Skip to main content Accessibility help
×
Hostname: page-component-84b7d79bbc-tsvsl Total loading time: 0 Render date: 2024-07-25T22:51:35.845Z Has data issue: false hasContentIssue false

6 - Distillation Trajectories in Infinite Complex Columns and Complexes

Published online by Cambridge University Press:  08 August 2009

F. B. Petlyuk
Affiliation:
ECT Service, Moscow
Get access

Summary

Introduction

This chapter extends the geometric description of the distillation process to infinite complex columns and complexes, and then on this basis to develop methods of their calculation.

Here we understand by complex columns a countercurrent cascade without branching of flows, without recycles and bypasses, which, in contrast to simple columns, contains more than two sections. The complex column is a column with several inputs and/or outputs of flows. The column of extractive distillation with two inputs of flows – feed input and entrainer input – is an example of a complex column.

We understand by distillation complex a countercurrent cascade with branching of flows, with recycles or bypasses of flows. Columns with side stripping or side rectifier and columns with completely connected thermal flows (the so-called “Petlyuk columns”) are examples of distillation complexes with branching of flows. A column of extractive distillation, together with a column of entrainer regeneration, make an example of a complex with recycle of flows. Columns of this complex work independently of each other; therefore, we do not examine it in this chapter, and the questions of its usage in separation of azeotropic mixtures and questions of determination of entrainer optimal flow rate are discussed in the following chapters.

The fundamental difference between complex columns and complexes and simple columns lies in the availability of intermediate sections (besides the top and the bottom ones). The intermediate sections exchange vapor and liquid flows with other sections or with the decanter.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agrawal, R. (1996). Synthesis of Distillation Column Configurations for a Multicomponent Separation. Ind. Eng. Chem. Res., 35, 1059–71CrossRefGoogle Scholar
Agrawal, R. (1999). More Operable Fully Thermally Coupled Distillation Column Configurations for Multicomponent Distillation. Trans IChemE., 77, Part A, 543–53CrossRefGoogle Scholar
Agrawal, R., & Fidkowski, Z. T. (1998). More Operable Arrangements of Fully Thermally Coupled Distillation Columns. AIChE J., 44, 2565–81CrossRefGoogle Scholar
Agrawal, R., Woodward, D. W., & Modi, A. K. (1997). Coproduction of High Purity Products Using Thermally-Linked Columns. In Distillation and Absorption Conference. Maastricht, pp. 11–520
Amminudin, K. A., Smith, R., Thong, D. Y.-C., & Towler, G. P. (2001). Design and Optimization of Fully Thermally Coupled Distillation Columns. Part 1: Preliminary Design and Optimization Methodology. Trans. IChemE., 79, Part A, 701–15CrossRefGoogle Scholar
Barnes, F. G., Hanson, D. N., & King, C. J. (1972). Calculation of Minimum Reflux for Distillation Columns with Multiple Feeds. Ind. Eng. Chem. Process Des. Dev., 11, 136–47CrossRefGoogle Scholar
Bauer, M. H., & Stichlmair, J. (1995). Synthesis and Optimization of Distillation Sequences for the Separation of Azeotropic Mixtures. Comput. Chem. Eng., 19, 515–20CrossRefGoogle Scholar
Bausa, J., Watzdorf, R. V., & Marquardt, W. (1997). Targeting Sidestream Compositions in Multicomponent Nonideal Distillation. In Distillation and Absorption Conference, Maastricht, pp. 735–44
Becker, H., Godorr, S., & Kreis, H. (2001). Partitioned Distillation Columns – Why, When & How. Chemical Engineering, www.che.com.January
Benedict, M., & Rubin, L. C. (1945). Extractive and Azeotropic Distillation. 1. Theoretical Aspects. Am. Inst. Chem. Eng., 41, 353–70Google Scholar
Bril, Z. A., Mozzhukhin, A. S., Pershina, L. A., & Serafimov, L. A. (1985). Combined Theoretical and Experimental Design Method for Heteroazeotropic Rectification. Theor. Found. Chem. Eng., 19, 449–54Google Scholar
Bril, Z. A., Mozzhukhin, A. S., Petlyuk, F. B., & Serafimov, L. A. (1977). Investigations of Optimal Conditions of Heteroazeotropic Rectification. Theor. Found. Chem. Eng., 11, 675–81Google Scholar
Brugma, A. J. (1942). U. S. Patent No. 2,295,256, September 8
Cahn, R. P., Di Micelli, E., & Di Micelli, A. G. (1962). U.S. Patent No. 3,058,8., October 16
Carlberg, N. A., & Westerberg, A. W. (1989a). Temperature (Heat Diagrams for Complex Columns): 2. Underwood's Method for Side Strippers and Enrichers. Ind. Eng. Chem. Res., 28, 1379–86CrossRefGoogle Scholar
Carlberg, N. A., & Westerberg, A. W. (1989b). Temperature (Heat Diagrams for Complex Columns): 3. Underwood's Method for the Petlyuk Configuration. Ind. Eng. Chem. Res., 28, 1386–97CrossRefGoogle Scholar
Cerda, J., & Westerberg, A. W. (1981). Shortcut Methods for Complex Distillation Columns: 1. Minimum Reflux. Ind. Eng. Chem. Process Des. Dev., 20, 546–57CrossRefGoogle Scholar
Christiansen, A. C., & Scogestad, S. (1997). Energy Savings in Complex Distillation Arrangements: Importance of Using the Preferred Separation. In AIChE annual meeting, paper 199D, Los Angeles
Christiansen, A. C., Scogestad, S., & Lien, K. (1997a). Complex Distillation Arrangement: Extending the Petlyuk Ideas. Comput. Chem. Eng., 21, S237–S240CrossRefGoogle Scholar
Christiansen, A. C., Scogestad, S., & Lien, K. (1997b). Partitioned Petlyuk Arrangements for Quaternary Separations. IChemE Symp Series No. 142, 745
Dhole, V. R., & Linnhoff, B. (1993). Distillation Column Targets. Comput. Chem. Eng., 17, 549–60CrossRefGoogle Scholar
Doherty, M. F., & Malone, M. F. (2001). Conceptual Design of Distillation Systems. New York: McGraw-Hill
Drew, J. W. (1979). Solvent Recovery. In P. A. Schweitzer (Ed.), Handbook of Separation Techniques for Chemical Engineers. New York: McGraw-Hill
Emmrich, G., Gehrke, H., & Ranke, U. (2001, June). Working with an Extractive Distillation Process. Petrochemicals. http://www.eptq.com/eptq/articles/articles_temp
Ennenbach, F., Kolbe, B., & Ranke, U. (2000, September). Divided-Wall Columns (A Novel Distillation Concept. Process Heating/Fluid Flow. http://www.eptq.com/eptq/articles/articles_temp
Fidkowski, Z., & Krolikowski, L. (1986). Thermally Coupled System of Distillation Columns: Optimization Procedure. AIChE J., 32, 537–46CrossRefGoogle Scholar
Fidkowski, Z., & Krolikowski, L. (1987). Minimum Energy Requirements of Thermally Coupled Distillation Systems. AIChE J., 33, 643–53CrossRefGoogle Scholar
Glanz, S., & Stichlmair, J. (1997). Minimum Energy Demand of Distillation Columns with Multiple Feeds. Chem. Eng. Technol., 20, 93–103CrossRefGoogle Scholar
Glinos, K., & Malone, M. F. (1985). Minimum Vapor Flows in a Distillation Column with a Side Stream – Stripper. Ind. Eng. Chem. Process Des. Dev., 24, 1087–90CrossRefGoogle Scholar
Glinos, K., & Malone, M. F. (1988). Optimality Regions for Complex Column Alternatives in Distillation Systems. Chem. Eng. Res. Des., 66, 229–40Google Scholar
Haasze, R. (1950). Verdampfungsgleichgewichte von Mehrstoffgemischen: 6. Ternare Systeme mit Mischungslucke. Z., Naturforschung, 5a, 109–24 (Germ.)Google Scholar
Happe, J., Cornell, P. W., & Eastman, D. (1946). Extractive Distillation of C4-Hydrocarbons Using Furfurol. AIChE J., 4, 189–214Google Scholar
Hoffman, E. G. (1964). Azeotropic and Extractive Distillation. New York: Wiley
Kaibel, G. (1987). Distillation Columns with Vertical Partitions. Chem. Eng. Technol., 10, 92–8CrossRefGoogle Scholar
Kiva, V. N., Timofeev, V. S., Vizhesinghe, A. D. M. C., & Chyue, Vu Tam (1983). The Separation of Binary Azeotropic Mixtures with a Low-Boiling Entrainer. Theses of 5th Distillation Conference in USSR, Severodonezk (Rus.)
Knapp, J. P., & Doherty, M. F. (1990). Thermal Integration of Homogeneous Azeotropic Distillation Sequences. AIChE J., 36, 969–84CrossRefGoogle Scholar
Knapp, J. P., & Doherty, M. F. (1992). A New Pressure-Swing Distillation Process for Separating Homogeneous Azeotropic Mixtures. Ind. Eng. Chem. Res., 31, 346–57CrossRefGoogle Scholar
Knapp, J. P., & Doherty, M. F. (1994). Minimum Entrainer Flows for Extractive Distillation: A Bifurcation Theoretic Approach. AIChE J., 40, 243–68CrossRefGoogle Scholar
Knight, J. R., & Doherty, M. F. (1989). Optimal Design and Synthesis of Homogeneous Azeotropic Distillation Sequences. Ind. Eng. Chem. Res., 28, 564–72CrossRefGoogle Scholar
Kogan, V. B. (1971). Azeotropic and Extractive Distillation. Leningrad: Khimiya (Rus.)
Kohler, J., Kuen, T., & Blass, E. (1994). Minimum Energy Demand for Distillations with Distributed Components and Sideproduct Withdrawals. Chem. Eng. Sci., 49, 3325–30CrossRefGoogle Scholar
Kubierschky, K. (1915). Verfahren zur Gewinnung von Hochprozentigem, bezw. Absolutem Alkohol – Wassergemischen in Unterbrochenem Betriebe. German Patent 287, 897
Levy, S. G., & Doherty, M. F. (1986). Design and Synthesis of Homogeneous Azeotropic Distillation. 4. Minimum Reflux Calculations for Multiple-Feed Columns. Ind. Eng. Chem. Fundam., 25, 269–79CrossRefGoogle Scholar
Nikolaides, J. P., & Malone, M. F. (1987). Approximate Design of Multiple Feed/Side-Stream Distillation Systems. Ind. Eng. Chem. Res., 26, 1839–45CrossRefGoogle Scholar
Nikolaides, J. P., & Malone, M. F. (1988). Approximate Design and Optimization of Thermally Coupled Distillation with Prefractionation. Ind. Eng. Chem. Res., 27, 811–18CrossRefGoogle Scholar
Othmer, D. F. (1978). Azeotropic and Extractive Distillation. In Kirk-Othmer Enciclopedia of Chemical Technology (pp. 352–377). New York: John Wiley
Parkinson, G. (2000). Drip and Drop in Column Internals. Chemical Engineering, 107(7), 27–31Google Scholar
Parkinson, G., Kamiya, T., D'Aquino, R., & Ondrey, G. (1999). The Divide in Distillation. Chemical Engineering, 106(4), 32–5Google Scholar
Petlyuk, F. B. (1984). Necessary Condition of Exhaustion of Components at Distillation of Azeotropic Mixtures in Simple and Complex Columns. In The Calculation Researches of Separation for Refining and Chemical Industry (pp. 3–22). Moscow: Zniiteneftechim (Rus.)
Petlyuk, F. B., & Danilov, R. Yu. (1999). Sharp Distillation of Azeotropic Mixtures in a Two-Feed Column. Theor. Found. Chem. Eng., 33, 233–42Google Scholar
Petlyuk, F. B., Platonov, V. M., & Avet'an, V. S. (1966). The Optimal Distillation Flowsheets for Separating Multicomponent Mixtures. Chem. Industry, (11), 865–869 (Rus.)Google Scholar
Petlyuk, F. B., Platonov, V. M., & Slavinskii, D. M. (1965). Thermodynamical Optimal Method for Separating of Multicomponent Mixtures. Int. Chem. Eng., 5(2), 309–17Google Scholar
Pilhofer, T. (1983). Energiesparende Alternativen zur Rektifikation bei der Ruckgewinnung Organischer Stoffe aus Losungen. Verfahrenstechnik, 17, 547–9 (Germ.)Google Scholar
Platonov, V. M., Petlyuk, F. B., & Zhvanetskiy, I. B. (1970). Patent USSR No. 292,339, October 23 (Rus.)
Polyakova, E. B., Pavlenko, T. G., Kalabuhova, N. P., Timofeev, V. S., & Serafimov, L. A. (1977). A Research of Distillation of Heterogeneous Mixture Methanol-Vinil Acetate-Water. In Physical-Chemical Foundation of Distillation, Moscow. MIChM, pp. 160–173 (Rus.)
Pucci, A., Mihitenho, P., & Asselineau, L. (1986). Three-Phase Distillation. Simulation and Application to the Separation of Fermentation Products. Chem. Eng. Sci., 41, 485–94CrossRefGoogle Scholar
Reinders, W., & Minjers, C. H. (1940). Vapour-Liquid Equilibria in Ternary Sistems. The Sistem Acetone-Cloroform-Benzene. Rec. Trav. Chim. Pays-Bas, 59, 392–406CrossRefGoogle Scholar
Rooks, R. E., Malone, M. F., & Doherty, M. F. (1996). Geometric Design Method for Side-Stream Distillation Columns. Ind. Eng. Chem. Res., 35, 3653–64CrossRefGoogle Scholar
Rooks, R. E., Malone, M. F., & Doherty, M. F. (1996). A Geometric Design Method for Sidestream Distillation Column. Ind. Eng. Chem. Res., 35, 3653–64CrossRefGoogle Scholar
Sargent, R. W. S., & Gaminibandara, K. (1976). Optimum Design of Plate Distillation Columns. In Optimization in Action. L. W. C. Dixon, pp. 267–314
Schreinemakers, F. A. H. (1901). Dampfdrucke ternarer Gemische. Z. Phys. Chem., 36, 413–49 (Germ.)CrossRefGoogle Scholar
Schultz, M. A., Stewart, D. G., Harris, J. M., Rosenblum, S. P., Shakur, M. S., & O'Brien, D. E. (2002). Reduce Costs with Dividing-Wall Columns. CEP, 98(5), 64–71Google Scholar
Smith, R., & Linnhoff, B. (1988). The Design of Separators in the Context of Overall Processes. Trans IChemE, 66, Part A, 195–214Google Scholar
Stichlmair, J. G., & Fair, J. R. (1998). Distillation: Principles and Practice. New York: John Wiley
Stichlmair, J., Offers, H., & Potthoff, R. W. (1993). Minimum Reflux and Minimum Reboil in Ternary Distillation. Ind. Eng. Chem. Res., 32, 2438–45CrossRefGoogle Scholar
Storonkin, A. V., & Smirnova, N. A. (1963). Certain Aspects of the Thermodynamics of Multicomponent Heterogeneous Systems. 4. Shapes of the Distillation Curves of Ternary Solutions. J. Phys. Chem., 37, 601–7 (Rus.)Google Scholar
Sugie, H., & Benjamin, C. Y. L. (1970). On the Determination of Minimum Reflux Ratio for a Multicomponent Distillation Column with Any Number of Side-Cut Streams. Chem. Eng. Sci., 25, 1837–46CrossRefGoogle Scholar
Terranova, B. E., & Westerberg, A. W. (1989). Temperature (Heat Diagrams for Complex Columns): 1. Intercooled/Interheated Distillation Columns. Ind. Eng. Chem. Res., 28, 1374–79CrossRefGoogle Scholar
Underwood, A. J. V. (1948). Fractional Distillation of Multicomponent Mixtures. Chem. Eng. Prog., 44, 603–14Google Scholar
Wahnschafft, O. M. (1997). Advanced Distillation Synthesis Techniques for Nonideal Mixtures Are Making Headway in Industrial Applications. Presented at the Distillation and Absorption Conference, Maastricht, pp. 613–23
Wahnschafft, O. M., Kohler, J., & Westerberg, A. W. (1994). Homogeneous Azeotropic Distillation: Analysis of Separation Feasibility and Consequences for Entrainer Selection and Column Design. Comput. Chem. Eng., 18, S31–S35CrossRefGoogle Scholar
Wahnschafft, O. M., & Westerberg, A. W. (1993). The Product Composition Regions of Azeotropic Distillation Columns. 2. Separability in Two-Feed Columns and Entrainer Selection. Ind. Eng. Chem. Res., 32, 1108–20CrossRefGoogle Scholar
Watkins, R. N. (1979). Petroleum Refinery Distillation. Houston, TX: Gulf Publishing Company
Wright, R. O. (1949). U.S. Patent No. 2,471,134, May 24
Young, S. (1902). The Preparation of Absolute Alcohol from Strong Spirit. J. Chem. Sos., 81, 707–17CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×