Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-nmvwc Total loading time: 0 Render date: 2024-06-22T07:07:17.716Z Has data issue: false hasContentIssue false

3 - Probabilistic extreme event attribution

from Part I - Diagnostics and prediction of high-impact weather

Published online by Cambridge University Press:  05 March 2016

Jianping Li
Affiliation:
Beijing Normal University
Richard Swinbank
Affiliation:
Met Office, Exeter
Richard Grotjahn
Affiliation:
University of California, Davis
Hans Volkert
Affiliation:
Deutsche Zentrum für Luft- und Raumfahrt eV (DLR)
Get access
Type
Chapter

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allan, R. P. et al. (2014). Physically consistent responses of the global atmospheric hydrological cycle in models and observations. Surv. Geophys., 35, 533552.CrossRefGoogle Scholar
Allen, M. R. (2003). Liability for climate change. Nature, 421, 891892.CrossRefGoogle ScholarPubMed
Allen, M. R. and Stott, P. A. (2003). Estimating signal amplitudes in optimal fingerprinting, part I: theory. Clim. Dyn., 21, 477491.CrossRefGoogle Scholar
Baede, A. P. M. (2001). The climate system: an overview. In Climate Change 2001, The Scientific Basis, eds. Houghton, J. T. et al. Cambridge University Press, pp. 8598.Google Scholar
Bindoff, N. L. et al. (2013). Detection and attribution of climate change: from global to regional. In Climate Change 2013: The Physical Science Basis, eds. Stocker, T. F. et al. Cambridge University Press, pp. 867952.Google Scholar
Blackburn, M. and Hoskins, B. J. (2001). Atmospheric variability and extreme autumn rainfall in the UK. Available at <http://www.met.reading.ac.uk/mike/autumn2000.html>..>Google Scholar
Chase, T. N., Wolter, K., Pielke, R. A. Sr., and Rasool, I. (2006). Was the 2003 European summer heat wave unusual in a global context? Geophys. Res. Lett., 33, L23709.CrossRefGoogle Scholar
Christidis, N., Stott, P. A., Zwiers, F. W., Shiogama, H., and Nozawa, T. (2010). Probabilistic estimates of recent changes in temperature: a multi-scale attribution analysis. Clim. Dyn., 34, 11391156.CrossRefGoogle Scholar
Christidis, N. et al. (2012). Human activity and anomalously warm seasons in Europe. International Journal of Climatology, 32, 225239.CrossRefGoogle Scholar
Christidis, N. et al. (2013). A new HadGEM3-A-based system for attribution of weather- and climate-related extreme events. J. Climate, 26, 27562783.CrossRefGoogle Scholar
Coles, S. (2001). An Introduction to Statistical Modeling of Extreme Values. London: Springer.CrossRefGoogle Scholar
Dole, R. et al. (2011). Was there a basis for anticipating the 2010 Russian heat wave? Geophysical Research Letters, 38, L06702.CrossRefGoogle Scholar
Environment Agency (2001). Lessons Learned: Autumn 2000 Floods. Bristol, UK.Google Scholar
Fouillet, A. et al. (2006). Excess mortality related to the August 2003 heat wave in France. International Archives of Occupational and Environmental Health, 80, 1624.CrossRefGoogle Scholar
Gates, W. L. et al. (1999). An overview of the results of the Atmospheric Model Intercomparison Project (AMIP I). Bull. Amer. Meteor. Soc., 80, 2955.2.0.CO;2>CrossRefGoogle Scholar
Ghan, S. J. et al. (2012). Toward a minimal representation of aerosols in climate models: comparative decomposition of aerosol direct, semidirect, and indirect radiative forcing. Journal of Climate, 25, 64616476.CrossRefGoogle Scholar
Hémon, D. and Jougla, E. (2003). Surmortalité liée à la canicule d'août 2003: rapport d'étape. Rapport Remis Au Ministre De La Santé, De La Famille Et Des Personnes Handicapées Le 25 Septembre 2003, 59 pp.Google Scholar
Huggel, C., Stone, D. A., Auffhammer, M., and Hansen, G. (2013). Loss and damage attribution. Nature Climate Change, 3, 694696.CrossRefGoogle Scholar
Kay, A. L., Crooks, S. M., Pall, P., and Stone, D. A. (2011). Attribution of Autumn/Winter 2000 flood risk in England to anthropogenic climate change: a catchment-based study. J. Hydrology, 406, 97112.CrossRefGoogle Scholar
Kinter, J. and Folland, C. (2011). The International CLIVAR Climate of the 20th Century Project: Report of the Fifth Workshop. CLIVAR Exchanges, 16, 3942.Google Scholar
Lorenz, E. N. (1982). Atmospheric predictability experiments with a large numerical-model. Tellus, 34, 505513.CrossRefGoogle Scholar
Luterbacher, J., Dietrich, D., Xoplaki, E., Grosjean, M., and Wanner, H (2004). European seasonal and annual temperature variability, trends, and extremes since 1500. Science, 303, 14991503.CrossRefGoogle ScholarPubMed
Marsh, T. J. and Dale, M. (2002). The UK floods of 2000–2001: a hydrometeorological appraisal. J. Chart. Inst. Wat. Environ. Mgmt., 16, 180188.CrossRefGoogle Scholar
Massey, N. et al. (2006). Data access and analysis with distributed federated data servers in climateprediction.net. Adv. Geosci., 8, 4956.CrossRefGoogle Scholar
Mastrandrea, M. D. et al. (2010). Guidance note for lead authors of the IPCC Fifth Assessment Report on consistent treatment of uncertainties. Intergovernmental Panel on Climate Change (IPCC). Available at <http://www.ipcc.ch>..>Google Scholar
Min, S.-K., Zhang, X. B., Zwiers, F. W., Friederichs, P., and Hense, A. (2009). Signal detectability in extreme precipitation changes assessed from twentieth century climate simulations. Climate Dyn., 32, 95111.CrossRefGoogle Scholar
Min, S.-K., Zhang, X. B., Zwiers, F. W., and Hegerl, G. C. (2011). Human contribution to more-intense precipitation extremes. Nature, 470, 378381.CrossRefGoogle ScholarPubMed
Min, S.-K., Zhang, X. B., Zwiers, F. W., Shiogama, H., Tung, Y.-S., and Wehner, M. F. (2013). Multi-model detection and attribution of extreme temperature changes. J. Clim., 26, 74307451.CrossRefGoogle Scholar
Neale, R. B. et al. (2010). Description of the NCAR Community Atmosphere Model (CAM 4.0). NCAR Technical Note, National Center of Atmospheric Research, TN-485+STR.Google Scholar
Otto, F. E. L., Massey, N., van Oldenborgh, G. J., Jones, R. G., and Allen, M. R. (2012). Reconciling two approaches to attribution of the 2010 Russian heat wave. Geophysical Research Letters, 39, L04702.CrossRefGoogle Scholar
Pall, P., et al. (2011). Anthropogenic greenhouse gas contribution to UK autumn flood risk. Nature, 470, 382385.CrossRefGoogle Scholar
Peterson, T. C., Stott, P. A., and Herring, S., eds. (2012). Explaining extreme events of 2011 from a climate perspective. Bull. Amer. Meteor. Soc., 93, 10411067.CrossRefGoogle Scholar
Peterson, T. C., Hoerling, M. P., Stott, P. A., and Herring, S., eds. (2013). Explaining extreme events of 2012 from a climate perspective. Bull. Amer. Meteor. Soc., 94(9), S1S74.CrossRefGoogle Scholar
Rahmstorf, S., and Coumou, D. (2011). Increase of extreme events in a warming world. Proceedings of the National Academy of Sciences of the United States of America, 108, 1790517909.CrossRefGoogle Scholar
Reichenmiller, P., Spiegel, A., Bresch, D., and Schnarwiler, R. (2010). Weathering Climate Change: Insurance Solutions for More Resilient Communities, ed. Baur, E.. Swiss Reinsurance Company Ltd., Zurich.Google Scholar
Robine, J.-M., Cheung, S. L. K., Le Roy, S. et al. (2008). Death toll exceeded 70,000 in Europe during the summer of 2003. Comptes Rendus Biologies, 331, 171178.CrossRefGoogle Scholar
Schär, C. et al. (2004). The role of increasing temperature variability in European summer heatwaves. Nature, 427, 332336.CrossRefGoogle ScholarPubMed
Shiogama, H. et al. (2013). An event attribution of the 2010 drought in the South Amazon region using the MIROC5 model. Atmospheric Science Letters, 14, 170175.CrossRefGoogle Scholar
Stone, D. A. and Allen, M. R. (2005). The end-to-end attribution problem: from emissions to impacts. Clim. Change, 71, 303318.CrossRefGoogle Scholar
Stone, D. A. et al. (2009). The detection and attribution of human influence on climate. Annu. Rev. Env. Resour., 34, 116.CrossRefGoogle Scholar
Stone, D. A., Paciorek, C. J., Prabhat, Pall, P., and Wehner, M. F. (2013). Inferring the anthropogenic contribution to local temperature extremes. Proceedings of the National Academy of Sciences, 110, E1543.CrossRefGoogle ScholarPubMed
Stott, P. A., Stone, D. A., and Allen, M. R. (2004). Human contribution to the European heatwave of 2003. Nature, 432, 610614.CrossRefGoogle Scholar
Stott, P. A. et al. (2013). Attribution of weather and climate-related events. In Climate Science for Serving Society: Research, Modeling and Prediction Priorities, eds. Asrar, G. R. and Hurrell, J. W.. Springer, pp. 307337.CrossRefGoogle Scholar
Uppala, S. M. et al. (2005). The ERA-40 re-analysis. Q. J. R. Meteorol. Soc., 131, 29613012.CrossRefGoogle Scholar
Wehner, M. F., Smith, R. L., Bala, G., and Duffy, P. (2010). The effect of horizontal resolution on simulation of very extreme US precipitation events in a global atmosphere model. Climate Dynamics, 34, 241247.CrossRefGoogle Scholar
Wergen, G., Hense, A., and Krug, J. (2014). Record occurrence and record values in daily and monthly temperatures. Clim. Dyn., 42, 12751289.CrossRefGoogle Scholar
Wolski, P., Stone, D. A., Tadross, M., Wehner, M. F., and Hewitson, B. (2014). Attribution of floods in the Okavango Basin, Southern Africa. Journal of Hydrology, 511, 350358.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×