
Schlisio, S., Kenchappa, R.S., Vredeveld, L.C., et al. The kinesin KIF1Bbeta acts downstream from EglN3 to induce apoptosis and is a potential 1p36 tumor suppressor. Genes Dev 2008;22:884893.Google Scholar
Yeh, I.T., Lenci, R.E., Qin, Y., et al. A germline mutation of the KIF1B beta gene on 1p36 in a family with neural and nonneural tumors. Hum Genet 2008;124:279285.Google Scholar
Ladroue, C., Carcenac, R., Leporrier, M., et al. PHD2 mutation and congenital erythrocytosis with paraganglioma. N Engl J Med 2008;359:26852692.Google Scholar
Comino-Mendez, I., de Cubas, A.A., Bernal, C., et al. Tumoral EPAS1 (HIF2A) mutations explain sporadic pheochromocytoma and paraganglioma in the absence of erythrocytosis. Hum Mol Genet 2013;22:21692176.Google Scholar
Favier, J., Buffet, A., Gimenez-Roqueplo, A.P.. HIF2A mutations in paraganglioma with polycythemia. N Engl J Med 2012;367:2161; author reply 2162.Google Scholar
Pacak, K., Jochmanova, I., Prodanov, T., et al. New syndrome of paraganglioma and somatostatinoma associated with polycythemia. J Clin Oncol 2013;31:16901698.Google Scholar
Tomlinson, I.P., Alam, N.A., Rowan, A.J., et al. Germline mutations in FH predispose to dominantly inherited uterine fibroids, skin leiomyomata and papillary renal cell cancer. Nat Genet 2002;30:406410.Google Scholar
Castro-Vega, L.J., Buffet, A., De Cubas, A.A., et al. Germline mutations in FH confer predisposition to malignant pheochromocytomas and paragangliomas. Hum Mol Genet. 2014;23:24402446.Google Scholar
Clark, G.R., Sciacovelli, M., Gaude, E., et al. Germline FH mutations presenting with pheochromocytoma. J Clin Endocrinol Metab 2014;99:E2046e2050.Google Scholar
Yang, C., Zhuang, Z., Fliedner, S.M., et al. Germ-line PHD1 and PHD2 mutations detected in patients with pheochromocytoma/paraganglioma-polycythemia. J Mol Med (Berl) 2015;93:93104.Google Scholar
Cascon, A., Comino-Mendez, I., Curras-Freixes, M., et al. Whole-exome sequencing identifies MDH2 as a new familial paraganglioma gene. J Natl Cancer Inst 2015;107:pii: djv053.Google Scholar
Young, W.F. Jr. Clinical practice. The incidentally discovered adrenal mass. N Engl J Med 2007;356:601610.CrossRefGoogle ScholarPubMed
Lau, W.K., Zincke, H., Lohse, C.M., et al. Contralateral adrenal metastasis of renal cell carcinoma: treatment, outcome and a review. BJU Int 2003;91:775779.Google Scholar
Nambirajan, T., Leeb, K., Neumann, H.P., et al. Laparoscopic adrenal surgery for recurrent tumours in patients with hereditary phaeochromocytoma. Eur Urol 2005;47:622626.Google Scholar
Neumann, H.P., Bender, B.U., Reincke, M., et al. Adrenal-sparing surgery for phaeochromocytoma. Br J Surg 1999;86:9497.Google Scholar
Ilias, I., Pacak, K.. Diagnosis and management of tumors of the adrenal medulla. Horm Metab Res 2005;37:717721.Google Scholar
Amar, L., Servais, A., Gimenez-Roqueplo, A.P., et al. Year of diagnosis, features at presentation, and risk of recurrence in patients with pheochromocytoma or secreting paraganglioma. J Clin Endocrinol Metab 2005;90:21102116.Google Scholar
Fries, C.J. , JG. Extra-adrenal pheochromocytoma: literature review and report of a cervical pheochromocytoma. Surgery 1968;63:268279.Google Scholar
Timmers, H.J., Pacak, K., Huynh, T.T., et al. Biochemically silent abdominal paragangliomas in patients with mutations in the succinate dehydrogenase subunit B gene. J Clin Endocrinol Metab 2008;93:48264832.Google Scholar
Lack, E.E., Cubilla, A.L., Woodruff, J.M., et al. Extra-adrenal paragangliomas of the retroperitoneum: a clinicopathologic study of 12 tumors. Am J Surg Pathol 1980;4:109120.Google Scholar
Ilias, I., Pacak, K.. Current approaches and recommended algorithm for the diagnostic localization of pheochromocytoma. J Clin Endocrinol Metab 2004;89:479491.Google Scholar
Kaji, P., Carrasquillo, J.A., Linehan, W.M., et al. The role of 6-[18F]fluorodopamine positron emission tomography in the localization of adrenal pheochromocytoma associated with von Hippel–Lindau syndrome. Eur J Endocrinol 2007;156:483487.Google Scholar
Fonte, J.S., Robles, J.F., Chen, C.C., et al. False-negative (123)I-MIBG SPECT is most commonly found in SDHB-related pheochromocytoma or paraganglioma with high frequency to develop metastatic disease. Endocr Relat Cancer 2012;19:8393.Google Scholar
Gimenez-Roqueplo, A.P., Caumont-Prim, A., Houzard, C., et al. Imaging work-up for screening of paraganglioma and pheochromocytoma in SDHx mutation carriers: a multicenter prospective study from the PGL.EVA Investigators. J Clin Endocrinol Metab 2013;98:E162173.Google Scholar
Maurice, J.B., Troke, R., Win, Z., et al. A comparison of the performance of (68)Ga-DOTATATE PET/CT and (123)I-MIBG SPECT in the diagnosis and follow-up of phaeochromocytoma and paraganglioma. Eur J Nucl Med Mol Imaging 2012;39:12661270.Google Scholar
Naswa, N., Sharma, P., Nazar, A.H., et al. Prospective evaluation of (68)Ga-DOTA-NOC PET-CT in phaeochromocytoma and paraganglioma: preliminary results from a single centre study. Eur Radiol 2012;22:710719.Google Scholar
Hartung-Knemeyer, V., Rosenbaum-Krumme, S., Buchbender, C., et al. Malignant pheochromocytoma imaging with [124I]mIBG PET/MR. J Clin Endocrinol Metab 2012;97:38333834.Google Scholar
Mayerhoefer, M.E., Ba-Ssalamah, A., Weber, M., et al. Gadoxetate-enhanced versus diffusion-weighted MRI for fused Ga-68-DOTANOC PET/MRI in patients with neuroendocrine tumours of the upper abdomen. Eur Radiol 2013;23:19781985.Google Scholar
Timmers, H.J., Gimenez-Roqueplo, A.P., Mannelli, M., et al. Clinical aspects of SDHx-related pheochromocytoma and paraganglioma. Endocr Relat Cancer 2009;16:391400.Google Scholar
Wohllk, N., Schweizer, H., Erlic, Z., et al. Multiple endocrine neoplasia type 2. Best Pract Res Clin Endocrinol Metab 2010;24:371387.Google Scholar
Gimenez-Roqueplo, A.P., Favier, J., Rustin, P., et al. Mutations in the SDHB gene are associated with extra-adrenal and/or malignant phaeochromocytomas. Cancer Res 2003;63:56155621.Google Scholar
Vora, A.A., Lai, C.K., Rao, J.Y., et al. Paraganglioma with unusual presentation in parotid gland: a diagnostic dilemma in fine needle aspiration. Cytojournal 2012;9:26.Google Scholar
Aubertine, C.L., Flieder, D.B.. Primary paraganglioma of the lung. Ann Diagn Pathol 2004;8:237241.Google Scholar
Rodriguez-Cuevas, S., Lopez-Garza, J., Labastida-Almendaro, S.. Carotid body tumors in inhabitants of altitudes higher than 2000 meters above sea level. Head Neck 1998;20:374378.Google Scholar
Balcombe, J., Torigian, D.A., Kim, W., et al. Cross-sectional imaging of paragangliomas of the aortic body and other thoracic branchiomeric paraganglia. AJR Am J Roentgenol 2007;188:10541058.Google Scholar
Gabriel, S., Blanchet, E.M., Sebag, F., et al. Functional characterization of nonmetastatic paraganglioma and pheochromocytoma by F-FDOPA PET: focus on missed lesions. Clin Endocrinol (Oxf) 2013;79:170177.Google Scholar
Hoegerle, S., Ghanem, N., Altehoefer, C., et al. 18F-DOPA positron emission tomography for the detection of glomus tumours. Eur J Nucl Med Mol Imaging 2003;30:689694.Google Scholar
King, K.S., Chen, C.C., Alexopoulos, D.K., et al. Functional imaging of SDHx-related head and neck paragangliomas: comparison of 18F-fluorodihydroxyphenylalanine, 18F-fluorodopamine, 18F-fluoro-2-deoxydglucose PET, 123I-metaiodobenzylguanidine scintigraphy, and 111In-pentetreotide scintigraphy. J Clin Endocrinol Metab 2011;96:27792785.Google Scholar
Saldana, M.J., Salem, L.E., Travezan, R.. High altitude hypoxia and chemodectomas. Hum Pathol 1973;4:251263.Google Scholar
Astrom, K., Cohen, J.E., Willett-Brozick, J.E., et al. Altitude is a phenotypic modifier in hereditary paraganglioma type 1: evidence for an oxygen-sensing defect. Hum Genet 2003;113:228237.Google Scholar
Cerecer-Gil, N.Y., Figuera, L.E., Llamas, F.J., et al. Mutation of SDHB is a cause of hypoxia-related high-altitude paraganglioma. Clin Cancer Res 2010;16:41484154.Google Scholar
Jech, M., Alvarado-Cabrero, I., Albores-Saavedra, J., et al. Genetic analysis of high altitude paragangliomas. Endocr Pathol 2006;17:201202.Google Scholar
Branco-Price, C., Zhang, N., Schnelle, M., et al. Endothelial cell HIF-1alpha and HIF-2alpha differentially regulate metastatic success. Cancer Cell 2012;21:5265.Google Scholar
Shamblin, W.R., ReMine, W.H., Sheps, S.G., et al. Carotid body tumor (chemodectoma). Clinicopathologic analysis of ninety cases. Am J Surg 1971;122:732739.Google Scholar
Naniwadekar, M.R., Jagtap, S.V., Kshirsagar, A.Y., et al. Fine needle aspiration diagnosis of carotid body tumor in a case of multiple paragangliomas presenting with facial palsy: a case report. Acta Cytol 2010;54:635639.Google Scholar
Tischler, A.S.. Pheochromocytoma and extra-adrenal paraganglioma: updates. Arch Pathol Lab Med 2008;132:12721284.Google Scholar
Labrousse, L.M., Leboutet, MJ, Petit, B , B, et al. Cytokeratins expression in paragangliomas of the cauda equina. Clin Neuropathol 1999;18:208213.Google Scholar
Schmid, K.W., Schroder, S., Dockhorn-Dworniczak, B., et al. Immunohistochemical demonstration of chromogranin A, chromogranin B, and secretogranin II in extra-adrenal paragangliomas. Mod Pathol 1994;7:347353.Google Scholar
Min, K.W.. Two different types of carcinoid tumors of the lung: immunohistochemical and ultrastructural investigation and their histogenetic consideration. Ultrastruct Pathol 2013;37:2335.Google Scholar
Meijer, W.G., Copray, S.C., Hollema, H., et al. Catecholamine-synthesizing enzymes in carcinoid tumors and pheochromocytomas. Clin Chem 2003;49:586593.Google Scholar
Chetty, R., Pillay, P., Jaichand, V.. Cytokeratin expression in adrenal phaeochromocytomas and extra-adrenal paragangliomas. J Clin Pathol 1998;51:477478.Google Scholar
DeAngelis, L.M., Kelleher, M.B., Post, K.D., et al. Multiple paragangliomas in neurofibromatosis: a new neuroendocrine neoplasia. Neurology 1987;37:129133.Google Scholar
Boedeker, C.C., Erlic, Z., Richard, S., et al. Head and neck paragangliomas in von Hippel–Lindau disease and multiple endocrine neoplasia type 2. J Clin Endocrinol Metab 2009;94:19381944.Google Scholar
Taschner, P.E., Jansen, J.C., Baysal, B.E., et al. Nearly all hereditary paragangliomas in the Netherlands are caused by two founder mutations in the SDHD gene. Genes Chromosomes Cancer 2001;31:274281.Google Scholar
Hensen, E.F., van Duinen, N., Jansen, J.C., et al. High prevalence of founder mutations of the succinate dehydrogenase genes in the Netherlands. Clin Genet 2012;81:284288.Google Scholar
Myssiorek, D., Rinaldo, A., Barnes, L., et al. Laryngeal paraganglioma: an updated critical review. Acta Otolaryngol 2004;124:995999.Google Scholar
Shibahara, J., Goto, A., Niki, T., et al. Primary pulmonary paraganglioma: report of a functioning case with immunohistochemical and ultrastructural study. Am J Surg Pathol 2004;28:825829.Google Scholar
Martinelli, O., Irace, L., Massa, R., et al. Carotid body tumors: radioguided surgical approach. J Exp Clin Cancer Res 2009;28:148.Google Scholar
Kollert, M., Minovi, A.A., Draf, W., et al. Cervical paragangliomas-tumor control and long-term functional results after surgery. Skull Base 2006;16:185191.Google Scholar
Tischler, A.S.. Pheochromocytoma: time to stamp out “malignancy”? Endocr Pathol 2008;19:207208.Google Scholar
Taieb, D., Sebag, F., Barlier, A., et al. 18F-FDG avidity of pheochromocytomas and paragangliomas: a new molecular imaging signature? J Nucl Med 2009;50:711717.Google Scholar
Eisenhofer, G., Lenders, J.W., Pacak, K.. Biochemical diagnosis of pheochromocytoma. Front Horm Res 2004;31:76106.Google Scholar
Harari, A., Inabnet, W.B. 3rd. Malignant pheochromocytoma: a review. Am J Surg 2011;201:700708.Google Scholar
Oberg, K.E.. The management of neuroendocrine tumours: current and future medical therapy options. Clin Oncol 2012;24:282293.Google Scholar
Voo, S., Bucerius, J., Mottaghy, F.M.. I-131-MIBG therapies. Methods 2011;55:238245.Google Scholar
John, H., Ziegler, W.H., Hauri, D., et al. Pheochromocytomas: can malignant potential be predicted? Urology 1999;53:679683.Google Scholar
Thompson, L.D.. Pheochromocytoma of the Adrenal gland Scaled Score (PASS) to separate benign from malignant neoplasms: a clinicopathologic and immunophenotypic study of 100 cases. Am J Surg Pathol 2002;26:551566.Google Scholar
Wu, D., Tischler, A.S., Lloyd, R.V., et al. Observer variation in the application of the Pheochromocytoma of the Adrenal Gland Scaled Score. Am J Surg Pathol 2009;33:599608.Google Scholar
Kimura, N., Watanabe, T., Noshiro, T., et al. Histological grading of adrenal and extra-adrenal pheochromocytomas and relationship to prognosis: a clinicopathological analysis of 116 adrenal pheochromocytomas and 30 extra-adrenal sympathetic paragangliomas including 38 malignant tumors. Endocr Pathol 2005;16:2332.Google Scholar
Favier, J., Plouin, P.F., Corvol, P., et al. Angiogenesis and vascular architecture in pheochromocytomas: distinctive traits in malignant tumors. Am J Pathol 2002;161:12351246.Google Scholar
Brouwers, F.M., Elkahloun, A.G., Munson, P.J., et al. Gene expression profiling of benign and malignant pheochromocytoma. Ann N Y Acad Sci 2006;1073:541556.Google Scholar
Suh, I., Shibru, D., Eisenhofer, G., et al. Candidate genes associated with malignant pheochromocytomas by genome-wide expression profiling. Ann Surg 2009;250:983990.Google Scholar
Thouennon, E., Elkahloun, A.G., Guillemot, J., et al. Identification of potential gene markers and insights into the pathophysiology of pheochromocytoma malignancy. J Clin Endocrinol Metab 2007;92:48654872.Google Scholar
Waldmann, J., Fendrich, V., Holler, J., et al. Microarray analysis reveals differential expression of benign and malignant pheochromocytoma. Endocr Relat Cancer 2010;17:743756.Google Scholar
Meyer-Rochow, G.Y., Jackson, N.E., Conaglen, J.V., et al. MicroRNA profiling of benign and malignant pheochromocytomas identifies novel diagnostic and therapeutic targets. Endocr Relat Cancer 2010;17:835846.Google Scholar
Tombol, Z., Eder, K., Kovacs, A., et al. MicroRNA expression profiling in benign (sporadic and hereditary) and recurring adrenal pheochromocytomas. Mod Pathol 2010;23:15831595.Google Scholar
Neumann, H.P., Pawlu, C., Peczkowska, M., et al. Distinct clinical features of paraganglioma syndromes associated with SDHB and SDHD gene mutations. JAMA 2004;292:943951.Google Scholar
Kaltsas, G.A., Besser, G.M., Grossman, A.B.. The diagnosis and medical management of advanced neuroendocrine tumors. Endocr Rev 2004;25:458511.Google Scholar
Lee, J.H., Barich, F., Karnell, L.H., et al. National Cancer Data Base report on malignant paragangliomas of the head and neck. Cancer 2002;94:730737.Google Scholar
Naswa, N., Kumar, A., Sharma, P., et al. Imaging carotid body chemodectomas with (68)Ga-DOTA-NOC PET-CT. Br J Radiol 2012;85:11401145.Google Scholar
Lack, E.E., Cubilla, A.L., Woodruff, J.M.. Paragangliomas of the head and neck region. A pathologic study of tumors from 71 patients. Hum Pathol 1979;10:191218.Google Scholar
Moskovic, D.J., Smolarz, J.R., Stanley, D., et al. Malignant head and neck paragangliomas: is there an optimal treatment strategy? Head Neck Oncol 2010;2:23.Google Scholar
Gupta, K., Bansal, A.. Congenital neuroblastoma: an autopsy report. Fetal Pediatr Pathol 2012;31:331335.Google Scholar
Davidoff, A.M.. Neuroblastoma. Semin Pediatr Surg 2012;21:214.Google Scholar
Hiyama, E., Iehara, T., Sugimoto, T., et al. Effectiveness of screening for neuroblastoma at 6 months of age: a retrospective population-based cohort study. Lancet 2008;371:11731180.Google Scholar
Toma, P., Lucigrai, G., Marzoli, A., et al. Prenatal diagnosis of metastatic adrenal neuroblastoma with sonography and MR imaging. AJR Am J Roentgenol 1994;162:11831184.Google Scholar
van Noesel, M.M.. Neuroblastoma stage 4S: a multifocal stem-cell disease of the developing neural crest. Lancet Oncol 2012;13:229230.Google Scholar
Krona, C., Caren, H., Sjoberg, R.M., et al. Analysis of neuroblastoma tumour progression; loss of PHOX2B on 4p13 and 17q gain are early events in neuroblastoma tumourigenesis. Int J Oncol 2008;32:575583.Google Scholar
Yu, A.L., Gilman, A.L., Ozkaynak, M.F., et al. Anti-GD2 antibody with GM-CSF, interleukin-2, and isotretinoin for neuroblastoma. N Engl J Med 2010;363:13241334.Google Scholar
McLean, K., Lilienfeld, H., Caracciolo, J.T., et al. Management of isolated adrenal lesions in cancer patients. Cancer Control 2011;18:113126.Google Scholar
Ohsie, S.J., Sarantopoulos, G.P., Cochran, A.J., et al. Immunohistochemical characteristics of melanoma. J Cutan Pathol 2008;35:433444.Google Scholar
Mete, O., Tischler, A.S., de Krijger, R., et al. Protocol for the examination of specimens from patients with pheochromocytomas and extra-adrenal paragangliomas. Arch Pathol Lab Med 2014;138:182188.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×