Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-fv566 Total loading time: 0 Render date: 2024-07-23T03:18:55.349Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  03 December 2009

S. J. B. Reed
Affiliation:
University of Cambridge
Get access
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Albee, A. L. and Ray, L. (1970) Correction factors for electron probe microanalysis of silicates, oxides, carbonates, phosphates, and sulfates. Anal. Chem. 42 1408–14.CrossRefGoogle Scholar
Allen, D. (1984) A one-stage precision polishing technique for geological specimens. Mineral. Mag. 48 298–300.CrossRefGoogle Scholar
Anthony, E. Y., Reynolds, T. J. and Beane, R. E. (1974) Identification of daughter minerals in fluid inclusions using scanning electron microscopy and energy dispersive analysis. Amer. Mineral. 59 1053–7.Google Scholar
Armstrong, J. T. (1991) Quantitative elemental analysis of individual microparticles with electron beam instruments. In Electron Probe Quantitation, ed. Heinrich, K. F. J. and Newbury, D. E. (New York: Plenum Press) pp. 261–315.CrossRefGoogle Scholar
Armstrong, J. T.(1995) CITZAF: a package of correction programs for the quantitative electron microbeam X-ray analysis of thick polished materials, thin films, and particles. Microbeam Anal. 4 177–200.Google Scholar
Autefage, F. and Couderc, J.-J. (1980) Etude du mécanisme de la migration du sodium et du potassium au cours de leur analyse à la microsonde électronique. Bull. Minéral. 203 623–9.Google Scholar
Ayora, C. and Fontarnau, R. (1990) X-ray microanalysis of frozen fluid inclusions. Chem. Geol. 89 135–48.CrossRefGoogle Scholar
Bastin, G. F. and Heijligers, H. J. M. (1986) Quantitative electron probe microanalysis of carbon in binary carbides. I – Principles and procedures. X-Ray Spectrom. 15 135–41.CrossRefGoogle Scholar
Bence, A. E. and Albee, A. L. (1968) Empirical correction factors for the electron microanalysis of silicates and oxides. J. Geol. 76 382–403.CrossRefGoogle Scholar
Beran, A., Armstrong, J. and Rossman, G. R. (1992) Infrared and electron microprobe analysis of ammonium ions in hyalophane feldspar. Eur. J. Mineral. 4 847–50.CrossRefGoogle Scholar
Boggs, S., Krinsley, D. H., Goles, G. G., Seyedolali, A. and Dypvik, H. (2001) Identification of shocked quartz by scanning cathodoluminescnce imaging. Meteoritics Planet. Sci. 36 783–91.CrossRefGoogle Scholar
Boyde, A. (1979) The perception and measurement of depth in the SEM. Scanning Electron Microsc.1979/ II 67–78.Google Scholar
Bright, D. S. (1992) Visibility of two intermixed phases as a function of grain size and signal-to-noise: a computer simulation. In Proc. 50th Annual Meeting of the Electron Microscopy Society of America, ed. Bailey, G. W., Bentley, J. and Small, J. A. (San Francisco, CA: San Francisco Press) pp. 1610–11.Google Scholar
Bustin, R. M., Mastalertz, M. and Wilks, K. R. (1993) Direct determination of carbon, oxygen and nitrogen content in coal using the electron microprobe. Fuel 72 181–5.CrossRefGoogle Scholar
Cabri, L. J. and Campbell, J. L. (1998) The proton microprobe in ore mineralogy (micro-PIXE technique). In Modern Approaches to Ore and Environmental Mineralogy, ed. Cabri, L. J. and Vaughan, D. J., Short Course Series, vol. 27 (Ottawa: Mineralogical Association of Canada) pp. 181–98.Google Scholar
Carroll, M. R. and Rutherford, M. J. (1988) Sulfur speciation in hydrous experimental glasses of varying oxidation state: results from measured wavelength shifts of sulfur X-rays. Amer. Mineral. 73 845–9.Google Scholar
Chaloner, W. G. and Gay, M. M. (1973) Scanning electron microscopy of latex casts of fossil plant impressions. Palaeontology 16 645–9.Google Scholar
Champness, P. E. (1995) Analytical electron microscopy. In Microprobe Techniques in the Earth Sciences, ed. Potts, P. J., Bowles, J. F. W., Reed, S. J. B. and Cave, M. R. (London: Chapman and Hall) pp. 91–139.CrossRefGoogle Scholar
Chapman, P. A. and Meagher, E. P. (1975) A technique for observing exsolution lamellae in pyroxenes with the scanning electron microscope. Amer. Mineral. 60 155–6.Google Scholar
Cliff, G. and Lorimer, G. W. (1975) The quantitative analysis of thin specimens. J. Microsc. 103 203–7.CrossRefGoogle Scholar
Cosca, M. A., Essene, E. J. and Bowman, J. R. (1991) Complete chemical analyses of metamorphic hornblendes: implications for normalizations, calculated H2O activities, and thermobarometry. Contrib. Mineral. Petrol. 108 472–84.CrossRefGoogle Scholar
Dalton, J. A. and Lane, S. J. (1996) Electron microprobe analysis of Ca in olivine close to grain boundaries: the problem of secondary X-ray fluorescence. Amer. Mineral. 81 194–201.CrossRefGoogle Scholar
Danilatos, G. D. (1994) Environmental scanning electron microscopy and microanalysis. Mikrochim. Acta 114/5143–55.CrossRefGoogle Scholar
Demars, C., Pagel, M., Deloule, E. and Blanc, P. (1996) Cathodoluminescence of quartz from sandstones: interpretation of the UV range by determination of trace element distributions and fluid inclusion P–T–X properties in authigenic quartz. Amer. Mineral. 81 891–901.CrossRefGoogle Scholar
D'Lemos, R. S., Kearsley, A. T., Pembroke, J. W., Watt, G. R. and Wright, P. (1997) Complex quartz growth histories in granite revealed by scanning cathodoluminescence techniques. Geol. Mag. 134 549–52.CrossRefGoogle Scholar
Donovan, J. J., Snyder, D. A. and Rivers, M. L. (1993) An improved interference correction for trace element analysis. Microbeam Anal. 2 23–8.Google Scholar
Droop, G. T. R. (1987) A general equation for estimating Fe3+ concentrations in ferromagnesian silicates and oxides from microprobe analyses, using stoichiometric criteria. Mineral. Mag. 51 431–5.CrossRefGoogle Scholar
Eadington, P. J. (1974) Microprobe analysis of the non-volatile components in fluid inclusions. Neues Jahrb. Mineral., Monatsh.518–25.Google Scholar
Fagan, T. J., Taylor, G. J., Keil, K.et al. (2003) Northwest Africa 773: lunar origin and iron-enrichment trend. Meteoritics Planet. Sci. 38 529–54.CrossRefGoogle Scholar
Feenstra, A. and Engi, M. (1998) An experimental study of the Fe-Mg exchange between garnet and ilmenite. Contrib. Mineral. Petrol. 131 379–92.CrossRefGoogle Scholar
Fialin, M. (1988) Modification of Philibert–Tixier ZAF correction for geological samples. X-ray Spectrom. 17 103–6.CrossRefGoogle Scholar
Fialin, M.(1992) Background determination in wavelength-dispersive electron microprobe analysis: some difficulties and presentation of a new analytical model. X-ray Spectrom. 21 175–81.CrossRefGoogle Scholar
Fialin, M., Bézos, A., Wagner, C., Magnien, V. and Humler, E. (2004) Quantitative electron microprobe analysis of Fe3+/ΣFe: basic concepts and experimental protocol for glasses. Amer. Mineral. 89 654–62.CrossRefGoogle Scholar
Finch, E. M. (1974) An improved method of mounting palaeontological specimens for scanning electron microscope examination. Palaeontology 17 431–4.Google Scholar
Fournier, C., Merlet, C., Dugne, O. and Fialin, M. (1999) Standardless semi-quantitative analysis with WDS-EPMA. J. Anal. Atom. Spectrom. 14 381–6.CrossRefGoogle Scholar
Fournier, C., Merlet, C., Staub, P. F. and Dugne, O. (2000) An expert system for EPMA. Mikrochim. Acta 132 531–9.CrossRefGoogle Scholar
Fraser, D. G. (1995) The nuclear microprobe – PIXE, PIGE, RBS, NRA and ERDA. In Microprobe Techniques in the Earth Sciences, ed. Potts, P. J., Bowles, J. F. W., Reed, S. J. B. and Cave, M. R. (London: Chapman and Hall) pp. 141–62.CrossRefGoogle Scholar
Gamberini, F. and Valdrè, G. (1995) Preparative method and analysis by OM, SEM and EPMA of porous, brittle and low permeability rocks and materials: the case of pumices. Microsc. Microanal. Microstruct. 6 573–86.CrossRefGoogle Scholar
Ganguly, J., Bhattacharya, R. M. and Chakrabarty, S. (1988) Convolution effect in the determination of compositional profiles and diffusion coefficients by microprobe step scans. Amer. Mineral. 73 901–9.Google Scholar
Ginibre, C., Kronz, A. and Wörner, G. (2002) High-resolution quantitative imaging of plagioclase composition using accumulated backscattered electron images: new constraints on oscillatory zoning. Contrib. Mineral. Petrol. 142 436–48.CrossRefGoogle Scholar
Goldstein, J. I., Newbury, D. E., Joy, D. C.et al. (2003) Scanning Electron Microscopy and X-Ray Microanalysis (New York: Kluwer Academic/Plenum).CrossRefGoogle Scholar
Goncalves, P., Williams, M. L. and Jercinovic, M. J. (2005) Electron-microprobe age mapping of monazite. Amer. Mineral. 90 578–85.CrossRefGoogle Scholar
Goodhew, P. J. and Gulley, J. E. C. (1975) The determination of alkali metals in glasses by electron microprobe analysis. Glass Technol. 15 123–6.Google Scholar
Halden, N. M., Campbell, J. L. and Teesdale, W. J. (1995) PIXE analysis in mineralogy and geochemistry. Canad. Mineral. 33 293–302.Google Scholar
Harris, D. H. (1990) Electron-microprobe analysis. In Advanced Microscopic Studies of Ore Minerals, ed. Jambor, J. L. and Vaughan, D. J., Short Course Handbook no. 17 (Ottawa: Mineralogical Association of Canada) pp. 319–39.Google Scholar
Heinrich, K. F. J. and Newbury, D. E. (1991) Electron Probe Quantitation (New York: Plenum Press).CrossRefGoogle Scholar
Henke, B. L., Gullikson, E. M. and Davis, J. C. (1993) X-ray interactions: photoabsorption, scattering, transmission, and reflection at E = 50–30,000 eV, Z = 1–92. Atom. Data Nucl. Data Tables 54 181–342.CrossRefGoogle Scholar
Herd, C. D. K., Papike, J. J. and Brearley, A. J. (2001). Oxygen fugacity of martian basalts from electron microprobe oxygen and TEM–EELS analysis of Fe–Ti oxides. Amer. Mineral. 86 1015–24.CrossRefGoogle Scholar
Higgins, S. J., Taylor, L. A., Chambers, J. G., Patchen, A. and McKay, D. S. (1996). X-ray digital-imaging petrography: technique development for lunar soils. Meteoritics Planet. Sci. 31 356–61.CrossRefGoogle Scholar
Hinton, R. W. (1995) Ion microprobe analysis in geology. In Microprobe Techniques in the Earth Sciences, ed. Potts, P. J., Bowles, J. F. W., Reed, S. J. B. and Cave, M. R. (London: Chapman and Hall) pp. 235–89.CrossRefGoogle Scholar
Hochella, M. F. (1988) Auger electron and X-ray photoelectron spectroscopies. Rev. Mineral. 18 573–637.Google Scholar
Hochella, M. F., Harris, D. W. and Turner, A. M. (1986) Scanning Auger microscopy as a high-resolution microprobe for geologic materials. Amer. Mineral. 71 1247–57.Google Scholar
Humphries, D. W. (1992) The Preparation of Thin Sections of Rocks, Minerals, and Ceramics (Oxford: Oxford University Press).Google Scholar
Isabell, T. C., Fischione, P. E., O'Keefe, C., Guruz, M. U. and Dravid, V. P. (1999) Plasma cleaning and its applications for electron microscopy. Microsc. Microanal. 5 126–35.CrossRefGoogle ScholarPubMed
Jacobson, C. E. (1989) Estimation of Fe3 + from electron microprobe analyses: observations on calcic amphibole and chlorite. J. Metamorphic Geol. 7 507–13.CrossRefGoogle Scholar
Jarosewich, E. and Boatner, L. A. (1991) Rare-earth element reference samples for electron microprobe analysis. Geostand. Newslett. 15 397–9.CrossRefGoogle Scholar
Jarosewich, E., Nelen, J. A. and Norberg, J. A. (1979) Electron microprobe reference samples for mineral analyses. Smithson. Contrib. Earth Sci. 22 68–72.Google Scholar
Jarosewich, E., Nelen, J. A. and Norberg, J. A.(1980) Reference samples for electron microprobe analysis. Geostand. Newslett. 4 43–8.CrossRefGoogle Scholar
Jercinovic, M. J. and Williams, M. L. (2005) Analytical perils (and progress) in electron microprobe trace element analysis applied to geochronology: Background acquisition, interferences, and beam irradiation effects. Amer. Mineral. 90 526–46.CrossRefGoogle Scholar
Joy, D. C. (1995) Monte Carlo Modeling for Electron Microscopy and Microanalysis (New York: Oxford University Press).Google Scholar
Joy, D. C., Romig, A. D. and Goldstein, J. I., eds. (1986) Principles of Analytical Electron Microscopy (New York: Plenum Press).CrossRefGoogle Scholar
Jurek, K., Renner, O. and Krousky, E. (1994) The role of coating densities in X-ray microanalysis. Mikrochim. Acta 114/115 323–6.CrossRefGoogle Scholar
Kanaya, K. and Okayama, S. (1972) Penetration and energy-loss theory of electrons in solid targets. J. Phys. D 5 43–58.CrossRefGoogle Scholar
Kerrick, D. M., Eminhizer, L. B. and Villaume, J. F. (1973) The role of carbon film thickness in electron microprobe analysis. Amer. Mineral. 58 920–5.Google Scholar
Kloprogge, J. T., Boström, T. E. and Weier, M. L. (2004) In situ observation of the thermal decomposition of weddelite by heating stage environmental scanning electron microscopy. Amer. Mineral. 89 245–8.CrossRefGoogle Scholar
Knowles, C. R. (1987) A BASIC program to recast garnet end members. Computers Geosci. 13 655–8.CrossRefGoogle Scholar
Krinsley, D. H., Pye, K., Boggs, S. and Tovey, N. K. (1998) Backscattered Scanning Electron Microscopy and Image Analysis of Sediments and Sedimentary Rocks (Cambridge: Cambridge University Press).CrossRefGoogle Scholar
Labar, J. L. (1995) Standardless electron probe X-ray analysis of non-biological samples. Microbeam Anal. 4 65–83.Google Scholar
Laflamme, J. H. G. (1990) The preparation of materials for microsocopic study. In Advanced Microscopic Studies of Ore Minerals, ed. Jambor, J. L. and Vaughan, D. J. (Ottawa: Mineralogical Association of Canada) pp. 37–68.Google Scholar
Lane, S. J. and Dalton, J. A. (1994) Electron microprobe analysis of geological carbonates. Amer. Mineral. 79 745–9.Google Scholar
Lastra, R., Petruk, W. and Wilson, J. (1998). Image-analysis techniques and applications to mineral processing. In Modern Approaches to Ore and Environmental Mineralogy, ed. Cabri, L. J. and Vaughan, D. J., Short Course Series, vol. 27 (Ottawa: Mineralogical Association of Canada) pp. 327–66.Google Scholar
Laubach, S. E., Reed, R. M., Olson, J. E., Lander, R. H. and Bonnell, L. M. (2004) Coevolution of crack–seal texture and fracture porosity in sedimentary rocks: cathodoluminescence observations of regional fractures. J. Struct. Geol. 26 967–82.CrossRefGoogle Scholar
Llovet, X. and Galan, G. (2003) Correction of secondary X-ray fluorescence near grain boundaries in electron microprobe analysis: application to thermobarometry of spinel lherzolites. Amer. Mineral. 88 121–30.CrossRefGoogle Scholar
Lloyd, G. E. (1987) Atomic number and crystallographic contrast images in the SEM: a review of backscattered electron techniques. Mineral. Mag. 51 3–19.CrossRefGoogle Scholar
Lloyd, G. E., Hall, M. G., Cockayne, B. and Jones, D. W. (1981) Selected-area channelling patterns from geological materials: specimen preparation, indexing and representation of patterns, and applications. Canad. Mineral. 19 505–18.Google Scholar
Lohnes, R. A. and Demirel, T. (1978) SEM applications in soil mechanics. Scanning Electron Microsc.1978/ I 643–54.Google Scholar
Maaskant, P. and Kaper, H. (1991) Fluorescence effects at phase boundaries: petrological implications for Fe–Ti oxides. Mineral. Mag. 55 277–9.CrossRefGoogle Scholar
Marinenko, R. B. (1991) Standards for electron probe microanalysis. In Electron Probe Quantitation, ed. Heinrich, K. F. J. and Newbury, D. E. (New York: Plenum Press) pp. 251–60.CrossRefGoogle Scholar
Markowitz, A. and Milliken, K. L. (2003) Quantification of brittle deformation in burial compaction, Frio and Mount Simon Formation sandstones. J. Sed. Res. 73 1007–21.CrossRefGoogle Scholar
Marshall, D. L. (1988) Cathodoluminescence of Geological Materials (Boston: Unwin Hyman).Google Scholar
Matthews, S. J., Moncrieff, D. H. S. and Carroll, M. R. (1999) Empirical calibration of the sulphur valence oxygen barometer from natural and experimental glasses: method and applications. Mineral. Mag. 63 421–31.CrossRefGoogle Scholar
McGee, J. J. and Anovitz, L. M. (1996) Electron microprobe analysis of geologic materials for boron. In Boron: Mineralogy, Petrology and Geochemistry, ed. Grew, E. S. and Anovitz, L. M., Reviews of Mineralogy, vol. 33 (Washington: Mineralogical Society of America) pp. 771–88.Google Scholar
McGuire, A. V., Francis, C. A. and Dyar, M. D. (1992) Mineral standards for electron microprobe analysis of oxygen. Amer. Mineral. 77 1087–91.Google Scholar
McHardy, W. J., Wilson, M. J. and Tait, J. M. (1982) Electron microscope and X-ray diffraction studies of filamentous illitic clay from sandstones of the Magnus Field. Clay Mineral. 17 23–39.CrossRefGoogle Scholar
McMahon, G. and Cabri, L. J. (1998) The SIMS technique in ore mineralogy. In Modern Approaches to Ore and Environmental Mineralogy, ed. Cabri, L. J. and Vaughan, D. J., Short Course Series, vol. 27 (Ottawa: Mineralogical Association of Canada) pp. 153–80.Google Scholar
Metzger, F. W., Kelly, W. C., Nesbitt, B. E. and Essene, E. J. (1977) Scanning electron microscopy of daughter minerals in fluid inclusions. Econ. Geol. 72 141–52.CrossRefGoogle Scholar
Miller, J. (1988) Microscopical techniques: 1. Slices, slides, stains and peels. In Techniques in Sedimentology, ed. Tucker, M. (Oxford: Blackwells) pp. 86–107.Google Scholar
Mills, A. A. (1988) Silver as a removable conductive coating for scanning electron microscopy. Scanning Microsc. 2 1265–71.Google Scholar
Mohr, D. W., Fritz, S. J. and Eckert, J. O. (1990) Estimation of elemental microvariation within minerals analyzed by the microprobe: use of model population estimates. Amer. Mineral. 75 1406–14.Google Scholar
Morgan, G. B. and London, D. (1996) Optimizing the electron microprobe analysis of hydrous alkali aluminosilicate glass. Amer. Mineral. 81 1176–85.CrossRefGoogle Scholar
Morgan, G. B. and London, D. (2005) Effect of current density on the electron microprobe analysis of alkali aluminosilicate glasses. Amer. Mineral. 90 1131–8.CrossRefGoogle Scholar
Moskowitz, B. M., Halgedahl, S. L. and Lawson, C. A. (1988) Magnetic domains on unpolished and polished surfaces of titanium-rich titanomagnetites. J. Geophys. Res. 93 3372–86.CrossRefGoogle Scholar
Nash, W. P. (1992) Analysis of oxygen with the electron microprobe: applications to hydrated glasses and minerals. Amer. Mineral. 77 453–7.Google Scholar
Newbury, D. E. (2002) X-ray microanalysis in the variable pressure (environmental) scanning electron microscope. J. Res. Nat. Inst. Stand. Technol. 107 567–603.CrossRefGoogle ScholarPubMed
Newbury, D. E., Joy, D. C., Echlin, P., Fiori, C. E. and Goldstein, J. I. (1986) Advanced Scanning Electron Microscopy and X-Ray Microanalysis (New York: Plenum Press).CrossRefGoogle Scholar
Nicholls, J. and Stout, M. Z. (1986) Electron beam analytical instruments and the determination of modes, spatial variations in minerals and textural features of rocks in polished section. Contrib. Mineral. Petrol. 94 395–404.CrossRefGoogle Scholar
Nielsen, C. H. and Sigurdsson, H. (1981) Quantitative methods for electron microprobe analysis of sodium in natural and synthetic glasses. Amer. Mineral. 66 547–52.Google Scholar
Oliveira, D. P. S. de, Reed, R. M., Milliken, K. L. et al. (2003) (Meta)cherts, (meta)lydites, (meta)phthanites and quartzites of the série negra (Crato-S. Martinho), E. Portugal: towards a correct nomenclature based on mineralogy and cathodoluminescence studies. Ciências da Terra, special issue no. V, 29.
Pagel, M., Barbin, V., Blanc, P. and Ohnenstetter, D. (2000) Cathodoluminescence in Geosciences (Berlin: Springer).CrossRefGoogle Scholar
Patsoules, M. G. and Cripps, J. C. (1983) A quantitative analysis of chalk pore geochemistry using resin casts. Energy Sources 7 15–31.CrossRefGoogle Scholar
Perkins, W. T. and Pearce, N. J. G. (1995) Mineral microanalysis by laserprobe inductively coupled plasma mass spectrometry. In Microprobe Techniques in the Earth Sciences, ed. Potts, P. J., Bowles, J. F. W., Reed, S. J. B. and Cave, M. R. (London: Chapman and Hall) pp. 291–325.CrossRefGoogle Scholar
Pingitore, N. E., Meitzner, G. and Love, K. M. (1997) Discrimination of sulfate from sulfide in carbonates by electron probe microanalysis. Carbonates Evaporites 12 130–3.CrossRefGoogle Scholar
Potts, P. J. and Tindle, A. G. (1989) Analytical characteristics of a multilayer dispersion element (2d = 60 Å) in the determination of fluorine in minerals by electron microprobe. Mineral. Mag. 53 357–62.CrossRefGoogle Scholar
Potts, P. J., Tindle, A. G. and Isaacs, M. C. (1983) On the precision of electron microprobe data: a new test for the homogeneity of mineral standards. Amer. Mineral. 68 1237–42.Google Scholar
Prior, D. J., Boyle, A. P., Brenker, F.et al. (1999) The application of electron backscatter diffraction and orientation contrast imaging in the scanning electron microscope to textural problems. Amer. Mineral. 84 1741–59.CrossRefGoogle Scholar
Prior, D. J., Trimby, P. W., Weber, U. D. and Dingley, D. J. (1996) Orientation contrast imaging of microstructures in rocks using forescatter detectors in the scanning electron microscope. Mineral. Mag. 60 859–69.CrossRefGoogle Scholar
Purvis, K. (1991) Fibrous clay mineral collapse produced by beam damage during scanning electron microscopy. Clay Mineral. 26 141–5.CrossRefGoogle Scholar
Pyle, J. M., Spear, F. S., Wark, D. A., Daniel, C. G. and Storm, L. C. (2005) Contribution to precision and accuracy of monazite microprobe ages. Amer. Mineral. 90 547–77.Google Scholar
Pyman, M. A. F., Hillyer, J. W. and Posner, A. M. (1978) The conversion of X-ray intensity ratios to compositional ratios in the electron probe analysis of small peaks using mineral standards. Clays Clay Mineral. 26 296–8.CrossRefGoogle Scholar
Reay, A., Johnstone, R. A. and Kawachi, Y. (1989) Kaersutite, a possible international microprobe standard. Geostand. Newslett. 13 187–90.CrossRefGoogle Scholar
Reed, R. M. and Milliken, K. L. (2003) How to overcome imaging problems associated with carbonate minerals on SEM-based cathodoluminescence systems. J. Sed. Res. 73 328–32.CrossRefGoogle Scholar
Reed, S. J. B. (2000) Quantitative trace analysis by wavelength-dispersive EPMA. Mikrochim. Acta 132 145–51.CrossRefGoogle Scholar
Reed, S. J. B. and Buckley, A. (1996) Virtual WDS. Mikrochim. Acta Suppl. 13, 479–83.Google Scholar
Reed, S. J. B. and Buckley, A.(1998) Rare-earth element determination in minerals by electron-probe microanalysis: application of spectrum synthesis. Mineral. Mag. 62 1–8.CrossRefGoogle Scholar
Rehbach, W. P. and Karduck, P. (1992) Mikrochim. Acta Suppl. 121 153–60.CrossRef
Reid, A. F., Gottlieb, P., MacDonald, K. J. and Miller P. R. (1985) QEM∗SEM image analysis of ore minerals: volume fraction, liberation, and observational variances. In Applied Mineralogy, ed. Park, W. C., Hausen, W. M. and Hagni, R. D. (New York: Metallurgical Society AIME) pp. 191–204.Google Scholar
Reid, A. M., leRoex, A. P., and Minter, W. E. L. (1988) Composition of gold grains in the Vaal Placer, Klerksdorp, South Africa. Mineral. Deposit. 23 211–7.CrossRefGoogle Scholar
Richard, L. R. and Clarke, D. B. (1990) AMPHIBOL: a program for calculating structural formulae and for classifying and plotting chemical analyses of amphiboles. Amer. Mineral. 75 421–3.Google Scholar
Robinson, B. W. (1998) The “Geosem” (low-vacuum SEM): an under-utilized tool for mineralogy. In Modern Approaches to Ore and Environmental Mineralogy, ed. Cabri, L. J. and Vaughan, D. J., Short Course Series, vol. 27 (Ottawa: Mineralogical Association of Canada) pp. 139–51.Google Scholar
Robinson, B. W., Ware, N. G. and Smith, D. G. W. (1998) Modern electron microprobe trace element analysis in mineralogy. In Modern Approaches to Ore and Environmental Mineralogy, ed. Cabri, L. J. and Vaughan, D. J., Short Course Series, vol. 27 (Ottawa: Mineralogical Association of Canada) pp. 153–80.Google Scholar
Roeder, P. L (1985) Electron-microprobe analysis of minerals for rare-earth elements: use of calculated peak-overlap corrections. Canad. Mineral. 23 263–71.Google Scholar
Schumacher, J. C. (1991) Empirical ferric iron corrections: necessity, assumptions, and effects on selected geothermobarometers. Mineral. Mag. 55 3–18.CrossRefGoogle Scholar
Schwartz, A. J., Kumar, M. and Adams, B. L. (2000) Electron Backscatter Diffraction in Materials Science (New York: Kluwer).CrossRefGoogle Scholar
Sela, J. and Boyde, A. (1977) Cyanide removal of gold from SEM specimens. J. Microsc. 111 229–31.CrossRefGoogle ScholarPubMed
Small, J. A., Newbury, D. E. and Myklebust, R. L. (1979) Analysis of particles and rough samples by FRAME P, a ZAF method incorporating peak-to-background measurements. In Microbeam Analysis – 1979, ed. Newbury, D. E (San Francisco, CA: San Francisco Press) pp. 243–6.Google Scholar
Smart, P. and Tovey, N. K. (1982) Electron Microscopy of Soils and Sediments: Techniques (Oxford: Oxford University Press).Google Scholar
Smith, D. G. W. and Leibowitz, D. (1986) MinIdent: a database for minerals and a computer program for their identification. Canad. Mineral. 24 695–708.Google Scholar
Smith, J. V. and Rivers, M. L. (1995) Synchrotron X-ray microanalysis. In Microprobe Techniques in the Earth Sciences, ed. Potts, P. J., Bowles, J. F. W., Reed, S. J. B. and Cave, M. R. (London: Chapman and Hall) pp. 163–233.CrossRefGoogle Scholar
Smith, M. P. (1986) Silver coating inhibits electron microprobe beam damage of carbonates. J. Sed. Petrol. 56 560–1.CrossRefGoogle Scholar
Spear, F. S. and Daniel, C. G. (1998). 3-Dimensional imaging of garnet porphyroblast sizes and chemical zoning: nucleation and growth history in the garnet zone. Geol. Mater Res. 1 1–44.Google Scholar
Statham, P. J. and Pawley, J. (1977) A new method for particle X-ray microanalysis based on peak-to-backround measurement. Scanning Electron Microsc.1978/ I 445–54.Google Scholar
Stormer, J. C., Pierson, M. L. and Tacker, R. C. (1993) Variation of F and Cl X-ray intensity due to anisotropic diffusion in apatite during electron microprobe analysis. Amer. Mineral. 78 641–8.Google Scholar
Tindle, A. G. and Webb, P. C. (1990) Estimation of lithium contents in trioctahedral micas using microprobe data: application to micas from granitic rocks. Eur. J. Mineral. 2 595–610.CrossRefGoogle Scholar
Tindle, A. G. and Webb, P. C.(1994) PROBE-AMPH – a spreadsheet program to classify microprobe-derived amphibole analyses. Computers Geosci. 20 1201–28.CrossRefGoogle Scholar
Uwins, P. J. R., Baker, J. C. and Mackinnon, I. D. R. (1993) Imaging fluid/solid interactions in hydrocarbon reservoir rocks. Microsc. Res. Tech. 25 465–73.CrossRefGoogle ScholarPubMed
Waldron, K., Lee, M. R. and Parsons, I. (1994) The microstructures of perthitic alkali feldspars revealed by hydrofluoric acid etching. Contrib. Mineral. Petrol. 116 360–4.CrossRefGoogle Scholar
Walker, B. M. (1978) Chalk pore geometry using resin pore casts. In Scanning Electron Microscopy in the Study of Sediments, ed. Whalley, W. B. (Norwich: Geo Abstracts).Google Scholar
Wallace, P. J. and Carmichael, I. S. E. (1994) S speciation in submarine basaltic glasses as determined by measurements of S Kα X-ray wavelength shifts. Amer. Mineral. 79 161–7.Google Scholar
Ware, N. G. (1991) Combined energy-dispersive–wavelength-dispersive quantitative electron microprobe analysis. X-Ray Spectrom. 20 73–9.CrossRef
Watt, G. R., Griffin, B. J. and Kinny, P. D. (2000) Charge contrast imaging of geological materials in the environmental scanning electron microscope. Amer. Mineral. 85 1784–94.CrossRefGoogle Scholar
Watt, G. R., Oliver, N. H. S. and Griffin, B. J. (2000) Evidence for reaction-induced microfracturing in granulite facies migmatites. Geology 28 327–30.2.0.CO;2>CrossRefGoogle Scholar
Watt, G. R., Wright, P., Galloway, S. and McLean, C. (1997) Cathodoluminescence and trace element zoning in quartz phenocrysts and xenocrysts. Geochim. Cosmochim. Acta 61 4337–48.CrossRefGoogle Scholar
Wiens, R. C., Burnett, D. S., Armstrong, J. T. and Johnson, M. L. (1994) A simple method to recognize and correct for surface roughness in scanning electron microscope energy-dispersive spectroscopy. Microbeam Anal. 3 117–24.Google Scholar
Willich, P. and Obertop, D. (1990) Quantitative EPMA of ultra-light elements in non-conducting materials. In Proc. 12th ICXOM, Cracow, ed. Jasleńska, S. and Maksymowicz, J. (Kraków: Academy of Mining Metallurgy) pp. 100–3.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • S. J. B. Reed, University of Cambridge
  • Book: Electron Microprobe Analysis and Scanning Electron Microscopy in Geology
  • Online publication: 03 December 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511610561.012
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • S. J. B. Reed, University of Cambridge
  • Book: Electron Microprobe Analysis and Scanning Electron Microscopy in Geology
  • Online publication: 03 December 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511610561.012
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • S. J. B. Reed, University of Cambridge
  • Book: Electron Microprobe Analysis and Scanning Electron Microscopy in Geology
  • Online publication: 03 December 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511610561.012
Available formats
×