Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-4rdrl Total loading time: 0 Render date: 2024-06-27T03:26:22.906Z Has data issue: false hasContentIssue false

15 - European heat waves: the effect of soil moisture, vegetation, and land use

from Part IV - Heat waves and cold-air outbreaks

Published online by Cambridge University Press:  05 March 2016

Jianping Li
Affiliation:
Beijing Normal University
Richard Swinbank
Affiliation:
Met Office, Exeter
Richard Grotjahn
Affiliation:
University of California, Davis
Hans Volkert
Affiliation:
Deutsche Zentrum für Luft- und Raumfahrt eV (DLR)
Get access
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alexander, L. (2010). Extreme heat rooted in dry soils. Nature Geosciences, 4(1), 1213. Available at: http://dx.doi.org/10.1038/ngeo1045.CrossRefGoogle Scholar
Avissar, R. and Werth, D. (2005). Global hydroclimatological teleconnections resulting from tropical deforestation. Journal of Hydrometeorology, 6, 134145.CrossRefGoogle Scholar
Barriopedro, D. et al. (2011). The hot summer of 2010: redrawing the temperature record map of Europe. Science (New York, N.Y.), 332(6026), 220224. Available at: http://www.ncbi.nlm.nih.gov/pubmed/21415316 [Accessed July 27, 2012].CrossRefGoogle ScholarPubMed
Bieli, M., Pfahl, S., and Wernli, H. (2014). A Lagrangian investigation of hot and cold temperature extremes in Europe. Q. J. R. Meteorol. Soc.. doi: 10.1002/qj.2339CrossRefGoogle Scholar
Black, E., Blackburn, M., Harrison, G., Hoskins, B., and Methven, J. (2004). Factors contributing to the summer 2003 European heatwave. Weather, 59(8), 217223.CrossRefGoogle Scholar
Black, E. and Sutton, R. T. (2006). The influence of oceanic conditions on the hot Europen summer of 2003. Climate Dynamics, 28. 5366.CrossRefGoogle Scholar
Cassou, C., Terray, L., and Phillips, A. (2005). Tropical Atlantic influence on European heat waves. Journal of Climate, 18, 28052811.CrossRefGoogle Scholar
Chagnon, F. J. F. and Bras, R. L. (2005). Contemporary climate change in the Amazon. Geophysical Research Letters, 32(13), 14. Available at: http://www.agu.org/pubs/crossref/2005/2005GL022722.shtml [Accessed August 21, 2012].CrossRefGoogle Scholar
Chang, F.-C. and Wallace, J. M. (1987). Meteorological conditions during heat waves and droughts in the United States Great Plains. Monthly Weather Review, 115, 12531269.2.0.CO;2>CrossRefGoogle Scholar
Ciais, P. et al. (2005). Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature, 437(7058), 529533. Available at: http://www.ncbi.nlm.nih.gov/pubmed/16177786 [Accessed July 25, 2012].CrossRefGoogle ScholarPubMed
Conil, S., Douville, H. and Tyteca, S. (2006). The relative influence of soil moisture and SST in climate predictability explored within ensembles of AMIP type experiments. Climate Dynamics, 28(2–3), 125145. Available at: http://link.springer.com/10.1007/s00382-006-0172-2 [Accessed July 6, 2013].CrossRefGoogle Scholar
COPA COGECA. (2003). Assessment of the impact of the heat wave and drought of the summer 2003 on agriculture and forestry. Fact sheets of the Committee of Agricultural Organisations in the European Union and the General Committee for Agricultural Cooperation in the European Union. Available at: http://www.copa-cogeca.com/pdf/pocc 03 78i4 1e.pdf.Google Scholar
D'Andrea, F. et al. (2006). Hot and cool summers: Multiple equilibria of the continental water cycle. Geophysical Research Letters, 33(24). Available at: http://www.agu.org/pubs/crossref/2006/2006GL027972.shtml [Accessed September 14, 2012].CrossRefGoogle Scholar
D'Andrea, F. et al. (1998). Northern Hemisphere atmospheric blocking as simulated by 15 atmospheric general circulation models in the period 1979–1988. Climate Dynamics, 14(6), 385407. Available at: http://www.springerlink.com/openurl.asp?genre=article&id=doi:10.1007/s003820050230.CrossRefGoogle Scholar
De Bono, A., Peduzzi, P., Kluser, S., and Giuliani, G. (2004). Impacts of Summer 003 Heat Wave in Europe. (333.7–333.9). United Nations Environment Programme. Retrieved from http://archive-ouverte.unige.ch/unige:32255Google Scholar
Della-Marta, P.M. et al. (2007). Doubled length of western European summer heat waves since 1880. Journal of Geophysical Research, 112(D15), p.D15103. Available at: http://doi.wiley.com/10.1029/2007JD008510 [Accessed May 23, 2014].CrossRefGoogle Scholar
Dufresne, J.-L. and Bony, S. (2008). An assessment of the primary sources of spread of global warming estimates from coupled atmosphere–ocean models. Journal of Climate, 21(19), 51355144. Available at: http://journals.ametsoc.org/doi/abs/10.1175/2008JCLI2239.1 [Accessed February 10, 2014].CrossRefGoogle Scholar
Ek, M. B. and Holtslag, A. a. M. (2004). Influence of soil moisture on boundary layer cloud development. Journal of Hydrometeorology, 5, 8699.2.0.CO;2>CrossRefGoogle Scholar
Eltahir, E. A. B. (1998). A soil moisture-rainfall feedback mechanism: 1. Theory and observations. Water Resources Research, 34(4), 765776. Available at: http://doi.wiley.com/10.1029/97WR03499.CrossRefGoogle Scholar
Ferranti, L. and Viterbo, P. (2006). The European summer of 2003: Sensitivity to soil water initial conditions. Journal of Climate, 2005, 36593680.CrossRefGoogle Scholar
Feudale, L. and Shukla, J. (2007). Role of Mediterranean SST in enhancing the European heat wave of summer 2003. Geophysical Research Letters, 34(3), 25. Available at: http://www.agu.org/pubs/crossref/2007/2006GL027991.shtml [Accessed March 14, 2012].CrossRefGoogle Scholar
Findell, K. L. and Eltahir, E. A. B. (2003). Atmospheric controls on soil moisture – boundary layer interactions. Part I: Framework development. Journal of Hydrometeorology, 4(3), 552569.2.0.CO;2>CrossRefGoogle Scholar
Fink, A. H., Leckebusch, G. C., and Pinto, J. G. (2004). The 2003 European summer heatwaves and drought – synoptic diagnosis and impacts. Weather, 59, 209216.CrossRefGoogle Scholar
Fischer, E. M. et al. (2007). Contribution of land–atmosphere coupling to recent European summer heat waves. Geophysical Research Letters, 34(6), 16. Available at: http://www.agu.org/pubs/crossref/2007/2006GL029068.shtml [Accessed March 27, 2012].CrossRefGoogle Scholar
Fischer, E. M. and Schär, C. (2010). Consistent geographical patterns of changes in high-impact European heatwaves. Nature Geoscience, 3(6), 398403. Available at: http://www.nature.com/doifinder/10.1038/ngeo866 [Accessed May 23, 2014].CrossRefGoogle Scholar
Fouillet, a et al. (2006). Excess mortality related to the August 2003 heat wave in France. International Archives of Occupational and Environmental Health, 80(1), 1624. Available at: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1950160&tool=pmcentrez&rendertype=abstract [Accessed May 6, 2014].CrossRefGoogle Scholar
Fouillet, a et al. (2008). Has the impact of heat waves on mortality changed in France since the European heat wave of summer 2003? A study of the 2006 heat wave. International Journal of Epidemiology, 37(2), 309317. Available at: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2652641&tool=pmcentrez&rendertype=abstract [Accessed May 6, 2014].CrossRefGoogle Scholar
García-Herrera, R. et al. (2010). A review of the European summer heat wave of 2003. Critical Reviews in Environmental Science and Technology, 40(4), 267306. Available at: http://www.tandfonline.com/doi/abs/10.1080/10643380802238137 [Accessed July 27, 2012].CrossRefGoogle Scholar
Gentine, P. et al. (2013). Surface and atmospheric controls on the onset of moist convection over land. Journal of Hydrometeorology, p.130211131121003. Available at: http://journals.ametsoc.org/doi/abs/10.1175/JHM-D-12-0137.1 [Accessed June 24, 2013].Google Scholar
Ghil, M. and Robertson, A. W. (2002). “Waves” vs. “particles” in the atmosphere’ s phase space: A pathway to long-range forecasting ? Proceedings of the National Academy of Sciences of the United States of America, 99, 24932500.CrossRefGoogle ScholarPubMed
Grotjahn, R. and Faure, G. (2008). Composite predictor maps of extraordinary weather events in the Sacramento California region. Weather and Forecasting, 23, 313335.CrossRefGoogle Scholar
Guo, Z., Dirmeyer, P. a., and DelSole, T. (2011). Land surface impacts on subseasonal and seasonal predictability. Geophysical Research Letters, 38(24), p.n/a–n/a. Available at: http://doi.wiley.com/10.1029/2011GL049945 [Accessed June 17, 2013].CrossRefGoogle Scholar
Held, I. M. et al. (2005). Simulation of Sahel drought in the 20th and 21st centuries. Proceedings of the National Academy of Sciences of the United States of America, 102(50), 1789117896.CrossRefGoogle ScholarPubMed
Hirschi, M., Seneviratne, S. I., and Schär, C. (2006a). Seasonal variations in terrestrial water storage for major mid-latitude river basins. J. Hydrometeorol., 7, 3960.CrossRefGoogle Scholar
Hirschi, M., Viterbo, P., and Seneviratne, S. I. (2006b). Basin-scale water-balance estimates of terrestrial water storage variations from ECMWF operational forecast analysis data. Geophys. Res. Lett., 33, L21401.CrossRefGoogle Scholar
Hoerling, M. et al. (2013). Anatomy of an extreme event. Journal of Climate, 26(9), 28112832. Available at: http://journals.ametsoc.org/doi/abs/10.1175/JCLI-D-12-00270.1 [Accessed December 14, 2013].CrossRefGoogle Scholar
Huang, J. and van den Dool, H. M. (1992). Monthly precipitation–temperature prediction over the United States, J. Clim., 13, 11111132.Google Scholar
Hulme, M. (2001). Climatic perspectives on Sahelian dessication: 1973–1998. Global Environmental Change 11, 1929.CrossRefGoogle Scholar
Jung, T., Ferranti, L., and Tompkins, A. M. (2006). Response to the summer of 2003 Mediterranean SST anomalies over Europe and Africa. Journal of Climate, 3, 54395455.CrossRefGoogle Scholar
Kanae, S. et al. (2006). Influence of “realistic” land surface wetness on predictability of seasonal precipitation in boreal summer. Journal of Climate 19, 14501460.CrossRefGoogle Scholar
Khatiwala, S., Shaw, B. E., and Cane, M. a. (2001). Enhanced sensitivity of persistent events to weak forcing in dynamical and stochastic systems: Implications for climate change. Geophysical Research Letters, 28(13), 26332636. Available at: http://doi.wiley.com/10.1029/2000GL012773.\CrossRefGoogle Scholar
Klein Tank, A. M. G. et al. (2002). Daily dataset of 20th-century surface air temperature and precipitation series for the European climate assessment. Int. J. Climatol. 22 14411453.CrossRefGoogle Scholar
Koster, R. D. et al. (2010). Contribution of land surface initialization to subseasonal forecast skill: First results from a multi-model experiment. Geophysical Research Letters, 37(2), p.n/a–n/a. Available at: http://doi.wiley.com/10.1029/2009GL041677 [Accessed July 21, 2013].CrossRefGoogle Scholar
Laaidi, K., Zeghnoun, A., Dousset, B., et al. (2012). The impact of heat islands on mortality in Paris during the August 2003 heat wave. Environmental Health Perspectives, 120(2), 254.CrossRefGoogle ScholarPubMed
Lorenz, R. et al. (2013). How important is vegetation phenology for European climate and heat waves? Journal of Climate, 26(24), 1007710100. Available at: http://journals.ametsoc.org/doi/abs/10.1175/JCLI-D-13-00040.1 [Accessed May 27, 2014].CrossRefGoogle Scholar
Lovejoy, S. (2014). Scaling fluctuation analysis and statistical hypothesis testing of anthropogenic warming. Clim. Dyn., 42, 23392351.CrossRefGoogle Scholar
Meehl, G. a and Tebaldi, C. (2004). More intense, more frequent, and longer lasting heat waves in the 21st century. Science (New York, N.Y.), 305(5686), 994997. Available at: http://www.ncbi.nlm.nih.gov/pubmed/15310900 [Accessed May 23, 2014].CrossRefGoogle Scholar
Michelangeli, P.-A., Vautard, R., and Legras, B. (1995). Weather regimes: recurrence and quasi stationarity. Journal of the Atmospheric Sciences 52(8), 12371256.2.0.CO;2>CrossRefGoogle Scholar
Mueller, B. and Seneviratne, S. I. (2012). Hot days induced by precipitation deficits at the global scale. Proceedings of the National Academy of Sciences of the United States of America, 109(31), 1239812403. Available at: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3411978&tool=pmcentrez&rendertype=abstract [Accessed May 28, 2014].CrossRefGoogle ScholarPubMed
Pielke, R. A. et al. (1998). Interactions between the atmosphere and terrestrial ecosystems : influence on weather and climate. Global Change Biology, 4, 461475.CrossRefGoogle Scholar
Pitman, A. J. et al. (2012). Effects of land cover change on temperature and rainfall extremes in multi-model ensemble simulations. Earth System Dynamics Discussions, 3(2), 597641. Available at: http://www.earth-syst-dynam-discuss.net/3/597/2012/ [Accessed May 28, 2014].Google Scholar
Quesada, B. et al. (2012). Asymmetric European summer heat predictability from wet and dry southern winters and springs. Nature Climate Change, 2(10), 736741. Available at: http://www.nature.com/doifinder/10.1038/nclimate1536 [Accessed December 16, 2013].CrossRefGoogle Scholar
Rahmstorf, S. and Coumou, D. (2011). Increase of extreme events in a warming world. Proceedings of the National Academy of Sciences of the United States of America, 108(44), 1790517909. Available at: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3207670&tool=pmcentrez&rendertype=abstract [Accessed May 23, 2014].CrossRefGoogle Scholar
Rex, D. R. (1950). Blocking action in the middle troposphere and its effect upon regional climate. I. An aerological study of blocking action. Tellus 2, 169211.Google Scholar
Schär, C. et al. (2004). The role of increasing temperature variability in European summer heatwaves. Nature, 427(January), 39263928.CrossRefGoogle ScholarPubMed
Schubert, S. D. et al. (2014). Northern Eurasian heat waves and droughts. Journal of Climate, 27(9), 31693207. Available at: http://journals.ametsoc.org/doi/abs/10.1175/JCLI-D-13-00360.1 [Accessed May 7, 2014].CrossRefGoogle Scholar
Sellers, P. J. et al. (1997). Modeling the exchanges of energy, water, and carbon between continents and the atmosphere. Science, 275(5299), 502509. Available at: http://www.sciencemag.org/cgi/doi/10.1126/science.275.5299.502 [Accessed May 23, 2014].CrossRefGoogle ScholarPubMed
Seneviratne, S. I. et al. (2010). Investigating soil moisture–climate interactions in a changing climate: A review. Earth-Science Reviews, 99(3–4), 125161. Available at: http://linkinghub.elsevier.com/retrieve/pii/S0012825210000139 [Accessed March 2, 2012].CrossRefGoogle Scholar
Seneviratne, S. I. et al. (2006). Land-atmosphere coupling and climate change in Europe. Nature, 443(7108), 205209. Available at: http://www.ncbi.nlm.nih.gov/pubmed/16971947 [Accessed May 22, 2013].CrossRefGoogle ScholarPubMed
Seneviratne, S. I., Donat, M. G., Mueller, B., and Alexander, L. V. (2014). No pause in the increase of hot temperature extremes. Nature, 4(March), 161164.Google Scholar
Sherwood, S. C., Bony, S., and Dufresne, J.-L. (2014). Spread in model climate sensitivity traced to atmospheric convective mixing. Nature, 505(7481), 3742. Available at: http://www.ncbi.nlm.nih.gov/pubmed/24380952 [Accessed January 20, 2014].CrossRefGoogle ScholarPubMed
Shukla, J. and Mintz, Y. (1982). Influence of land–surface evapotranspiration on the Earth's climate, Science, 215, 14981501.CrossRefGoogle ScholarPubMed
Skamarock, W. C., Klemp, J. B., Dudhia, J., et al. (2008). A description of the advanced research WRF version 3. Technical Report, NCAR.Google Scholar
Simons, A., Uppala, S., Dee, D., and Kobayashi, S. (2007). Era-interim: new ecmwf reanalysis products from 1989 onwards. ECMWF Newslett. 110, 2535.Google Scholar
Smirnova, T. G., Brown, J. M., and Benjamin, S. G. (1997). Performance of different soil model configurations in simulating ground surface temperature and surface fluxes. Mon. Wea. Rev. 125, 18701884.2.0.CO;2>CrossRefGoogle Scholar
Smirnova, T. G., Brown, J. M., Benjamin, S. G., and Kim, D. (2000). Parameter-ization of cold season processes in the maps land-surface scheme. J. Geophys. Res. 105, 40774086.CrossRefGoogle Scholar
Stéfanon, M., D'Andrea, F., and Drobinski, P. (2012a). Heatwave classification over Europe and the Mediterranean region. Environmental Research Letters, 7.CrossRefGoogle Scholar
Stéfanon, M., D'Andrea, F., Drobinski, Ph., and de Noblet-Ducoudré, N. (2012b). Effects of interactive vegetation phenology on the 2003 summer heat waves. Journal of Geophysical Research, 117(October), 115.CrossRefGoogle Scholar
Stéfanon, M. et al. (2013). Soil moisture–temperature feedbacks at meso-scale during summer heat waves over Western Europe. Climate Dynamics. Available at: http://link.springer.com/10.1007/s00382-013-1794-9 [Accessed June 12, 2013].Google Scholar
Stéfanon, M., Schindler, S., Drobinski, P., de Noblet-Ducoudré, N., and D'Andrea, F. (2014). Simulating the impact of anthropogenic vegetation land cover on temperature over central France in summer 2003 heatwaves. Climate Research, (Lmd). doi:10.3354/cr01230CrossRefGoogle Scholar
Sutton, C., Hamill, T. M. and Warner, T. T. (2006). Will perturbing soil moisture improve warm-season ensemble forecasts ? A proof of concept. Monthly Weather Review 134, 31743189.CrossRefGoogle Scholar
Taylor, C. M. et al. (2012). Afternoon rain more likely over drier soils. Nature, 489(7416), 423426. Available at: http://www.ncbi.nlm.nih.gov/pubmed/22972193 [Accessed August 15, 2013].CrossRefGoogle ScholarPubMed
Vautard, R. et al. (2007). Summertime European heat and drought waves induced by wintertime Mediterranean rainfall deficit. Geophysical Research Letters, 34(7), p.L07711. Available at: http://doi.wiley.com/10.1029/2006GL028001 [Accessed November 19, 2013].CrossRefGoogle Scholar
Vautard, R., Honore, C., Beekmann, M., and Rouil, L. (2005). Simulation of ozone during the August 2003 heat wave and emission control scenarios. Atmospheric Environment, 39, 29572967.CrossRefGoogle Scholar
Weisheimer, A. et al. (2011). On the predictability of the extreme summer 2003 over Europe. Geophysical Research Letters, 38(5), p.n/a–n/a. Available at: http://doi.wiley.com/10.1029/2010GL046455 [Accessed May 28, 2014].CrossRefGoogle Scholar
Westra, D., Steeneveld, G. J. and Holtslag, A. a. M. (2012). Some observational evidence for dry soils supporting enhanced relative humidity at the convective boundary layer top. Journal of Hydrometeorology, 13(4), 13471358. Available at: http://journals.ametsoc.org/doi/abs/10.1175/JHM-D-11-0136.1 [Accessed November 30, 2012].CrossRefGoogle Scholar
Yiou, P. et al. (2007). Inconsistency between atmospheric dynamics and temperatures during the exceptional 2006/2007 fall/winter and recent warming in Europe. Geophysical Research Letters, 34(21), 17. Available at: http://www.agu.org/pubs/crossref/2007/2007GL031981.shtml [Accessed March 14, 2012].CrossRefGoogle Scholar
Zaitchik, B. F., Macalady, A. K., Bonneau, L. R., and Smith, R. B. (2006). Europe's 2003 heat wave: A satellite view of impacts and land–atmosphere feedbacks. Int. J. Climatol., 26, 743769, doi:10.1002/joc.1280.CrossRefGoogle Scholar
Zampieri, M. et al. (2010). Hot European summers and the role of soil moisture in the propagation of Mediterranean drought, Journal of Climate, 22, 135.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×