Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-cjp7w Total loading time: 0 Render date: 2024-06-13T15:53:34.149Z Has data issue: false hasContentIssue false

3 - Radiation therapy for gliomas

Published online by Cambridge University Press:  05 March 2016

Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
The Duke Glioma Handbook
Pathology, Diagnosis, and Management
, pp. 49 - 75
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Despeignes, V. Observation concernant un cas de cancer de l’estomac traité par les rayons Roentgen. Lyon Med, 1896;82:428–30; 503.Google Scholar
Freund, L. Ein mit Roentgen-Strahlen Behandeller Fall von Naevus pigmentosus pilferus. Wien Med Wschr, 1897;47:428–34.Google Scholar
Kogelnik, HD. Inauguration of radiotherapy as a new scientific speciality by Leopold Freund 100 years ago. Radiother Oncol, 1997;42(3):203–11.CrossRefGoogle ScholarPubMed
Halperin, EC, Wazer, DE, Perez, CA. The discipline of radiation oncology. In: Halperin, EC, Wazer, DE, Paerez, CA, Brady, LW, eds. Principle and Practice of Radiation Oncology, 6th ed. Philadelphia, PA: Lippincott Williams & Wilkins; 2013, pp. 260.Google Scholar
Coutard, H. Principles of X-ray therapy of malignant disease. Lancet, 1934;2:18.CrossRefGoogle Scholar
Fowler, JF. Fractionation and therapeutic gain. In: Steele, GE, Adams, GE, Peckham, MT, eds. Biological Basis of Radiotherapy. Amsterdam: Elsevier Science; 1983, pp. 181–94.Google Scholar
American Society for Radiation Oncology. Radiation Therapy for Cancer. Fairfax, VA: ASTRO; 2013.Google Scholar
McBride, WH, Withers, HR. Biologic basis of radiation therapy. In: Halperin, EC, Wazer, DE, Perez, CA, Brady, LW, eds. Principles and Practice of Radiation Oncology, 6th ed. Philadelphia, PA: Wolters Kluwer; 2013, pp. 6188.Google Scholar
Barnett, GH, Linskey, ME, Adler, JR, Cozzens, JW, Friedman, WA, Heilbrun, MP, et al. Stereotactic radiosurgery – an organized neurosurgery-sanctioned definition. J Neurosurg, 2007;106(1):15.CrossRefGoogle ScholarPubMed
Soldberg, TD, Balter, JM, Benedict, SH, Fraass, BA, Kavanagh, B, Miyamoto, C, et al. Quality and safety considerations in stereotactic radiosurgery and stereotactic body radiation therapy: executive summary. Practical Radiat Oncol, 2012;2:29.CrossRefGoogle Scholar
Klein, EE, Hanley, J, Bayouth, J, Yin, FF, Simon, W, Dresser, S, et al. Task Group 142 report: quality assurance of medical accelerators. Med Phys, 2009;36(9):4197–212.CrossRefGoogle ScholarPubMed
Benedict, SH, Yenice, KM, Followill, D, Galvin, JM, Hinson, W, Kavanagh, B, et al. Stereotactic body radiation therapy: the report of AAPM Task Group 101. Med Phys, 2010;37(8):4078–101.CrossRefGoogle ScholarPubMed
Bissonnette, JP, Balter, PA, Dong, L, Langen, KM, Lovelock, DM, Miften, M, et al. Quality assurance for image-guided radiation therapy utilizing CT-based technologies: a report of the AAPM TG-179. Med Phys, 2012;39(4):1946–63.CrossRefGoogle ScholarPubMed
Walker, MD, Alexander, E, Jr., Hunt, WE, MacCarty, CS, Mahaley, MS, Jr., Mealey, J, Jr., et al. Evaluation of BCNU and/or radiotherapy in the treatment of anaplastic gliomas. A cooperative clinical trial. J Neurosurg, 1978;49(3):333–43.CrossRefGoogle ScholarPubMed
Walker, MD, Green, SB, Byar, DP, Alexander, E, Jr., Batzdorf, U, Brooks, WH, et al. Randomized comparisons of radiotherapy and nitrosoureas for the treatment of malignant glioma after surgery. N Engl J Med, 1980;303(23):1323–9.CrossRefGoogle ScholarPubMed
Laperriere, N, Zuraw, L, Cairncross, G. Radiotherapy for newly diagnosed malignant glioma in adults: a systematic review. Radiother. Oncol, 2002;64(3):259–73.CrossRefGoogle ScholarPubMed
Walker, MD, Strike, TA, Sheline, GE. An analysis of dose–effect relationship in the radiotherapy of malignant gliomas. Int J Radiat Oncol Biol Phys, 1979;5(10):1725–31.CrossRefGoogle ScholarPubMed
Bleehen, NM, Stenning, SP. A Medical Research Council trial of two radiotherapy doses in the treatment of grades 3 and 4 astrocytoma. The Medical Research Council Brain Tumour Working Party. Br J Cancer, 1991;64(4):769–74.CrossRefGoogle ScholarPubMed
Chang, CH, Horton, J, Schoenfeld, D, Salazer, O, Perez-Tamayo, R, Kramer, S, et al. Comparison of postoperative radiotherapy and combined postoperative radiotherapy and chemotherapy in the multidisciplinary management of malignant gliomas. A joint Radiation Therapy Oncology Group and Eastern Cooperative Oncology Group study. Cancer, 1983;52(6):9971007.3.0.CO;2-2>CrossRefGoogle ScholarPubMed
Nelson, DF, Curran, WJ, Jr., Scott, C, Nelson, JS, Weinstein, AS, Ahmad, K, et al. Hyperfractionated radiation therapy and bis-chlorethyl nitrosourea in the treatment of malignant glioma – possible advantage observed at 72.0 Gy in 1.2 Gy B.I.D. fractions: report of the Radiation Therapy Oncology Group Protocol 8302. Int J Radiat Oncol Biol Phys, 1993;25(2):193207.CrossRefGoogle ScholarPubMed
Laperriere, NJ, Leung, PM, McKenzie, S, Milosevic, M, Wong, S, Glen, J, et al. Randomized study of brachytherapy in the initial management of patients with malignant astrocytoma. Int J Radiat Oncol Biol Phys, 1998;41(5):1005–11.CrossRefGoogle ScholarPubMed
Selker, RG, Shapiro, WR, Burger, P, Blackwood, MS, Arena, VC, Gilder, JC, et al. The Brain Tumor Cooperative Group NIH Trial 87-01: a randomized comparison of surgery, external radiotherapy, and carmustine versus surgery, interstitial radiotherapy boost, external radiation therapy, and carmustine. Neurosurgery, 2002;51(2):343–55; discussion 55–7.CrossRefGoogle ScholarPubMed
Souhami, L, Seiferheld, W, Brachman, D, Podgorsak, EB, Werner-Wasik, M, Lustig, R, et al. Randomized comparison of stereotactic radiosurgery followed by conventional radiotherapy with carmustine to conventional radiotherapy with carmustine for patients with glioblastoma multiforme: report of Radiation Therapy Oncology Group 93-05 protocol. Int J Radiat Oncol Biol Phys, 2004;60(3):853–60.CrossRefGoogle ScholarPubMed
Minniti, G, Lanzetta, G, Scaringi, C, Caporello, P, Salvati, M, Arcella, A, et al. Phase II study of short-course radiotherapy plus concomitant and adjuvant temozolomide in elderly patients with glioblastoma. Int J Radiat Oncol Biol Phys, 2012;83(1):93–9.CrossRefGoogle ScholarPubMed
Hochberg, FH, Pruitt, A. Assumptions in the radiotherapy of glioblastoma. Neurology, 1980;30(9):907–11.CrossRefGoogle ScholarPubMed
Shapiro, WR, Young, DF. Treatment of malignant glioma. A controlled study of chemotherapy and irradiation. Arch Neurol, 1976;33(7):494–50.CrossRefGoogle ScholarPubMed
Wallner, KE, Galicich, JH, Krol, G, Arbit, E, Malkin, MG. Patterns of failure following treatment for glioblastoma multiforme and anaplastic astrocytoma. Int J Radiat Oncol Biol Phys, 1989;16(6):1405–9.CrossRefGoogle ScholarPubMed
Stupp, R, Mason, WP, van den Bent, MJ, et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med, 2005;352:987–96.CrossRefGoogle ScholarPubMed
van den Bent, MJ, Afra, D, de Witte, O, Ben Hassel, M, Schraub, S, Hoang-Xuan, K, et al. Long-term efficacy of early versus delayed radiotherapy for low-grade astrocytoma and oligodendroglioma in adults: the EORTC 22845 randomised trial. Lancet, 2005;366(9490):985–90.CrossRefGoogle ScholarPubMed
Karim, AB, Maat, B, Hatlevoll, R, Menten, J, Rutten, EH, Thomas, DG, et al. A randomized trial on dose–response in radiation therapy of low-grade cerebral glioma: European Organization for Research and Treatment of Cancer (EORTC) study 22844. Int J Radiat Oncol Biol Phys, 1996;36(3):549–56.CrossRefGoogle ScholarPubMed
Shaw, E, Arusell, R, Scheithauer, B, O’Fallon, J, O’Neill, B, Dinapoli, R, et al. Prospective randomized trial of low- versus high-dose radiation therapy in adults with supratentorial low-grade glioma: initial report of a North Central Cancer Treatment Group/Radiation Therapy Oncology Group/Eastern Cooperative Oncology Group study. J Clin Oncol, 2002;20(9):2267–76.CrossRefGoogle ScholarPubMed
Brown, PD, Buckner, JC, O’Fallon, JR, Iturria, NL, Brown, CA, O’Neill, BP, et al. Effects of radiotherapy on cognitive function in patients with low-grade glioma measured by the Folstein mini-mental state examination. J Clin Oncol, 2003;21(13):2519–24.CrossRefGoogle ScholarPubMed
Shaw, EG, Wang, M, Coons, SW, Brachman, DG, Buckner, JC, Stelzer, KJ, et al. Randomized trial of radiation therapy plus procarbazine, lomustine, and vincristine chemotherapy for supratentorial adult low-grade glioma: initial results of RTOG 9802. J Clin Oncol, 2012;30(25):3065–70.CrossRefGoogle ScholarPubMed
Cairncross, G, Wang, M, Shaw, E, Jenkins, R, Brachman, D, Buckner, J, et al. Phase III trial of chemoradiotherapy for anaplastic oligodendroglioma: long-term results of RTOG 9402. J Clin Oncol, 2013;31(3):337–43.CrossRefGoogle ScholarPubMed
Mehta, MP, Won, E, Shaw, EG, Buckner, J, Gilbert, MR, Barger, GR, et al. Mature survival data from RTOG 9802: a phase III study of radiation therapy (RT) with or without procarbazine, CCNU, and vincristine (PCV) for adult patients with high-risk low-grade glioma (LGG). Int J Radiat Oncol Biol Phys, 2014;90(1):S378.CrossRefGoogle Scholar
Chamberlain, MC. Does RTOG 9802 change practice with respect to newly diagnosed low-grade glioma? J Clin Oncol, 2013;31(5):652–3.CrossRefGoogle ScholarPubMed
Cohen, MH, Shen, YL, Keegan, P, Pazdur, R. FDA drug approval summary: bevacizumab (Avastin) as treatment of recurrent glioblastoma multiforme. Oncologist, 2009;14(11):1131–8.CrossRefGoogle ScholarPubMed
Kreisl, TN, Kim, L, Moore, K, Duic, P, Royce, C, Stroud, I, et al. Phase II trial of single-agent bevacizumab followed by bevacizumab plus irinotecan at tumor progression in recurrent glioblastoma. J Clin Oncol, 2009;27(5):740–5.CrossRefGoogle ScholarPubMed
Vredenburgh, JJ, Desjardins, A, Herndon, JE, 2nd, Dowell, JM, Reardon, DA, Quinn, JA, et al. Phase II trial of bevacizumab and irinotecan in recurrent malignant glioma. Clin Cancer Res, 2007;13(4):1253–9.CrossRefGoogle ScholarPubMed
Fogh, SE, Andrews, DW, Glass, J, Curran, W, Glass, C, Champ, C, et al. Hypofractionated stereotactic radiation therapy: an effective therapy for recurrent high-grade gliomas. J Clin Oncol, 2010;28(18):3048–53.CrossRefGoogle ScholarPubMed
Cabrera, HN, Almeida, AN, Silva, CC, Fonoff, ET, Martin, MG, Leite, C da C, et al. Use of intraoperative MRI for resection of gliomas. Arq Neuro-psiquiatr, 2011;69(6):949–53.CrossRefGoogle ScholarPubMed
Cuneo, KC, Vredenburgh, JJ, Sampson, JH, Reardon, DA, Desjardins, A, Peters, KB, et al. Safety and efficacy of stereotactic radiosurgery and adjuvant bevacizumab in patients with recurrent malignant gliomas. Int J Radiat Oncol Biol Phys, 2012;82(5):2018–24.CrossRefGoogle ScholarPubMed
Gutin, PH, Iwamoto, FM, Beal, K, Mohile, NA, Karimi, S, Hou, BL, et al. Safety and efficacy of bevacizumab with hypofractionated stereotactic irradiation for recurrent malignant gliomas. Int J Radiat Oncol Biol Phys, 2009;75(1):156–63.CrossRefGoogle ScholarPubMed
Lee, DY, Chunta, JL, Park, SS, Huang, J, Martinez, AA, Grills, IS, et al. Pulsed versus conventional radiation therapy in combination with temozolomide in a murine orthotopic model of glioblastoma multiforme. Int J Radiat Oncol Biol Phys, 2013;86(5):978–85.CrossRefGoogle Scholar
Shaw, E, Scott, C, Souhami, L, Dinapoli, R, Kline, R, Loeffler, J, et al. Single dose radiosurgical treatment of recurrent previously irradiated primary brain tumors and brain metastases: final report of RTOG protocol 90-05. Int J Radiat Oncol Biol Phys, 2000;47(2):291–8.CrossRefGoogle ScholarPubMed
Balagamwala, EH, Chao, ST, Suh, JH. Principles of radiobiology of stereotactic radiosurgery and clinical applications in the central nervous system. Technol Cancer Res Treat, 2012;11(1):313.CrossRefGoogle ScholarPubMed
Kirkpatrick, JP, Meyer, JJ, Marks, LB. The linear-quadratic model is inappropriate to model high dose per fraction effects in radiosurgery. Semin Radiat Oncol, 2008;18(4):240–3.CrossRefGoogle ScholarPubMed
Kirkpatrick, JP, Brenner, DJ, Orton, CG. Point/counterpoint. The linear-quadratic model is inappropriate to model high dose per fraction effects in radiosurgery. Med Phys, 2009;36(8):3381–4.CrossRefGoogle ScholarPubMed
Cho, KH, Hall, WA, Gerbi, BJ, Higgins, PD, McGuire, WA, Clark, HB. Single dose versus fractionated stereotactic radiotherapy for recurrent high-grade gliomas. Int J Radiat Oncol Biol Phys, 1999;45(5):1133–41.CrossRefGoogle ScholarPubMed
Hall, WA, Djalilian, HR, Sperduto, PW, Cho, KH, Gerbi, BJ, Gibbons, JP, et al. Stereotactic radiosurgery for recurrent malignant gliomas. J Clin Oncol, 1995;13(7):1642–8.CrossRefGoogle ScholarPubMed
Kong, DS, Lee, JI, Park, K, Kim, JH, Lim, DH, Nam, DH. Efficacy of stereotactic radiosurgery as a salvage treatment for recurrent malignant gliomas. Cancer, 2008;112(9):2046–51.CrossRefGoogle ScholarPubMed
Shrieve, DC, Alexander, E, 3rd, Wen, PY, Fine, HA, Kooy, HM, Black, PM, et al. Comparison of stereotactic radiosurgery and brachytherapy in the treatment of recurrent glioblastoma multiforme. Neurosurgery, 1995;36(2):275–82; discussion 82–4.CrossRefGoogle ScholarPubMed
Moeller, BJ, Cao, Y, Li, CY, Dewhirst, MW. Radiation activates HIF-1 to regulate vascular radiosensitivity in tumors: role of reoxygenation, free radicals, and stress granules. Cancer Cell, 2004;5(5):429–41.CrossRefGoogle ScholarPubMed
Moeller, BJ, Dewhirst, MW. Raising the bar: how HIF-1 helps determine tumor radiosensitivity. Cell Cycle, 2004;3(9):1107–10.CrossRefGoogle ScholarPubMed
Moeller, BJ, Dreher, MR, Rabbani, ZN, Schroeder, T, Cao, Y, Li, CY, et al. Pleiotropic effects of HIF-1 blockade on tumor radiosensitivity. Cancer Cell, 2005;8(2):99110.CrossRefGoogle ScholarPubMed
Boothe, D, Young, R, Yamada, Y, Prager, A, Chan, T, Beal, K. Bevacizumab as a treatment for radiation necrosis of brain metastases post stereotactic radiosurgery. Neuro-Oncology, 2013;15(9):1257–63.CrossRefGoogle ScholarPubMed
Levin, VA, Bidaut, L, Hou, P, Kumar, AJ, Wefel, JS, Bekele, BN, et al. Randomized double-blind placebo-controlled trial of bevacizumab therapy for radiation necrosis of the central nervous system. Int J Radiat Oncol Biol Phys, 2011;79(5):1487–95.CrossRefGoogle ScholarPubMed
Torcuator, R, Zuniga, R, Mohan, YS, Rock, J, Doyle, T, Anderson, J, et al. Initial experience with bevacizumab treatment for biopsy confirmed cerebral radiation necrosis. J Neuro-Oncol, 2009;94(1):63–8.CrossRefGoogle ScholarPubMed
Cabrera, AR, Cuneo, KC, Desjardins, A, Sampson, JH, McSherry, F, Herndon, JE, 2nd, et al. Concurrent stereotactic radiosurgery and bevacizumab in recurrent malignant gliomas: a prospective trial. Int J Radiat Oncol Biol Phys, 2013;86(5):873–9.CrossRefGoogle ScholarPubMed
Hundsberger, T, Brugge, D, Putora, PM, Weder, P, Weber, J, Plasswilm, L. Re-irradiation with and without bevacizumab as salvage therapy for recurrent or progressive high-grade gliomas. J Neuro-Oncol, 2013;112(1):133–9.CrossRefGoogle ScholarPubMed
Park, KJ, Kano, H, Iyer, A, Liu, X, Niranjan, A, Flickinger, JC, et al. Salvage gamma knife stereotactic radiosurgery followed by bevacizumab for recurrent glioblastoma multiforme: a case-control study. J Neuro-Oncol, 2012;107(2):323–33.CrossRefGoogle ScholarPubMed
Torcuator, RG, Thind, R, Patel, M, Mohan, YS, Anderson, J, Doyle, T, et al. The role of salvage reirradiation for malignant gliomas that progress on bevacizumab. J Neuro-Oncol, 2010;97(3):401–7.CrossRefGoogle ScholarPubMed
Shapiro, LQ, Beal, K, Goenka, A, Karimi, S, Iwamoto, FM, Yamada, Y, et al. Patterns of failure after concurrent bevacizumab and hypofractionated stereotactic radiation therapy for recurrent high-grade glioma. Int J Radiat Oncol Biol Phys, 2013;85(3):636–42.CrossRefGoogle ScholarPubMed
Patel, M, Siddiqui, F, Jin, JY, Mikkelsen, T, Rosenblum, M, Movsas, B, et al. Salvage reirradiation for recurrent glioblastoma with radiosurgery: radiographic response and improved survival. J Neuro-Oncol, 2009;92(2):185–91.CrossRefGoogle ScholarPubMed
Niyazi, M, Ganswindt, U, Schwarz, SB, Kreth, FW, Tonn, JC, Geisler, J, et al. Irradiation and bevacizumab in high-grade glioma retreatment settings. Int J Radiat Oncol Biol Phys, 2012;82(1):6776.CrossRefGoogle ScholarPubMed
McKenzie, JT, Guarnaschelli, JN, Vagal, AS, Warnick, RE, Breneman, JC. Hypofractionated stereotactic radiotherapy for unifocal and multifocal recurrence of malignant gliomas. J Neuro-Oncol, 2013;113(3):403–9.CrossRefGoogle ScholarPubMed
Douw, L, Klein, M, Fagel, SS, van den Heuvel, J, Taphoorn, MJ, Aaronson, NK, et al. Cognitive and radiological effects of radiotherapy in patients with low-grade glioma: long-term follow-up. Lancet Neurol, 2009;8(9):810–18.CrossRefGoogle ScholarPubMed
Mayo, C, Martel, MK, Marks, LB, Flickinger, J, Nam, J, Kirkpatrick, J. Radiation dose–volume effects of optic nerves and chiasm. Int J Radiat Oncol Biol Phys, 2010;76(3 Suppl):S2835.CrossRefGoogle ScholarPubMed
Hall, EJ, Giaccia, AJ. Radiobiology for the Radiologist, 7th ed. Philadelphia, PA: Wolters Kluwer Health/Lippincott Williams & Wilkins; 2012, pp. ix, 546.Google Scholar
Lawrence, YR, Li, XA, el Naqa, I, Hahn, CA, Marks, LB, Merchant, TE, et al. Radiation dose–volume effects in the brain. Int J Radiat Oncol Biol Phys, 2010;76(3 Suppl):S207.Google ScholarPubMed
Kirkpatrick, JP, Marks, LB, Mayo, C, Lawrence, YR, Bhandare, N, Ryu, S. Estimating normal tissue toxicity in radiosurgery of the CNS: application and limitations of QUANTEC. J Radiosurg SBRT, 2011;1(2):95107.Google ScholarPubMed
Mayo, C, Yorke, E, Merchant, TE. Radiation associated brainstem injury. Int J Radiat Oncol Biol Phys, 2010;76(3 Suppl):S3641.CrossRefGoogle ScholarPubMed
Merchant, TE, Chitti, RM, Li, C, Xiong, X, Sanford, RA, Khan, RB. Factors associated with neurological recovery of brainstem function following postoperative conformal radiation therapy for infratentorial ependymoma. Int J Radiat Oncol Biol Phys, 2010;76(2):496503.CrossRefGoogle ScholarPubMed
Foote, KD, Friedman, WA, Buatti, JM, Meeks, SL, Bova, FJ, Kubilis, PS. Analysis of risk factors associated with radiosurgery for vestibular schwannoma. J Neurosurg, 2001;95(3):440–9.CrossRefGoogle ScholarPubMed
Kondziolka, D, Lunsford, LD, McLaughlin, MR, Flickinger, JC. Long-term outcomes after radiosurgery for acoustic neuromas. N Engl J Med, 1998;339(20):1426–33.CrossRefGoogle ScholarPubMed
Bhandare, N, Jackson, A, Eisbruch, A, Pan, CC, Flickinger, JC, Antonelli, P, et al. Radiation therapy and hearing loss. Int J Radiat Oncol Biol Phys, 2010;76(3 Suppl):S507.CrossRefGoogle ScholarPubMed
Chen, WC, Jackson, A, Budnick, AS, Pfister, DG, Kraus, DH, Hunt, MA, et al. Sensorineural hearing loss in combined modality treatment of nasopharyngeal carcinoma. Cancer, 2006;106(4):820–9.CrossRefGoogle ScholarPubMed
Pan, CC, Eisbruch, A, Lee, JS, Snorrason, RM, Ten Haken, RK, Kileny, PR. Prospective study of inner ear radiation dose and hearing loss in head-and-neck cancer patients. Int J Radiat Oncol Biol Phys, 2005;61(5):1393–402.CrossRefGoogle ScholarPubMed
Honore, HB, Bentzen, SM, Moller, K, Grau, C. Sensori-neural hearing loss after radiotherapy for nasopharyngeal carcinoma: individualized risk estimation. Radiother Oncol, 2002;65(1):916.CrossRefGoogle ScholarPubMed
Kwong, DL, Wei, WI, Sham, JS, Ho, WK, Yuen, PW, Chua, DT, et al. Sensorineural hearing loss in patients treated for nasopharyngeal carcinoma: a prospective study of the effect of radiation and cisplatin treatment. Int J Radiat Oncol Biol Phys, 1996;36(2):281–9.CrossRefGoogle ScholarPubMed
Curran, WJ, Jr., Scott, CB, Horton, J, Nelson, JS, Weinstein, AS, Fischbach, AJ, et al. Recursive partitioning analysis of prognostic factors in three Radiation Therapy Oncology Group malignant glioma trials. J Natl Cancer Inst, 1993;85(9):704–10.CrossRefGoogle ScholarPubMed
Li, J, Wang, M, Won, M, Shaw, EG, Coughlin, C, Curran, WJ, Jr., et al. Validation and simplification of the Radiation Therapy Oncology Group recursive partitioning analysis classification for glioblastoma. Int J Radiat Oncol Biol Phys, 2011;81(3):623–30.Google ScholarPubMed
Stupp, R, Mason, WP, van den Bent, MJ, Weller, M, Fisher, B, Taphoorn, MJ, et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med, 2005;352(10):987–96.CrossRefGoogle ScholarPubMed
Keime-Guibert, F, Chinot, O, Taillandier, L, Cartalat-Carel, S, Frenay, M, Kantor, G, et al. Radiotherapy for glioblastoma in the elderly. N Engl J Med, 2007;356(15):1527–35.CrossRefGoogle ScholarPubMed
Scott, J, Tsai, YY, Chinnaiyan, P, Yu, HH. Effectiveness of radiotherapy for elderly patients with glioblastoma. Int J Radiat Oncol Biol Phys, 2011;81(1):206–10.CrossRefGoogle ScholarPubMed
Roa, W, Brasher, PM, Bauman, G, Anthes, M, Bruera, E, Chan, A, et al. Abbreviated course of radiation therapy in older patients with glioblastoma multiforme: a prospective randomized clinical trial. J Clin Oncol, 2004;22(9):1583–8.CrossRefGoogle ScholarPubMed
Stupp, R, Hegi, ME, Mason, WP, van den Bent, MJ, Taphoorn, MJ, Janzer, RC, et al. Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol, 2009;10(5):459–66.CrossRefGoogle Scholar
Gallego Perez-Larraya, J, Ducray, F, Chinot, O, Catry-Thomas, I, Taillandier, L, Guillamo, JS, et al. Temozolomide in elderly patients with newly diagnosed glioblastoma and poor performance status: an ANOCEF phase II trial. J Clin Oncol, 2011;29(22):3050–5.Google ScholarPubMed
Malmstrom, A, Gronberg, BH, Marosi, C, Stupp, R, Frappaz, D, Schultz, H, et al. Temozolomide versus standard 6-week radiotherapy versus hypofractionated radiotherapy in patients older than 60 years with glioblastoma: the Nordic randomised, phase 3 trial. Lancet Oncol, 2012;13(9):916–26.CrossRefGoogle ScholarPubMed
Wick, W, Platten, M, Meisner, C, Felsberg, J, Tabatabai, G, Simon, M, et al. Temozolomide chemotherapy alone versus radiotherapy alone for malignant astrocytoma in the elderly: the NOA-08 randomised, phase 3 trial. Lancet Oncol, 2012;13(7):707–15.CrossRefGoogle ScholarPubMed
Combs, SE, Thilmann, C, Edler, L, Debus, J, Schulz-Ertner, D. Efficacy of fractionated stereotactic reirradiation in recurrent gliomas: long-term results in 172 patients treated in a single institution. J Clin Oncol, 2005;23(34):8863–9.CrossRefGoogle ScholarPubMed
Combs, SE, Widmer, V, Thilmann, C, Hof, H, Debus, J, Schulz-Ertner, D. Stereotactic radiosurgery (SRS): treatment option for recurrent glioblastoma multiforme (GBM). Cancer, 2005;104(10):2168–73.CrossRefGoogle ScholarPubMed
Biswas, T, Okunieff, P, Schell, MC, Smudzin, T, Pilcher, WH, Bakos, RS, et al. Stereotactic radiosurgery for glioblastoma: retrospective analysis. Radiat Oncol, 2009;4:11.Google Scholar
Sirin, S, Oysul, K, Surenkok, S, Sager, O, Dincoglan, F, Dirican, B, et al. Linear accelerator-based stereotactic radiosurgery in recurrent glioblastoma: a single center experience. Vojnosanit Pregl, 2011;68(11):961–6.CrossRefGoogle ScholarPubMed
Elliott, RE, Parker, EC, Rush, SC, Kalhorn, SP, Moshel, YA, Narayana, A, et al. Efficacy of gamma knife radiosurgery for small-volume recurrent malignant gliomas after initial radical resection. World Neurosurg, 2011;76(1–2):128–40; discussion 61–2.CrossRefGoogle ScholarPubMed
Skeie, BS, Enger, PO, Brogger, J, Ganz, JC, Thorsen, F, Heggdal, JI, et al. Gamma knife surgery versus reoperation for recurrent glioblastoma multiforme. World Neurosurg, 2012;78(6):658–69.CrossRefGoogle ScholarPubMed
Larson, DA, Prados, M, Lamborn, KR, Smith, V, Sneed, PK, Chang, S, et al. Phase II study of high central dose gamma knife radiosurgery and marimastat in patients with recurrent malignant glioma. Int J Radiat Oncol Biol Phys, 2002;54(5):1397–404.CrossRefGoogle ScholarPubMed
Minniti, G, Scaringi, C, De Sanctis, V, Lanzetta, G, Falco, T, Di Stefano, D, et al. Hypofractionated stereotactic radiotherapy and continuous low-dose temozolomide in patients with recurrent or progressive malignant gliomas. J Neuro-Oncol, 2013;111(2):187–94.CrossRefGoogle ScholarPubMed
Gabayan, AJ, Green, SB, Sanan, A, Jenrette, J, Schultz, C, Papagikos, M, et al. GliaSite brachytherapy for treatment of recurrent malignant gliomas: a retrospective multi-institutional analysis. Neurosurgery, 2006;58(4):701–9.CrossRefGoogle ScholarPubMed
Chan, TA, Weingart, JD, Parisi, M, Hughes, MA, Olivi, A, Borzillary, S, et al. Treatment of recurrent glioblastoma multiforme with GliaSite brachytherapy. Int J Radiat Oncol Biol Phys, 2005;62(4):1133–9.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×