Skip to main content Accessibility help
×
Hostname: page-component-7479d7b7d-qlrfm Total loading time: 0 Render date: 2024-07-12T22:29:19.384Z Has data issue: false hasContentIssue false

13 - Semiconductors

Published online by Cambridge University Press:  20 May 2010

Martin Dressel
Affiliation:
Universität Stuttgart
George Grüner
Affiliation:
University of California, Los Angeles
Get access

Summary

Optical experiments on semiconductors have led to some of the most powerful confirmations of the one-electron theory of solids; these experiments provide ample evidence for direct and indirect gaps, and in addition for excitonic states. Optical studies have also contributed much to our current understanding of doping semiconductors, including the existence and properties of impurity states and the nature of metal–insulator transitions which occur by increasing the dopant concentration. Experiments on amorphous semiconductors highlight the essential differences between the crystalline and the amorphous solid state, and the effects associated with the loss of lattice periodicity. We first focus on experiments performed on pure band semiconductors for which the one-electron theory applies, where direct and indirect transitions and also forbidden transitions are observed; in these materials the subtleties of band structure have also been explored by experimentation. This is followed by examples of the optical effects associated with exciton and impurity states. Subsequently we consider the effects of electron–electron and electron–lattice interactions, and finally we discuss optical experiments on amorphous semiconductors, i.e. on materials for which band theory obviously does not apply.

Band semiconductors

The term band semiconductor refers to materials where the non-conducting state is brought about by the interaction of electrons with the periodic underlying lattice. Single-particle effects – accounted for by band structure calculations – are responsible for the optical properties under such circumstances, these properties reflecting interband transitions.

Type
Chapter
Information
Electrodynamics of Solids
Optical Properties of Electrons in Matter
, pp. 339 - 370
Publisher: Cambridge University Press
Print publication year: 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Semiconductors
  • Martin Dressel, Universität Stuttgart, George Grüner, University of California, Los Angeles
  • Book: Electrodynamics of Solids
  • Online publication: 20 May 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511606168.017
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Semiconductors
  • Martin Dressel, Universität Stuttgart, George Grüner, University of California, Los Angeles
  • Book: Electrodynamics of Solids
  • Online publication: 20 May 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511606168.017
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Semiconductors
  • Martin Dressel, Universität Stuttgart, George Grüner, University of California, Los Angeles
  • Book: Electrodynamics of Solids
  • Online publication: 20 May 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511606168.017
Available formats
×