Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-swr86 Total loading time: 0 Render date: 2024-07-17T15:13:48.100Z Has data issue: false hasContentIssue false

Structured Light 3D Scanning

Published online by Cambridge University Press:  26 January 2021

Get access

Summary

COSCH Case Studies that have employed this technology: Roman Coins, Kantharos, White Bastion

Definition

Structured light 3D scanners project a known pattern of light (stripes, dots), typically regular and periodic, onto the object. The result is captured using one or more cameras, and the 3D information of the object is recovered by software using different triangulation or projection geometries. Very dense and accurate point clouds may be obtained. The configuration and approach used enables adjustment of the surface resolution, using multiple exposures, or adjusting the field of view of the system.

Description

A structured light 3D scanning system is non-contact and consists of a projector and at least one camera. Data acquisition and analysis are controlled by dedicated software running on personal computers; both are integral parts of the measuring system. The calculation of 3D data is based on the triangulation principle; typical triangulation angles are approximately 30°. The camera is mounted in a calibrated position relative to the projector, and the scanning system projects light patterns onto the object surface. The contrast of the light patterns influences the quality of scan results. Therefore, working in direct sunlight is often not possible or advisable. For good results, working indoors or in shaded areas outdoors is recommended. Scanning of reflective or (semi-)transparent surfaces is problematic for any optical scanning system. Difficult surfaces include shiny metal, glass, marble, bones, teeth, and many plastic materials. Covering the surface with whitening spray eliminates reflection or transparency problems, but is not applicable to all objects. Scanning critical objects that may not be spray-coated is often possible with additional effort, by further scan positions or angles, user interaction or software filtering.

The object size covered in a single scan is limited by the projector's brightness as well as the feasible distance between projector and camera. The field of view for a single scan setup typically ranges from 30 mm to 2000 mm; the camera system's depth of field determines the system's measuring depth. Furthermore, there is a link to depth resolution, as larger areas imply lower resolution/accuracy because spatial resolution is dependent mostly on the number of samples per unit distance, so denser sampling means, in most approaches, a better depth detail under comparable angle of view (disparity) conditions.

Type
Chapter
Information
Publisher: Amsterdam University Press
Print publication year: 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×