Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-hfldf Total loading time: 0 Render date: 2024-05-05T23:36:57.267Z Has data issue: false hasContentIssue false

Chapter 15 - Adrenal cortex

from Section III - Anatomical endocrine pathology

Published online by Cambridge University Press:  13 April 2017

Ozgur Mete
Affiliation:
University of Toronto
Sylvia L. Asa
Affiliation:
University of Toronto
Get access
Type
Chapter
Information
Endocrine Pathology , pp. 588 - 627
Publisher: Cambridge University Press
Print publication year: 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Luo, X., Ikeda, Y., Parker, K.L. A cell-specific nuclear receptor is essential for adrenal and gonadal development and sexual differentiation. Cell 1994;77, 481490.CrossRefGoogle ScholarPubMed
Sadovsky, Y., Crawford, P.A., Woodson, K.G., Polish, J.A., Clements, M.A., Tourtellotte, L.M., Simburger, K., Milbrandt, J. Mice deficient in the orphan receptor steroidogenic factor 1 lack adrenal glands and gonads but express P450 side-chain-cleavage enzyme in the placenta and have normal embryonic serum levels of corticosteroids. Proc Natl Acad Sci USA 1995;92, 1093910943.Google Scholar
Achermann, J.C., Ito, M., Ito, M., Hindmarsh, P.C., Jameson, J.L. A mutation in the gene encoding steroidogenic factor-1 causes XY sex reversal and adrenal failure in humans. Nat Genet 1999;22, 125126.CrossRefGoogle ScholarPubMed
Donnellan, W.L. Surgical anatomy of adrenal glands. Ann Surg 1961;154, 298305.CrossRefGoogle ScholarPubMed
Cesmebasi, A., Du Plessis, M., Iannatuono, M., Shah, S., Tubbs, R.S., Loukas, M.A. Review of the anatomy and clinical significance of adrenal veins. Clin Anat 2014;27, 12531263.Google Scholar
Parnaby, C.N., Galbraith, N., O’Dwyer, P.J. Importance of the adrenal gland blood supply during laparoscopic subtotal adrenalectomy. J Laparoendosc Adv Surg Tech A 2010;20, 311315.Google Scholar
Sadowski, S.M., Kebebew, E. Variations on a theme. Variant venous adrenal anatomy at work. JAMA Surg 2013;148, 384.Google Scholar
Scholten, A., Cisco, R.M., Vriens, M.R., Shen, W.T., Duh, Q.Y. Variant adrenal venous anatomy in 546 laparoscopic adrenalectomies. JAMA Surg 2013;148, 378383.CrossRefGoogle ScholarPubMed
McNutt, N.S., Jones, A.L. Observations on the ultrastructure of cytodifferentiation in the human fetal adrenal cortex. Lab Invest 1970;22, 513527.Google ScholarPubMed
Tahka, H. On the weight and structure of the adrenal glands and the factors affecting them in children of 0–2 years. Acta Paed Suppl 1951;40, 195.Google Scholar
Bocian-Sobkowska, J. Morphometric study of the human suprarenal gland in the first postnatal year. Folia Morphol 2000;58, 275284.Google Scholar
Lanman, J.T. The fetal zone of the adrenal gland: its developmental course, comparative anatomy, and possible physiologic functions. Medicine 1953;32, 389430.Google Scholar
Studzinski, G.P., Hay, D.C., Symington, T. Observations on the weight of the human adrenal gland and the effect of preparations of corticotropin of different purity on the weight and morphology of the human adrenal gland. J Clin Endocrinol Metab 1963;23, 248–254.Google Scholar
Anderson, J.R., Ross, A.H. Ectopic adrenal tissue in adults. Postgrad Med J 1980;56, 806808.Google Scholar
Ren, P.T., Fu, H., He, X.W. Ectopic adrenal cortical adenoma in the gastric wall: case report. World J Gastroenterol 2013;19, 778780.Google Scholar
Mitchell, A., Scheithauer, B.W., Sasano, H., Hubbard, E.W., Ebersold, M.J. Symptomatic intradural adrenal adenoma of the spinal nerve root: report of two cases. Neurosurgery 1993;32, 658661; discussion 661–652.Google Scholar

References

Mete, O, Asa, SL. Morphological distinction of cortisol-producing and aldosterone-producing adrenal cortical adenomas: not only possible but a critical clinical responsibility. Histopathology 2012;60:10151016.Google Scholar
Duan, K, Gomez Hernandez, K, Mete, O. Clinicopathological correlates of adrenal Cushing’s syndrome. J Clin Pathol 2015;68:175186.Google Scholar

References

Anderson, JR, Ross, AH. Ectopic adrenal tissue in adults. Postgrad Med J 1980;56:806808.Google Scholar
Lack, EE. Atlas of Tumor Pathology, 4th Series, Fascicle 8: Tumors of the Adrenal Glands and Extraadrenal Paraganglia. Bethesda, MD: ARP Press, 2007.Google Scholar
Klatt, EC, Pysher, TJ, Pavlova, Z. Adrenal fusion. Pediatr Dev Pathol 1998;1:475479.Google Scholar
Paterson, A. Adrenal pathology in childhood: a spectrum of disease. Eur Radiol 2002;12:24912508.CrossRefGoogle ScholarPubMed
Pakravan, P, Kenny, FM, Depp, R, Allen, AC. Familial congenital absence of adrenal glands; evaluation of glucocorticoid, mineralocorticoid, and estrogen metabolism in the perinatal period. J Pediatr 1974;84:7478.CrossRefGoogle ScholarPubMed
Schechter, DC. Aberrant adrenal tissue. Ann Surg 1968;167:421426.Google Scholar
Barwick, TD, Malhotra, A, Webb, JA, Savage, MO, Reznek, RH. Embryology of the adrenal glands and its relevance to diagnostic imaging. Clin Radiol 2005;60:953959.Google Scholar
Merke, DP, Bornstein, SR. Congenital adrenal hyperplasia. Lancet 2005;365:21252136.Google Scholar
McNicol, AM. Lesions of the adrenal cortex. Arch Pathol Lab Med. 2008;132:12631271.Google Scholar
Llyod, RV, Douglas, BR, Young, WF. Atlas of Non-tumor Pathology: Endocrine Diseases. Bethesda, MD: ARP Press, 2002.Google Scholar
Pang, S, Becker, D, Cotelingam, J, Foley, TP Jr, Drash, AL. Adrenocortical tumor in a patient with congenital adrenal hyperplasia due to 21-hydroxylase deficiency. Pediatrics. 1981 Aug;68:242246.Google Scholar
Varan, A, Unal, S, Ruacan, S, Vidinlisan, S. Adrenocortical carcinoma associated with adrenogenital syndrome in a child. Med Pediatr Oncol. 2000;35:8890.Google Scholar

References

Paolo, WF, Nosanchuk, JD. Adrenal infections. Int J Infect Dis 2006;10:343353.CrossRefGoogle ScholarPubMed
Lack, EE. Atlas of Tumor Pathology, 4th Series, Fascicle 8: Tumors of the Adrenal Glands and Extraadrenal Paraganglia. Bethesda, MD: ARP Press, 2007.Google Scholar
Lattin, GE, Sturgill, ED, Tujo, CA, et al. From the radiologic pathology archives: Adrenal tumors and tumor-like conditions in the adult: radiologic-pathologic correlation. Radiographics 2014;34:805829.Google Scholar
Johnson, PT, Horton, KM, Fishman, EK. Adrenal imaging with MDCT: nonneoplastic disease. AJR Am J Roentgenol 2009;193:11281135.Google Scholar
Hermsen, IG, Polak, MP, Haak, HR. Disappearing adrenal masses. Endocrine 2010;38:153157.Google Scholar
Arlt, W, Allolio, B. Adrenal insufficiency. Lancet 2003;361:18811893.Google Scholar
Huebener, KH, Treugut, H. Adrenal cortex dysfunction: CT findings. Radiology 1984;150:195199.Google Scholar
Polat, P, Kantarci, M, Alper, F, Suma, S, Koruyucu, MB, Okur, A. Hydatid disease from head to toe. Radiographics 2003;23:475494.CrossRefGoogle ScholarPubMed
Young, WF. Clinical practice. The incidentally discovered adrenal mass. N Engl J Med 2007;356:601610.Google Scholar
Llyod, RV, Douglas, BR, Young, WF. Atlas of Non-tumor Pathology: Endocrine Diseases, 1st Series, Fascicle 1. Bethesda, MD: ARP Press, 2002.Google Scholar
Koene, RJ, Catanese, J, Sarosi, GA. Adrenal hypofunction from histoplasmosis: a literature review from 1971 to 2012. Infection 2013;41:757759.Google Scholar
Pulakhandam, U, Dincsoy, HP. Cytomegaloviral adrenalitis and adrenal insufficiency in AIDS. Am J Clin Pathol 1990;93:651656.Google Scholar
Ardalan, M, Shoja, MM. Cytomegalovirus-induced adrenal insufficiency in a renal transplant recipient. Transplant Proc 2009;41:29152916.Google Scholar
Glasgow, BJ, Steinsapir, KD, Anders, K, Layfield, LJ. Adrenal pathology in the acquired immune deficiency syndrome. Am J Clin Pathol 1985;84:594597.Google Scholar
Carvounis, E, Marinis, A, Arkadopoulos, N, Theodosopoulos, T, Smyrniotis, V. Vascular adrenal cysts: a brief review of the literature. Arch Pathol Lab Med 2006;130:17221724.Google Scholar
Hamilton, D, Harris, MD, Foweraker, J, Gresham, GA. Waterhouse–Friderichsen syndrome as a result of non-meningococcal infection. J Clin Pathol 2004;57:208209.Google Scholar
Adem, PV, Montgomery, CP, Husain, AN, et al. Staphylococcus aureus sepsis and the Waterhouse–Friderichsen syndrome in children. N Engl J Med 2005;353:12451251.Google Scholar
Tachezy, M, Simon, P, Ilchmann, C, Vashist, YK, Izbicki, JR, Gawad, KA. Abscess of adrenal gland caused by disseminated subacute Nocardia farcinica pneumonia. A case report and mini-review of the literature. BMC Infect Dis 2009;9:194.CrossRefGoogle ScholarPubMed
Atkinson, GO, Kodroff, MB, Gay, BB, Ricketts, RR. Adrenal abscess in the neonate. Radiology 1985;155:101104.Google Scholar
Favara, BE, Akers, DR, Franciosi, RA. Adrenal abscess in a neonate. J Pediatr 1970;77:682685.Google Scholar
Benjamin, E, Fox, H. Malakoplakia of the adrenal gland. J Clin Pathol 1981;34:606611.CrossRefGoogle ScholarPubMed
Francque, SM, Schwagten, VM, Ysebaert, DK, Van Marck, EA, Beaucourt, LA. Bilateral adrenal haemorrhage and acute adrenal insufficiency in a blunt abdominal trauma: a case-report and literature review. Eur J Emerg Med 2004;11:164167.Google Scholar
Potter, EL, Barnes, SL, Chunilal, SD. Acute adrenal failure due to bilateral adrenal haemorrhage associated with lupus anticoagulant antibodies. Intern Med J 2015;45:119120.Google Scholar
Presotto, F, Fornasini, F, Betterle, C, Federspil, G, Rossato, M. Acute adrenal failure as the heralding symptom of primary antiphospholipid syndrome: report of a case and review of the literature. Eur J Endocrinol 2005;153:507514.Google Scholar
Ansari, AA. Clinical features and pathobiology of Ebolavirus infection. J Autoimmun 2014;55:19.Google Scholar
Gelisse, E, Gratia, E, Just, B, Mateu, P. Catastrophic antiphospholipid syndrome and heparin-induced thrombocytopenia presenting with adrenal insufficiency caused by bilateral hemorrhagic adrenal infarction during sepsis. Ann Fr Anesth Reanim 2014;33:e8384.Google Scholar
Sandal, G, Arıkan, E, Kuybulu, AE, Ormecı, AR. Unilateral Renal vein thrombosis and adrenal hemorrhage in a newborn with homozygous factor V Leiden and heterozygous of MTHFR-677T, MTHFR-1298C gene mutations. Indian J Hematol Blood Transfus 2014;30(suppl 1):294298.Google Scholar
Tattersall, TL, Thangasamy, IA, Reynolds, J. Bilateral adrenal haemorrhage associated with heparin-induced thrombocytopaenia during treatment of Fournier gangrene. Br Med J Case Rep 2014;2014. pii: bcr2014206070.CrossRefGoogle Scholar
Ito, C, Akimoto, T, Kusano, E, Nagata, D. Microscopic polyangiitis with unilateral adrenal hemorrhage. Intern Med 2014;53:20232024.Google Scholar
Wang, J, Packer, CD. Acute abdominal pain after intercourse: adrenal hemorrhage as the first sign of metastatic lung cancer. Case Rep Med 2014;2014:612036.Google Scholar
Li, A, Wu, B, Zhou, W, Yu, W, Li, L, Yuan, H, Wu, M. Post-hepatectomy haemorrhage: a single-centre experience. HPB (Oxford) 2014;16:965971.Google Scholar
Kornbluth, AA, Salomon, P, Sachar, DB, Subramani, K, Kramer, A, Gray, CE, Present, DH, Chapman, ML. ACTH-induced adrenal hemorrhage: a complication of therapy masquerading as an acute abdomen. J Clin Gastroenterol 1990;12:371377.CrossRefGoogle ScholarPubMed
Sonavane, A, Baradkar, V, Salunkhe, P, Kumar, S. Waterhouse–Friderichsen syndrome in an adult patient with meningococcal meningitis. Indian J Dermatol 2011;56:326328.Google Scholar
Belmore, DJ, Walters, DN. Bilateral adrenal hemorrhage following laparoscopic cholecystectomy. Surg Endosc 1995;9:919920.Google Scholar
Wright, JE, Bear, JW. Adrenal haemorrhage presenting as an abdominal mass in the newborn. Aust Paediatr J 1987;23:305307.Google Scholar
Liao, CH, Lin, KJ, Fu, CY, Wang, SY, Yang, SJ, Ouyang, CH. Adrenal gland trauma:is extravasation an absolute indication for intervention? World J Surg 2015;39:13121319.CrossRefGoogle Scholar
McGowan-Smyth, S. Bilateral adrenal haemorrhage leading to adrenal crisis. Br Med J Case Rep 2014;pii: bcr2014:204225.Google Scholar
Zhuang, B, Lv, DK, Gao, SJ, Meng, JJ. Differential diagnosis of CT images in children with neuroblastomas and ganglioneuroblastomas. Asian Pac J Cancer Prev 2014;15:1050910512.Google Scholar
Kenney, PJ, Stanley, RJ. Calcified adrenal masses. Urol Radiol 1987;9:915.Google Scholar
Okamoto, T, Suzuki, Y, Sugiyama, N, Kudo, S, Yoneyama, T, Hashimoto, Y, Koie, T, Kamimura, N, Oyama, C. [Ganglioneuroma with calcification mimicking adrenal tumor: a case report.] Hinyokika Kiyo 2010;56:621623.Google Scholar
Porto, AF. Lysosomal acid lipase deficiency: diagnosis and treatment of Wolman and cholesteryl ester storage diseases. Pediatr Endocrinol Rev 2014;12(suppl 1):125132.Google Scholar
Nada, R, Gupta, K, Lal, SB, Vasishta, RK. An autopsy case of infantile GM1 gangliosidosis with adrenal calcification. Metab Brain Dis 2011;26:307310.Google Scholar
Sandhoff, K, Harzer, K. Gangliosides and gangliosidoses: principles of molecular and metabolic pathogenesis. J Neurosci 2013;33:1019510208.Google Scholar
Bautista, DV, Asch, M, Kovacs, K, Murray, D. Adrenal myelolipomatous nodules mimicking adrenal neoplasms: report of three cases. Can J Surg 1989;32:5155.Google Scholar
Xiong, Y, Wang, Y, Lin, Y. Primary myelolipoma in posterior mediastinum. J Thorac Dis 2014;6:E181E187.Google Scholar
Hakim, A, Rozeik, C. Adrenal and extra-adrenal myelolipomas: a comparative case report. J Radiol Case Rep 2014;8:112.Google ScholarPubMed
Ghaouti, M, Znati, K, Jahid, A, Zouaidia, F, Bernoussi, Z, Mahassini, N. Renal myelolipoma: a rare extra-adrenal tumor in a rare site: a case report and review of the literature. J Med Case Rep 2013;7:92.Google Scholar
Gagliardo, C, Falanga, G, Sutera, R, La Tona, G, Lo Casto, A, Midiri, M, Lagalla, R. Presacral myelolipoma. A case report and literature review. Neuroradiol J 2014;27:764769.Google Scholar
Suárez-Peñaranda, JM, Bermúdez Naveira, A, Fraga, M, Aliste-Santos, C, Cordeiro, C, Muñoz-Barús, JI. Unusual forms of adrenal and extra-adrenal myelolipomas. Int J Surg Pathol 2014;22:473477.Google Scholar
Shastri, C, Rana, C, Kumari, N, Agarwal, G, Krishnani, N. Bilateral adrenocortical oncocytoma with bilateral myelolipomatous metaplasia. Endocr Pathol 2012;23:112114.Google Scholar
Al-Bahri, S, Tariq, A, Lowentritt, B, Nasrallah, DV. Giant bilateral adrenal myelolipoma with congenital adrenal hyperplasia. Case Rep Surg 2014;2014:728198.Google Scholar
Timonera, ER, Paiva, ME, Lopes, JM, Eloy, C, van der Kwast, T, Asa, SL. Composite adenomatoid tumor and myelolipoma of adrenal gland: report of 2 cases. Arch Pathol Lab Med 2008;132:265267.Google Scholar
McGeoch, SC, Olson, S, Krukowski, ZH, Bevan, JS. Giant bilateral myelolipomas in a man with congenital adrenal hyperplasia. J Clin Endocrinol Metab 2012;97:343344.Google Scholar
Ketelsen, D, von Weyhern, CH, Horger, M. Diagnosis of bilateral giant adrenal myelolipoma. J Clin Oncol 2010;28:e678679.Google Scholar
Cha, JS, Shin, YS, Kim, MK, Kim, HJ. Myelolipomas of both adrenal glands. Korean J Urol 2011;52:582585.Google Scholar
Segura Martín, M, Lorenzo Romero, JG, Salinas Sánchez, AA, Hernández Millán, I, Cañamares Pabolaza, L, Virseda Rodriguez, JA. Bilateral adrenal myelolipoma. Urol Int 1999;62:226228.Google Scholar
Giorgadze, TA, Roy, S, Fraker, DL, Brooks, JS, Livolsi, VA. Pathologic quiz case: a 49-year-old woman with an adrenal mass. Pancreatic tissue with nesidiodysplasia, adrenocortical adenoma, and ovarian thecal metaplasia in the adrenal gland. Arch Pathol Lab Med 2004;128:12941296.Google Scholar
Wong, TW, Warner, NE. Ovarian thecal metaplasia in adrenal gland. Arch Pathol 1971;92:319328.Google Scholar
Fidler, WJ. Ovarian thecal metaplasia in adrenal glands, Am J Clin Pathol 1977;67:318323.Google Scholar
Romberger, CF, Wong, TW. Thecal metaplasia in the adrenal gland of a man with acquired bilateral testicular atrophy. Arch Pathol Lab Med 1989;113:10711075.Google Scholar
Mete, O, Raphael, S, Pirzada, A, Asa, SL. Is adrenal ovarian thecal metaplasia a misnomer? Report of three cases of radial scar-like spindle cell myofibroblastic nodule of the adrenal gland. Endocr Pathol 2011;22:222225.Google Scholar
Lau, SK, Weiss, LM. Calcifying fibrous tumor of the adrenal gland. Human Pathol 2007;38:656659.Google Scholar
Eftekhari, F, Alter, JL, Ayala, AG, Czerniak, BA. Calcifying fibrous pseudotumor of the adrenal gland. Br J Radiol 2001;74:452454.Google Scholar
Attili, SV, Chandra, CR, Hemant, DK, Bapsy, PP, RamaRao, C, Anupama, G. Retroperitoneal inflammatory myofibroblastic tumor. World J Surg Oncol 2005;3:66.Google Scholar
Chan, JK, Cheuk, W, Shimizu, M. Anaplastic lymphoma kinase expression in inflammatory pseudotumors. Am J Surg Pathol 2001;25:761768.Google Scholar
Cook, JR, Dehner, LP, Collins, MH, Ma, Z, Morris, SW, Coffin, CM, Hill, DA. Anaplastic lymphoma kinase (ALK) expression in the inflammatory myofibroblastic tumor: a comparative immunohistochemical study. Am J Surg Pathol 2001;25:13641371.Google Scholar
Sebastiano, C, Zhao, X, Deng, FM, Das, K. Cystic lesions of the adrenal gland: our experience over the last 20 years. Hum Pathol 2013;44:17971803.Google Scholar
Erbil, Y, Salmaslioğlu, A, Barbaros, U, Bozbora, A, Mete, O, Aral, F, Ozarmağan, S. Clinical and radiological features of adrenal cysts. Urol Int 2008;80:3136.Google Scholar
Major, P, Pędziwiatr, M, Matłok, M, Ostachowski, M, Winiarski, M, Rembiasz, K, Budzyński, A. Cystic adrenal lesions: analysis of indications and results of treatment. Pol Przegl Chir 2012;84:184189.Google Scholar
Passoni, S, Regusci, L, Peloni, G, Brenna, M, Fasolini, F. A giant adrenal pseudocyst mimicking an adrenal cancer: case report and review of the literature. Urol Int 2013;91:245248.Google Scholar
Bovio, S, Porpiglia, F, Bollito, E, Allasino, B, Reimondo, G, Rovero, E, Perazzolo, L, Angeli, A, Papotti, M, Terzolo, M. Adrenal pseudocyst mimicking cancer: a case report. J Endocrinol Invest 2007;30:256258.Google Scholar
Darwish, A, Nagaraj, V, Mustafa, MB, Al Ansari, A. Adrenal cyst presenting as hepatic hydatid cyst. Case Rep Surg 2013;2013:150457.Google Scholar
Morse, MO, Schwartz, FL, Zynger, DL. First report of adrenal cortical endothelial (vascular) cyst mimicking phaeochromocytoma (pseudophaeochromocytoma). Pathology 2014;46:364365.Google Scholar
Cao, DH, Zheng, S, Lv, X, Yin, R, Liu, LR, Yang, L, Huang, Y, Wei, Q. Multilocular bronchogenic cyst of the bilateral adrenal: report of a rare case and review of literature. Int J Clin Exp Pathol 2014;7:34183422.Google Scholar
Bellantone, R, Ferrante, A, Raffaelli, M, Boscherini, M, Lombardi, CP, Crucitti, F. Adrenal cystic lesions: report of 12 surgically treated cases and review of the literature. J Endocrinol Invest 1998;21:109114.Google Scholar
Fernández-Vega, I, Camacho-Urkaray, E, Guerra-Merino, I. Huge adrenal hemorrhagic endothelial cyst secondary to an adrenal arteriovenous malformation and mimicking a malignant lesion. Endocr Pathol 2014;25:443445.Google Scholar
Cavallaro, G, Crocetti, D, Paliotta, A, De Gori, A, Tarallo, MR, Letizia, C, De Toma, G. Cystic adrenal lesions: clinical and surgical management. The experience of a referral centre. Int J Surg 2014;13C:2326.CrossRefGoogle ScholarPubMed
Furihata, M, Iida, Y, Furihata, T, Ito, E. A giant lymphatic cyst of the adrenal gland: report of a rare case and review of the literature. Int Surg 2015;100:28.Google Scholar
Shuno, Y, Kobayashi, T, Morita, K, Shimizu, S, Nishio, Y, Ito, A, Kobayashi, K, Kawahara, M, Teruya, M. Ectopic thyroid in the adrenal gland presenting as cystic lesion. Surgery 2006;139:580582.Google Scholar
Tsujimura, A, Takaha, M, Takayama, H, Sugao, H, Takeda, M, Kurata, A. Ectopic thyroid tissue in a cystic adrenal mass. Br J Urol 1996;77:605606.Google Scholar
Hayashi, T, Gucer, H, Mete, O. A mimic of sarcomatoid adrenal cortical carcinoma:epithelioid angiosarcoma occurring in adrenal cortical adenoma. Endocr Pathol 2014;25:404409.Google Scholar
Merrot, T, Walz, J, Anastasescu, R, Chaumoître, K, D’Ercole, C. Prenatally detected cystic adrenal mass associated with Beckwith–Wiedemann syndrome. Fetal Diagn Ther 2004;19:465469.Google Scholar
Gocmen, R, Basaran, C, Karcaaltincaba, M, Cinar, A, Yurdakok, M, Akata, D, Haliloglu, M. Bilateral hemorrhagic adrenal cysts in an incomplete form of Beckwith–Wiedemann syndrome: MRI and prenatal US findings. Abdom Imaging 2005;30:786789.Google Scholar
Petit, T, de Lagausie, P, El Ghoneimi, A, Garel, C, Aigrain, Y. Postnatal management of cystic neuroblastoma. Eur J Pediatr Surg 2001;11:411414.Google Scholar
Tanaka, S, Tajiri, T, Noguchi, S, Ogita, K, Takahashi, Y, Tsuneyoshi, M, Suita, S. Prenatally diagnosed cystic neuroblastoma: a report of two cases. Asian J Surg 2003;26:225227.Google Scholar
Menon, P, Bansal, D, Lyngdoh, S, Gupta, K, Sodhi, K. Bilateral hemorrhagic cystic adrenal neuroblastoma with liver and lymph nodal metastases in an infant. J Indian Assoc Pediatr Surg 2012;17:171173.Google Scholar

References

Lack, EE. Atlas of Tumor Pathology, 4th Series, Fascicle 8: Tumors of the Adrenal Glands and Extraadrenal Paraganglia. Bethesda, MD: ARP Press, 2007.Google Scholar
Lattin, GE, Sturgill, ED, Tujo, CA, et al. From the radiologic pathology archives: adrenal tumors and tumor-like conditions in the adult: radiologic-pathologic correlation. Radiographics 2014;34:805829.Google Scholar
McNicol, AM. Lesions of the adrenal cortex. Arch Pathol Lab Med 2008;132:12631271.Google Scholar
Schteingart, DE. The clinical spectrum of adrenocortical hyperplasia. Curr Opin Endocrinol Diabetes Obes 2012;19:176182.Google Scholar
Mete, O, Asa, SL. Precursor lesions of endocrine system neoplasms. Pathology 2013;45:316330.Google Scholar
De Venanzi, A, Alencar, GA, Bourdeau, I, Fragoso, MC, Lacroix, A. Primary bilateral macronodular adrenal hyperplasia. Curr Opin Endocrinol Diabetes Obes 2014;21:177184.Google Scholar
Berthon, A, Stratakis, CA. From β-catenin to ARM-repeat proteins in adrenocortical disorders. Horm Metab Res 2014;46:889896.Google Scholar
Gagliardi, L, Schreiber, AW, Hahn, CN, et al. ARMC5 mutations are common in familial bilateral macronodular adrenal hyperplasia. J Clin Endocrinol Metab 2014;:jc20141265.Google Scholar
Alencar, GA, Lerario, AM, Nishi, MY, et al. ARMC5 mutations are a frequent cause of primary macronodular adrenal hyperplasia. J Clin Endocrinol Metab 2014;99:E15011509.Google Scholar
Faucz, FR, Zilbermint, M, Lodish, MB, et al. Macronodular adrenal hyperplasia due to mutations in an armadillo repeat containing 5 (ARMC5) gene: a clinical and genetic investigation. J Clin Endocrinol Metab 2014;99:E1113E1119.Google Scholar
Assié, G, Libé, R, Espiard, S, et al. ARMC5 mutations in macronodular adrenal hyperplasia with Cushing’s syndrome. N Engl J Med 2013;369:21052114.Google Scholar
Lacroix, A. Heredity and cortisol regulation in bilateral macronodular adrenal hyperplasia. N Engl J Med 2013;369:21472149.Google Scholar
Horvath, A, Stratakis, CA. Unravelling the molecular basis of micronodular adrenal hyperplasia. Curr Opin Endocrinol Diabetes Obes 2008;15:227233.Google Scholar
Duan, K, Gomez Hernandez, K, Mete, O. Clinicopathological correlates of adrenal Cushing’s syndrome. J Clin Pathol 2015;68:175186.Google Scholar
Mcnicol, AM. A diagnostic approach to adrenal cortical lesions. Endocr Pathol 2008;19:241251.Google Scholar
Sasano, H: The adrenal cortex. In Stefaneanu, L, Sasano, H, Kovacs, K, eds. Molecular and Cellular Endocrine Pathology. London: Arnold, 2000:221252.Google Scholar
Duan, K, Mete, O. Clinicopathologic correlates of primary aldosteronism. Arch Pathol Lab Med 2015;139:948954.Google Scholar
Tang, YZ, Bharwani, N, Micco, M, Akker, S, Rockall, AG, Sahdev, A. The prevalence of incidentally detected adrenal enlargement on CT. Clin Radiol 2014;69:e3742.Google Scholar
Young, WF. Clinical practice. The incidentally discovered adrenal mass. N Engl J Med 2007;356:601610.Google Scholar
Nieman, LK. Approach to the patient with an adrenal incidentaloma. J Clin Endocrinol Metab 2010;95:41064113.Google Scholar
Zeiger, MA, Thompson, GB, Duh, QY, et al. American Association of Clinical Endocrinologists and American Association of Endocrine Surgeons medical guidelines for the management of adrenal incidentalomas: executive summary of recommendations. Endocr Pract 2009;15:450453.Google Scholar
Kannan, S, Remer, EM, Hamrahian, AH. Evaluation of patients with adrenal incidentalomas. Curr Opin Endocrinol Diabetes Obes 2013;20:161169.Google Scholar
Arnaldi, G, Boscaro, M. Adrenal incidentaloma. Best Pract Res Clin Endocrinol Metab 2012;26:405419.Google Scholar
Fassnacht, M, Kroiss, M, Allolio, B. Update in adrenocortical carcinoma. J Clin Endocrinol Metab 2013;98:45514564.Google Scholar
Erickson, LA, Rivera, M, Zhang, J. Adrenocortical carcinoma: review and update. Adv Anat Pathol 2014;21:151159.Google Scholar
Stowasser, M. Update in primary aldosteronism. J Clin Endocrinol Metab 2015;100:110.Google Scholar
Funder, J, Carey, R, Fardella, C, et al. Case detection, diagnosis, and treatment of patients with primary aldosteronism: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab 2008;93:32663281.Google Scholar
Funder, JW. Genetics of primary aldosteronism. Front Horm Res 2014;43:7078.Google Scholar
Young, WF. Primary aldosteronism: renaissance of a syndrome. Clin Endocrinol (Oxf) 2007;66:607618.Google Scholar
Mattsson, C, Young, WF. Primary aldosteronism: diagnostic and treatment strategies. Nat Clin Pract Nephrol 2006;2:198208.Google Scholar
Schirpenbach, C, Reincke, M. Primary aldosteronism: current knowledge and controversies in Conn’s syndrome. Nat Clin Pract Endocrinol Metab 2007;3:220227.Google Scholar
Choi, M, Scholl, UI, Yue, P, et al. K+ channel mutations in adrenal aldosterone-producing adenomas and hereditary hypertension. Science 2011;331:768772.CrossRefGoogle ScholarPubMed
Mulatero, P, Monticone, S, Rainey, WE, Veglio, F, Williams, TA. Role of KCNJ5 in familial and sporadic primary aldosteronism. Nat Rev Endocrinol 2013;9:104112.Google Scholar
Barlev, A, Annes, JP. Genetics of adrenocortical disease: an update. Curr Opin Endocrinol Diabetes Obes 2012;19:159167.Google Scholar
Zennaro, MC, Rickard, AJ, Boulkroun, S. Genetics of mineralocorticoid excess: an update for clinicians. Eur J Endocrinol 2013;169:R1525.Google Scholar
Gomez-Sanchez, CE, Oki, K. Minireview: potassium channels and aldosterone dysregulation. Is primary aldosteronism a potassium channelopathy? Endocrinology 2014;155:4755.Google Scholar
Scholl, UI, Lifton, RP. New insights into aldosterone-producing adenomas and hereditary aldosteronism: mutations in the K+ channel KCNJ5. Curr Opin Nephrol Hypertens 2013;22:141147.Google Scholar
Nieman, LK, Biller, BM, Findling, JW, et al. The diagnosis of Cushing’s syndrome: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab 2008;93:15261540.Google Scholar
Bertagna, X, Guignat, L, Groussin, L, Bertherat, J. Cushing’s disease. Best Pract Res Clin Endocrinol Metab 2009;23:607623.Google Scholar
Hatipoglu, BA. Cushing’s syndrome. J Surg Oncol 2012;106:565571.Google Scholar
Newell-Price, J, Bertagna, X, Grossman, AB, Nieman, LK. Cushing’s syndrome. Lancet 2006;367:16051617.Google Scholar
Tabarin, A, Perez, P. Pros and cons of screening for occult Cushing syndrome. Nat Rev Endocrinol 2011;7:445455.Google Scholar
Stratakis, CA. Cushing syndrome in pediatrics. Endocrinol Metab Clin North Am 2012;41:793803.Google Scholar
Carroll, TB, Findling, JW. Cushing’s syndrome of nonpituitary causes. Curr Opin Endocrinol Diabetes Obes 2009;16:308315.Google Scholar
Bourdeau, I, Lampron, A, Costa, MH, Tadjine, M, Lacroix, A. Adrenocorticotropic hormone-independent Cushing’s syndrome. Curr Opin Endocrinol Diabetes Obes 2007;14:219225.Google Scholar
Stratakis, CA. Cushing syndrome caused by adrenocortical tumors and hyperplasias (corticotropin-independent Cushing syndrome). Endocr Dev 2008;13:117132.Google Scholar
Stratakis, CA, Boikos, SA. Genetics of adrenal tumors associated with Cushing’s syndrome: a new classification for bilateral adrenocortical hyperplasias. Nat Clin Pract Endocrinol Metab 2007;3:748757.Google Scholar
Else, T, Williams, AR, Sabolch, A, Jolly, S, Miller, BS, Hammer, GD. Adjuvant therapies and patient and tumor characteristics associated with survival of adult patients with adrenocortical carcinoma. J Clin Endocrinol Metab 2014;99:455461.Google Scholar
Ghayee, HK, Rege, J, Watumull, LM, et al. Clinical, biochemical, and molecular characterization of macronodular adrenocortical hyperplasia of the zona reticularis: a new syndrome. J Clin Endocrinol Metab 2011;96:E243250.Google Scholar
Speiser, PW, Azziz, R, Baskin, LS, et al. Congenital adrenal hyperplasia due to steroid 21-hydroxylase deficiency: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab 2010;95:41334160.Google Scholar
Clayton, PE, Miller, WL, Oberfield, SE, the ESPE/ LWPES CAH Working Group. Consensus statement on 21-hydroxylase deficiency from the Lawson Wilkins Pediatric Endocrine Society and the European Society for Paediatric Endocrinology. J Clin Endocrinol Metab 2002;87:40484053.Google Scholar
Merke, DP, Bornstein, SR. Congenital adrenal hyperplasia. Lancet 2005;365:21252136.Google Scholar
Speiser, PW, White, PC. Congenital adrenal hyperplasia. N Engl J Med 2003;349:776788.Google Scholar
Hughes, IA. Congenital adrenal hyperplasia–a continuum of disorders. Lancet 1998;352:752754.Google Scholar
Witchel, SF, Azziz, R. Congenital adrenal hyperplasia. J Pediatr Adolesc Gynecol 2011;24:116126.Google Scholar
Krone, N, Arlt, W. Genetics of congenital adrenal hyperplasia. Best Pract Res Clin Endocrinol Metab 2009;23:181192.Google Scholar
Auchus, RJ, Arlt, W. Approach to the patient: the adult with congenital adrenal hyperplasia. J Clin Endocrinol Metab 2013;98:26452655.Google Scholar
Witchel, SF. Nonclassic congenital adrenal hyperplasia. Curr Opin Endocrinol Diabetes Obes 2012;19:151158.Google Scholar
Merke, DP. Approach to the adult with congenital adrenal hyperplasia due to 21-hydroxylase deficiency. J Clin Endocrinol Metab 2008;93:653660.Google Scholar
Han, TS, Walker, BR, Arlt, W, Ross, RJ. Treatment and health outcomes in adults with congenital adrenal hyperplasia. Nat Rev Endocrinol 2014;10:115124.CrossRefGoogle ScholarPubMed
Reisch, N, Högler, W, Parajes, S et al. A diagnosis not to be missed: nonclassic steroid 11β-hydroxylase deficiency presenting with premature adrenarche and hirsutism. J Clin Endocrinol Metab 2013;98:E1620E1625.Google Scholar
Nimkarn, S, New, MI. Steroid 11 beta-hydroxylase deficiency congenital adrenal hyperplasia. Trends Endocrinol Metab 2008;19:9699.Google Scholar
Bose, HS, Sugawara, T, Strauss, JF, Miller, WL. The pathophysiology and genetics of congenital lipoid adrenal hyperplasia. N Engl J Med 1996;335:18701878.Google Scholar
Ganguly, A. Primary aldosteronism. N Engl J Med 1998;339:18281834.Google Scholar
Louiset, E, Stratakis, CA, Perraudin, V, et al. The paradoxical increase in cortisol secretion induced by dexamethasone in primary pigmented nodular adrenocortical disease involves a glucocorticoid receptor-mediated effect of dexamethasone on protein kinase A catalytic subunits. J Clin Endocrinol Metab 2009;94:24062413.Google Scholar
Mitchell, ML, Hsu, HW, Sahai, I. Changing perspectives in screening for congenital hypothyroidism and congenital adrenal hyperplasia. Curr Opin Endocrinol Diabetes Obes 2014;21:3944.Google Scholar
Ilias, I, Sahdev, A, Reznek, RH, Grossman, AB, Pacak, K. The optimal imaging of adrenal tumours: a comparison of different methods. Endocr Relat Cancer 2007;14:587599.Google Scholar
Sacks, BA, Brook, OR, Brennan, IM. Adrenal venous sampling: promises and pitfalls. Curr Opin Endocrinol Diabetes Obes 2013;20:180185.Google Scholar
Miller, BS, Doherty, GM. Surgical management of adrenocortical tumours. Nat Rev Endocrinol 2014;10:282292.Google Scholar
Rockall, AG, Babar, SA, Sohaib, SA, et al. CT and MR imaging of the adrenal glands in ACTH-independent Cushing syndrome. Radiographics 2004;24:435452.Google Scholar
Powell, AC, Stratakis, CA, Patronas, NJ, et al. Operative management of Cushing syndrome secondary to micronodular adrenal hyperplasia. Surgery 2008;143:750758.Google Scholar
Courcoutsakis, N, Prassopoulos, P, Stratakis, CA. CT findings of primary pigmented nodular adrenocortical disease: rare cause of ACTH-independent Cushing syndrome. AJR Am J Roentgenol 2010;194:W541.Google Scholar
Vincent, JM, Morrison, ID, Armstrong, P, Reznek, RH. The size of normal adrenal glands on computed tomography. Clin Radiol 1994;49:453455.Google Scholar
Tritos, NA, Biller, BM, Swearingen, B. Management of Cushing disease. Nat Rev Endocrinol 2011;7:279289.Google Scholar
Boscaro, M, Arnaldi, G. Approach to the patient with possible Cushing’s syndrome. J Clin Endocrinol Metab 2009;94:31213131.Google Scholar
Lacroix, A. ACTH-independent macronodular adrenal hyperplasia. Best Pract Res Clin Endocrinol Metab 2009;23:245259.Google Scholar
Daneman, D, Daneman, A. Diagnostic imaging of the thyroid and adrenal glands in childhood. Endocrinol Metab Clin North Am 2005;34:745768, xi.Google Scholar
Al-Alwan, I, Navarro, O, Daneman, D, Daneman, A. Clinical utility of adrenal ultrasonography in the diagnosis of congenital adrenal hyperplasia. J Pediatr 1999;135:7175.Google Scholar
White, PC, Speiser, PW. Congenital adrenal hyperplasia due to 21-hydroxylase deficiency. Endocr Rev 2000;21:245291.Google Scholar
Hernanz-Schulman, M, Brock, JW, Russell, W. Sonographic findings in infants with congenital adrenal hyperplasia. Pediatr Radiol 2002;32:130137.Google Scholar
Velarde-Miranda, C, Gomez-Sanchez, EP, Gomez-Sanchez, CE. Regulation of aldosterone biosynthesis by the Kir3.4 (KCNJ5) potassium channel. Clin Exp Pharmacol Physiol 2013;40:895901.Google Scholar
Scholl, UI, Goh, G, Stölting, G, et al. Somatic and germline CACNA1D calcium channel mutations in aldosterone-producing adenomas and primary aldosteronism. Nat Genet 2013;45:10501054.Google Scholar
Fernandes-Rosa, FL, Williams, TA, Riester, A, et al. Genetic spectrum and clinical correlates of somatic mutations in aldosterone-producing adenoma. Hypertension 2014;64:354361.Google Scholar
Monticone, S, Bandulik, S, Stindl, J, et al. A case of severe hyperaldosteronism caused by a de novo mutation affecting a critical ‘salt bridge’ Kir3.4 residue. J Clin Endocrinol Metab 2014;:jc20143636.Google Scholar
Lenzini, L, Caroccia, B, Campos, AG, et al. Lower expression of the TWIK-related acid-sensitive K+ channel 2 (TASK-2) gene is a hallmark of aldosterone-producing adenoma causing human primary aldosteronism. J Clin Endocrinol Metab 2014;99:E674E682.Google Scholar
Gomez-Sanchez, CE. Channels and pumps in aldosterone-producing adenomas. J Clin Endocrinol Metab 2014;99:11521156.Google Scholar
Azizan, EA, Poulsen, H, Tuluc, P, et al. Somatic mutations in ATP1A1 and CACNA1D underlie a common subtype of adrenal hypertension. Nat Genet 2013;45:10551060.Google Scholar
Beuschlein, F, Boulkroun, S, Osswald, A, et al. Somatic mutations in ATP1A1 and ATP2B3 lead to aldosterone-producing adenomas and secondary hypertension. Nat Genet 2013;45:440444.Google Scholar
Dekkers, T, Ter Meer, M, Lenders, JW, et al. Adrenal nodularity and somatic mutations in primary aldosteronism: one node is the culprit? J Clin Endocrinol Metab 2014;99:E13411351.Google Scholar
Goh, G, Scholl, UI, Healy, JM, et al. Recurrent activating mutation in PRKACA in cortisol-producing adrenal tumors. Nat Genet 2014;46:613617.Google Scholar
Espiard, S, Ragazzon, B, Bertherat, J. Protein kinase A alterations in adrenocortical tumors. Horm Metab Res 2014;46:869875.Google Scholar
Di Dalmazi, G, Kisker, C, Calebiro, D, et al. Novel somatic mutations in the catalytic subunit of the protein kinase A as a cause of adrenal Cushing’s syndrome: a European multicentric study. J Clin Endocrinol Metab 2014;99:E2093E2100.Google Scholar
Sato, Y, Maekawa, S, Ishii, R, et al. Recurrent somatic mutations underlie corticotropin-independent Cushing’s syndrome. Science 2014;344:917920.Google Scholar
Cao, Y, He, M, Gao, Z, et al. Activating hotspot L205R mutation in PRKACA and adrenal Cushing’s syndrome. Science 2014;344:913917.Google Scholar
Beuschlein, F, Fassnacht, M, Assié, G, et al. Constitutive activation of PKA catalytic subunit in adrenal Cushing’s syndrome. N Engl J Med 2014;370:10191028.Google Scholar
Kirschner, LS. Medicine. A unified cause for adrenal Cushing’s syndrome. Science 2014;344:804805.Google Scholar
De Joussineau, C, Sahut-Barnola, I, Levy, I, et al. The cAMP pathway and the control of adrenocortical development and growth. Mol Cell Endocrinol 2012;351:2836.Google Scholar
Giordano, TJ. Genetics: pinpointing a hotspot in adrenal Cushing syndrome. Nat Rev Endocrinol 2014;10:447448.Google Scholar
Yu, B, Ragazzon, B, Rizk-Rabin, M, Bertherat, J. Protein kinase A alterations in endocrine tumors. Horm Metab Res 2012;44:741748.Google Scholar
Azevedo, MF, Faucz, FR, Bimpaki, E, et al. Clinical and molecular genetics of the phosphodiesterases (PDEs). Endocr Rev 2014;35:195233.Google Scholar
Vezzosi, D, Libé, R, Baudry, C, et al. Phosphodiesterase 11A (PDE11A) gene defects in patients with ACTH-independent macronodular adrenal hyperplasia (AIMAH): functioning variants may contribute to genetic susceptibility of bilateral adrenal tumors. J Clin Endocrinol Metab 2012;97:E2063E2069.Google Scholar
Horvath, A, Boikos, S, Giatzakis, C, et al. A genome-wide scan identifies mutations in the gene encoding phosphodiesterase 11A4 (PDE11A) in individuals with adrenocortical hyperplasia. Nat Genet 2006;38:794800.Google Scholar
Carney, JA, Libé, R, Bertherat, J, Young, WF. Primary pigmented nodular adrenocortical disease: the original 4 cases revisited after 30 years for follow-up, new investigations, and molecular genetic findings. Am J Surg Pathol 2014;38:12661273.Google Scholar
Almeida, MQ, Stratakis, CA. Carney complex and other conditions associated with micronodular adrenal hyperplasias. Best Pract Res Clin Endocrinol Metab 2010;24:907914.Google Scholar
Papotti, M, Duregon, E, Volante, M, Mcnicol, AM. Pathology of the adrenal cortex: a reappraisal of the past 25 years focusing on adrenal cortical tumors. Endocr Pathol 2014;25:3548.Google Scholar
Lacroix, A, Bourdeau, I, Lampron, A, Mazzuco, TL, Tremblay, J, Hamet, P. Aberrant G-protein coupled receptor expression in relation to adrenocortical overfunction. Clin Endocrinol (Oxf) 2010;73:115.Google Scholar
Louiset, E, Duparc, C, Young, J, et al. Intraadrenal corticotropin in bilateral macronodular adrenal hyperplasia. N Engl J Med 2013;369:21152125.Google Scholar
Nishikawa, T, Iwata, M, Sasano, H. Intraadrenal corticotropin in bilateral macronodular adrenal hyperplasia. N Engl J Med 2014;370:1071.Google Scholar
Lefebvre, H, Duparc, C, Chartrel, N, et al. Intraadrenal adrenocorticotropin production in a case of bilateral macronodular adrenal hyperplasia causing Cushing’s syndrome. J Clin Endocrinol Metab 2003;88:30353042.Google Scholar
Elbelt, U, Trovato, A, Kloth, M, et al. Molecular and clinical evidence for an ARMC5 tumor syndrome: concurrent inactivating germline and somatic mutations are associated with both primary macronodular adrenal hyperplasia and meningioma. J Clin Endocrinol Metab 2015;100:E119E128.Google Scholar
Berthon, A, Sahut-Barnola, I, Lambert-Langlais, S, et al. Constitutive beta-catenin activation induces adrenal hyperplasia and promotes adrenal cancer development. Hum Mol Genet 2010;19:15611576.Google Scholar
Berthon, A, Drelon, C, Ragazzon, B, et al. WNT/β-catenin signaling is activated in aldosterone-producing adenomas and controls aldosterone production. Hum Mol Genet 2014;23:889905.Google Scholar
Berthon, A, Martinez, A, Bertherat, J, Val, P. Wnt/β-catenin signalling in adrenal physiology and tumour development. Mol Cell Endocrinol 2012;351:8795.Google Scholar
Lerario, AM, Moraitis, A, Hammer, GD. Genetics and epigenetics of adrenocortical tumors. Mol Cell Endocrinol 2014;386:6784.Google Scholar
Stratakis, CA. Adrenal cancer in 2013: time to individualize treatment for adrenocortical cancer? Nat Rev Endocrinol 2014;10:7678.Google Scholar
Bonnet, S, Gaujoux, S, Launay, P, et al. Wnt/β-catenin pathway activation in adrenocortical adenomas is frequently due to somatic CTNNB1-activating mutations, which are associated with larger and nonsecreting tumors: a study in cortisol-secreting and-nonsecreting tumors. J Clin Endocrinol Metab 2011;96:E419E426.Google Scholar
Assié, G, Letouzé, E, Fassnacht, M, et al. Integrated genomic characterization of adrenocortical carcinoma. Nat Genet 2014;46:607612.Google Scholar
Assié, G, Jouinot, A, Bertherat, J. The “omics” of adrenocortical tumours for personalized medicine. Nat Rev Endocrinol 2014;10:215228.Google Scholar
Drelon, C, Berthon, A, Val, P. Adrenocortical cancer and IGF2: is the game over or our experimental models limited? J Clin Endocrinol Metab 2013;98:505507.Google Scholar
Morin, E, Mete, O, Wasserman, JD, Joshua, AM, Asa, SL, Ezzat, S. Carney complex with adrenal cortical carcinoma. J Clin Endocrinol Metab 2012;97:E202206.Google Scholar
Hunt, JL. Syndromes associated with abnormalities in the adrenal cortex. Diagn Histopathol 2009;15: 6978.Google Scholar
Rothenbuhler, A, Stratakis, CA. Clinical and molecular genetics of Carney complex. Best Pract Res Clin Endocrinol Metab 2010;24:389399.Google Scholar
Ribeiro, RC, Pinto, EM, Zambetti, GP. Familial predisposition to adrenocortical tumors: clinical and biological features and management strategies. Best Pract Res Clin Endocrinol Metab 2010;24:477490.Google Scholar
Anselmo, J, Medeiros, S, Carneiro, V, et al. A large family with Carney complex caused by the S147G PRKAR1A mutation shows a unique spectrum of disease including adrenocortical cancer. J Clin Endocrinol Metab 2012;97:351359.Google Scholar
Heaton, JH, Wood, MA, Kim, AC, et al. Progression to adrenocortical tumorigenesis in mice and humans through insulin-like growth factor 2 and β-catenin. Am J Pathol 2012;181:10171033.Google Scholar
Tissier, F, Cavard, C, Groussin, L, et al. Mutations of beta-catenin in adrenocortical tumors: activation of the Wnt signaling pathway is a frequent event in both benign and malignant adrenocortical tumors. Cancer Res 2005;65:76227627.Google Scholar
Miller, WL, Auchus, RJ. The molecular biology, biochemistry, and physiology of human steroidogenesis and its disorders. Endocr Rev 2011;32:81151.Google Scholar
Koppens, PF, Hoogenboezem, T, Degenhart, HJ. Duplication of the CYP21A2 gene complicates mutation analysis of steroid 21-hydroxylase deficiency: characteristics of three unusual haplotypes. Hum Genet 2002;111:405410.Google Scholar
Varan, A, Unal, S, Ruacan, S, Vidinlisan, S. Adrenocortical carcinoma associated with adrenogenital syndrome in a child. Med Pediatr Oncol 2000;35:8890.Google Scholar
Robinson, MJ, Pardo, V, Rywlin, AM. Pigmented nodules (black adenomas) of the adrenal. An autopsy study of incidence, morphology, and function. Hum Pathol 1972;3:317325.Google Scholar
Kameyama, K, Takami, H. Pigmented granules in functional black adenoma of the adrenal gland: a histochemical and ultrastructural study. Endocr Pathol 1999;10:353357.Google Scholar
Kovacs, K, Horvath, E, Feldman, PS. Pigmented adenoma of adrenal cortex associated with Cushing’s syndrome: light and electron microscopic study. Urology 1976;7:641645.Google Scholar
Ishigami, K, Stolpen, AH, Sato, Y, Dahmoush, L, Winfield, HN, Fajardo, LL. Adrenal adenoma with organizing hematoma: diagnostic dilemma at MRI. Magn Reson Imaging 2004;22:11571159.Google Scholar
Feldberg, E, Guy, M, Eisenkraft, S, Czernobilsky, B. Adrenal cortical adenoma with extensive fat cell metaplasia. Pathol Res Pract 1996;192:6265.Google Scholar
Al-Brahim, N, Asa, S. Myelolipoma with adrenocortical adenoma: an unusual combination that can resemble carcinoma. Endocr Pathol 2007;18:103105.Google Scholar
Mcdonnell, WV. Myelolipoma of adrenal. AMA Arch Pathol 1956;61:416419.Google Scholar
Lam, KY, Lo, CY. Adrenal lipomatous tumours: a 30 year clinicopathological experience at a single institution. J Clin Pathol 2001;54:707712.Google Scholar
Else, T, Kim, AC, Sabolch, A, et al. Adrenocortical carcinoma. Endocr Rev 2014;35:282326.Google Scholar
Ronchi, CL, Sbiera, S, Leich, E, et al. Single nucleotide polymorphism array profiling of adrenocortical tumors–evidence for an adenoma carcinoma sequence? PLOS ONE 2013;8:e73959.Google Scholar
Mete, O, Asa, SL. Morphological distinction of cortisol-producing and aldosterone-producing adrenal cortical adenomas: not only possible but a critical clinical responsibility. Histopathology 2012;60:10151016.Google Scholar
Mete, O, Asa, SL. Clinicopathological correlations in pituitary adenomas. Brain Pathol 2012;22:443453.Google Scholar
Mete, O, Asa, SL. Aldosterone-producing adrenal cortical adenoma with oncocytic change and cytoplasmic eosinophilic globular inclusions. Endocr Pathol 2009;20:182185.Google Scholar
Patel, KA, Calomeni, EP, Nadasdy, T, Zynger, DL. Adrenal gland inclusions in patients treated with aldosterone antagonists (spironolactone/eplerenone): incidence, morphology, and ultrastructural findings. Diagn Pathol 2014;9:147.Google Scholar
Merke, DP, Chrousos, GP, Eisenhofer, G, et al. Adrenomedullary dysplasia and hypofunction in patients with classic 21-hydroxylase deficiency. N Engl J Med 2000;343:13621368.Google Scholar
Duregon, E, Fassina, A, Volante, M, et al. The reticulin algorithm for adrenocortical tumor diagnosis: a multicentric validation study on 245 unpublished cases. Am J Surg Pathol 2013;37:14331440.Google Scholar
Papotti, M, Libè, R, Duregon, E, Volante, M, Bertherat, J, Tissier, F. The Weiss score and beyond: histopathology for adrenocortical carcinoma. Horm Cancer 2011;2:333340.Google Scholar
Volante, M, Bollito, E, Sperone, P, et al. Clinicopathological study of a series of 92 adrenocortical carcinomas: from a proposal of simplified diagnostic algorithm to prognostic stratification. Histopathology 2009;55:535543.Google Scholar
Duregon, E, Volante, M, Cappia, S, et al. Oncocytic adrenocortical tumors: diagnostic algorithm and mitochondrial DNA profile in 27 cases. Am J Surg Pathol 2011;35:18821893.Google Scholar
Giordano, TJ. The argument for mitotic rate-based grading for the prognostication of adrenocortical carcinoma. Am J Surg Pathol 2011;35:471473.Google Scholar
Weiss, LM. Comparative histologic study of 43 metastasizing and nonmetastasizing adrenocortical tumors. Am J Surg Pathol 1984;8:163169.Google Scholar
Mete, O, Asa, SL. Pathological definition and clinical significance of vascular invasion in thyroid carcinomas of follicular epithelial derivation. Mod Pathol 2011;24:15451552.Google Scholar
Hough, AJ, Hollifield, JW, Page, DL, Hartmann, WH. Prognostic factors in adrenal cortical tumors. A mathematical analysis of clinical and morphologic data. Am J Clin Pathol 1979;72:390399.Google Scholar
Van Slooten, H, Schaberg, A, Smeenk, D, Moolenaar, AJ. Morphologic characteristics of benign and malignant adrenocortical tumors. Cancer 1985;55:766773.Google Scholar
DeLellis, RA, Lloyd, RV, Heitz, PU, Eng, C, eds. World Health Organization Classification of Tumours: Pathology and Genetics of Tumours of Endocrine Organs. Lyon: International Agency for Research on Cancer, 2004.Google Scholar
Tissier, F, Aubert, S, Leteurtre, E, et al. Adrenocortical tumors: improving the practice of the Weiss system through virtual microscopy: a national program of the French network INCa-COMETE. Am J Surg Pathol 2012;36:11941201.Google Scholar
Mcnicol, AM. Diagnostic and molecular aspects of adrenal cortical tumors. Semin Diagn Pathol 2013;30:197206.Google Scholar
Nanba, K, Tsuiki, M, Sawai, K, et al. Histopathological diagnosis of primary aldosteronism using CYP11B2 immunohistochemistry. J Clin Endocrinol Metab 2013;98:15671574.Google Scholar
Volpe, C, Höög, A, Ogishima, T, et al. Immunohistochemistry improves histopathologic diagnosis in primary aldosteronism. J Clin Pathol 2013;66:351354.Google Scholar
Doi, M, Satoh, F, Maekawa, T, et al. Isoform-specific monoclonal antibodies against 3β-hydroxysteroid dehydrogenase/isomerase family provide markers for subclassification of human primary aldosteronism. J Clin Endocrinol Metab 2014;99:E257262.Google Scholar
Beuschlein, F, Weigel, J, Saeger, W, et al. Major prognostic role of Ki-67 in localized adrenocortical carcinoma after complete resection. J Clin Endocrinol Metab 2015;100:841849.Google Scholar
Morimoto, R, Satoh, F, Murakami, O, et al. Immunohistochemistry of a proliferation marker Ki67/MIB1 in adrenocortical carcinomas: Ki67/MIB1 labeling index is a predictor for recurrence of adrenocortical carcinomas. Endocr J 2008;55:4955.Google Scholar
Erickson, LA, Jin, L, Sebo, TJ, et al. Pathologic features and expression of insulin-like growth factor-2 in adrenocortical neoplasms. Endocr Pathol 2001;12:429435.Google Scholar
Soon, PS, Gill, AJ, Benn, DE, et al. Microarray gene expression and immunohistochemistry analyses of adrenocortical tumors identify IGF2 and Ki-67 as useful in differentiating carcinomas from adenomas. Endocr Relat Cancer 2009;16:573583.Google Scholar
Schmitt, A, Saremaslani, P, Schmid, S, et al. IGFII and MIB1 immunohistochemistry is helpful for the differentiation of benign from malignant adrenocortical tumours. Histopathology 2006;49:298307.Google Scholar
Giordano, TJ. Classification of adrenal cortical tumors: promise of the “molecular” approach. Best Pract Res Clin Endocrinol Metab 2010;24:887892.Google Scholar
Giordano, TJ. Adrenocortical tumors: an integrated clinical, pathologic, and molecular approach at the University of Michigan. Arch Pathol Lab Med 2010;134:14401443.Google Scholar
Giordano, TJ, Kuick, R, Else, T, et al. Molecular classification and prognostication of adrenocortical tumors by transcriptome profiling. Clin Cancer Res 2009;15:668676.Google Scholar
Else, T, Giordano, TJ, Hammer, GD. Evaluation of telomere length maintenance mechanisms in adrenocortical carcinoma. J Clin Endocrinol Metab 2008;93:14421449.Google Scholar
Giordano, TJ. Molecular pathology of adrenal cortical tumors: separating adenomas from carcinomas. Endocr Pathol 2006;17:355363.Google Scholar
Giordano, TJ, Thomas, DG, Kuick, R, et al. Distinct transcriptional profiles of adrenocortical tumors uncovered by DNA microarray analysis. Am J Pathol 2003;162:521531.Google Scholar
Barreau, O, De Reynies, A, Wilmot-Roussel, H, et al. Clinical and pathophysiological implications of chromosomal alterations in adrenocortical tumors: an integrated genomic approach. J Clin Endocrinol Metab 2012;97:E301311.Google Scholar
Assié, G, Guillaud-Bataille, M, Ragazzon, B, Bertagna, X, Bertherat, J, Clauser, E. The pathophysiology, diagnosis and prognosis of adrenocortical tumors revisited by transcriptome analyses. Trends Endocrinol Metab 2010;21:325334.Google Scholar
Barreau, O, Assié, G, Wilmot-Roussel, H, et al. Identification of a CpG island methylator phenotype in adrenocortical carcinomas. J Clin Endocrinol Metab 2013;98:E174184.Google Scholar
Assié, G, Giordano, TJ, Bertherat, J. Gene expression profiling in adrenocortical neoplasia. Mol Cell Endocrinol 2012;351:111117.Google Scholar
Ragazzon, B, Libé, R, Gaujoux, S, et al. Transcriptome analysis reveals that p53 and β-catenin alterations occur in a group of aggressive adrenocortical cancers. Cancer Res 2010;70:82768281.Google Scholar
Waldmann, J, Patsalis, N, Fendrich, V, et al. Clinical impact of TP53 alterations in adrenocortical carcinomas. Langenbecks Arch Surg 2012;397:209216.Google Scholar
Takehara, K, Sakai, H, Shono, T, Irie, J, Kanetake, H. Proliferative activity and genetic changes in adrenal cortical tumors examined by flow cytometry, fluorescence in situ hybridization and immunohistochemistry. Int J Urol 2005;12:121127.Google Scholar
Stojadinovic, A, Brennan, MF, Hoos, A, et al. Adrenocortical adenoma and carcinoma: histopathological and molecular comparative analysis. Mod Pathol 2003;16:742751.Google Scholar
Herrmann, LJ, Heinze, B, Fassnacht, M, et al. TP53 germline mutations in adult patients with adrenocortical carcinoma. J Clin Endocrinol Metab 2012;97:E476485.Google Scholar
Bertherat, J, Bertagna, X. Pathogenesis of adrenocortical cancer. Best Pract Res Clin Endocrinol Metab 2009;23:261271.Google Scholar
Gaujoux, S, Grabar, S, Fassnacht, M, et al. β-Catenin activation is associated with specific clinical and pathologic characteristics and a poor outcome in adrenocortical carcinoma. Clin Cancer Res 2011;17:328336.Google Scholar
Terzolo, M, Zaggia, B, Allasino, B, De Francia, S. Practical treatment using mitotane for adrenocortical carcinoma. Curr Opin Endocrinol Diabetes Obes 2014;21:159165.Google Scholar
Terzolo, M, Daffara, F, Ardito, A, et al. Management of adrenal cancer: a 2013 update. J Endocrinol Invest 2014;37:207217.Google Scholar
Bourdeau, I, Mackenzie-Feder, J, Lacroix, A. Recent advances in adrenocortical carcinoma in adults. Curr Opin Endocrinol Diabetes Obes 2013;20:192197.Google Scholar
Berruti, A, Fassnacht, M, Baudin, E, et al. Adjuvant therapy in patients with adrenocortical carcinoma: a position of an international panel. J Clin Oncol 2010;28:e401e402.Google Scholar
De Reyniès, A, Assié, G, Rickman, DS, et al. Gene expression profiling reveals a new classification of adrenocortical tumors and identifies molecular predictors of malignancy and survival. J Clin Oncol 2009;27:11081115.Google Scholar
Fragoso, MC, Almeida, MQ, Mazzuco, TL, et al. Combined expression of BUB1B, DLGAP5, and PINK1 as predictors of poor outcome in adrenocortical tumors: validation in a Brazilian cohort of adult and pediatric patients. Eur J Endocrinol 2012;166:6167.Google Scholar
Germano, A, Rapa, I, Volante, M, et al. RRM1 modulates mitotane activity in adrenal cancer cells interfering with its metabolization. Mol Cell Endocrinol 2014;401C:105110.Google Scholar
Ronchi, CL, Sbiera, S, Volante, M, et al. CYP2W1 is highly expressed in adrenal glands and is positively associated with the response to mitotane in adrenocortical carcinoma. PLOS ONE 2014;9:e105855.Google Scholar
Raymond, VM, Everett, JN, Furtado, LV, et al. Adrenocortical carcinoma is a lynch syndrome-associated cancer. J Clin Oncol 2013;31:30123018.Google Scholar
Azizan, EA, Lam, BY, Newhouse, SJ, et al. Microarray, qPCR, and KCNJ5 sequencing of aldosterone-producing adenomas reveal differences in genotype and phenotype between zona glomerulosa- and zona fasciculata-like tumors. J Clin Endocrinol Metab 2012;97:E819829.Google Scholar
Speiser, PW, Dupont, J, Zhu, D, et al. Disease expression and molecular genotype in congenital adrenal hyperplasia due to 21-hydroxylase deficiency. J Clin Invest 1992;90:584595.Google Scholar
Wedell, A, Thilén, A, Ritzén, EM, Stengler, B, Luthman, H. Mutational spectrum of the steroid 21-hydroxylase gene in Sweden: implications for genetic diagnosis and association with disease manifestation. J Clin Endocrinol Metab 1994;78:11451152.Google Scholar
Charmandari, E, Eisenhofer, G, Mehlinger, SL, et al. Adrenomedullary function may predict phenotype and genotype in classic 21-hydroxylase deficiency. J Clin Endocrinol Metab 2002;87:30313037.Google Scholar
Krone, N, Braun, A, Roscher, AA, Knorr, D, Schwarz, HP. Predicting phenotype in steroid 21-hydroxylase deficiency? Comprehensive genotyping in 155 unrelated, well defined patients from southern Germany. J Clin Endocrinol Metab 2000;85:10591065.Google Scholar
New, MI, Abraham, M, Gonzalez, B, et al. Genotype–phenotype correlation in 1507 families with congenital adrenal hyperplasia owing to 21-hydroxylase deficiency. Proc Natl Acad Sci USA 2013;110:26112616.Google Scholar
Krone, N, Rose, IT, Willis, DS, et al. Genotype–phenotype correlation in 153 adult patients with congenital adrenal hyperplasia due to 21-hydroxylase deficiency: analysis of the United Kingdom Congenital adrenal Hyperplasia Adult Study Executive (CaHASE) cohort. J Clin Endocrinol Metab 2013;98:E346354.Google Scholar
Wilson, C. Adrenal function: Adult CAH–does genotype correlate with phenotype? Nat Rev Endocrinol 2013;9:187.Google Scholar
Hayashi, T, Gucer, H, Mete, O. A mimic of sarcomatoid adrenal cortical carcinoma: epithelioid angiosarcoma occurring in adrenal cortical adenoma. Endocr Pathol 2014;25:404409.Google Scholar
Mete, O, Kapran, Y, Güllüoğlu, MG, et al. Anti-CD10 (56C6) is expressed variably in adrenocortical tumors and cannot be used to discriminate clear cell renal cell carcinomas. Virchows Arch 2010;456:515521.Google Scholar
Mete, O, Van der Kwast, TH. Epithelioid angiomyolipoma: a morphologically distinct variant that mimics a variety of intra-abdominal neoplasms. Arch Pathol Lab Med 2011;135:665670.Google Scholar
Tissier, F. Classification of adrenal cortical tumors: what limits for the pathological approach? Best Pract Res Clin Endocrinol Metab 2010;24:877885.Google Scholar
Clayton, RN, Raskauskiene, D, Reulen, RC, Jones, PW. Mortality and morbidity in Cushing’s disease over 50 years in Stoke-on-Trent, UK: audit and meta-analysis of literature. J Clin Endocrinol Metab 2011;96:632642.Google Scholar
Biller, BM, Grossman, AB, Stewart, PM, et al. Treatment of adrenocorticotropin-dependent Cushing’s syndrome: a consensus statement. J Clin Endocrinol Metab 2008;93:24542462.Google Scholar
Lila, AR, Gopal, RA, Acharya, SV, et al. Efficacy of cabergoline in uncured (persistent or recurrent) Cushing disease after pituitary surgical treatment with or without radiotherapy. Endocr Pract 2010;16:968976.Google Scholar
Colao, A, Petersenn, S, Newell-Price, J, et al. A 12-month phase 3 study of pasireotide in Cushing’s disease. N Engl J Med 2012;366:914924.Google Scholar
Fleseriu, M, Biller, BM, Findling, JW, et al. Mifepristone, a glucocorticoid receptor antagonist, produces clinical and metabolic benefits in patients with Cushing’s syndrome. J Clin Endocrinol Metab 2012;97:20392049.Google Scholar
Tinat, J, Bougeard, G, Baert-Desurmont, S, et al. 2009 version of the Chompret criteria for Li Fraumeni syndrome. J Clin Oncol 2009;27:e108109.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×