Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-cjp7w Total loading time: 0 Render date: 2024-06-24T06:47:37.561Z Has data issue: false hasContentIssue false

3 - Network models

Published online by Cambridge University Press:  05 September 2012

Alain Barrat
Affiliation:
Centre de Physique Théorique, Marseille
Marc Barthélemy
Affiliation:
Centre Commissariat à l'Energie Atomique (CEA)
Alessandro Vespignani
Affiliation:
Northeastern University, Boston
Get access

Summary

In this chapter we present a review of network models that will be used to study dynamical processes in the context of computational approaches. These different models will also help to determine the influence that specific network features have on the various phenomena that will be considered in the next chapters. To this end, we will discuss the different modeling approaches and put the activity focused on each of the different dynamical models into the proper perspective. Particular emphasis will be devoted to models which have been developed as theoretical examples of the different specific classes of real-world networks empirically observed.

Randomness and network models

Static random graph models and topology generators such as the paradigmatic Erdős–Rényi model (Erdős and Rényi, 1959; 1960; 1961) and the network generation algorithm of Molloy and Reed (1995) are the simplest network models to include stochasticity as an essential element. They are characterized by an absolute lack of knowledge of the principles that guide the creation of edges between nodes. Lacking any information, the simplest assumption one can make is to connect pairs of nodes at random with a given connection probability p. In its original formulation, an Erdős–Rényi graph GN, E is constructed starting from a set of N different vertices which are joined by E edges whose ends are selected at random among the N vertices.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×