Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-25wd4 Total loading time: 0 Render date: 2024-04-25T12:24:18.961Z Has data issue: false hasContentIssue false

17 - Estuarine paleoenvironmental reconstructions using diatoms

from Part IV - Diatoms as indicators in marine and estuarine environments

Published online by Cambridge University Press:  05 June 2012

Sherri Cooper
Affiliation:
Bryn Athyn College
Evelyn Gaiser
Affiliation:
Florida International University
Anna Wachnicka
Affiliation:
Florida International University
John P. Smol
Affiliation:
Queen's University, Ontario
Eugene F. Stoermer
Affiliation:
University of Michigan, Ann Arbor
Get access

Summary

Introduction

Paleoecology offers powerful techniques with which to study historical changes due to human influences in depositional environments, including estuaries and coastal wetlands. Diatoms are particularly useful in these endeavors, not only because they are preserved in the sediment record, but because they have a short reproductive rate and respond quickly to changes in nutrient availability and water-quality conditions. Diatoms are abundant in aquatic environments, generally cosmopolitan in distribution, and have a fairly well-studied taxonomy and ecology.

Paleoecological studies in estuarine and coastal environments have lagged behind paleolimnology, primarily because of the more dynamic nature and presumed invulnerability of coastal ecosystems. Estuaries are characterized by variability in salinity, sediment deposition, water currents and residence time, turbidity zones, and unique biogeochemistry of sediments. There is often mixture and transport of sediments after initial deposition, and differential silicification and preservation of diatom valves.

Historically, there has been a lack of appreciation for the magnitude and severity of human impacts on estuaries and other coastal ecosystems, and of how important these ecosystems are to human society. The demand for resources and the wastes generated as human populations grow will continue to cause cultural, economic, aesthetic, and environmental problems in coastal areas. Understanding the processes surrounding these problems is important for managing the continuing impacts of growing populations (see Costanza et al., 1997; Clark et al., 2001; Niemi et al., 2004).

Type
Chapter
Information
The Diatoms
Applications for the Environmental and Earth Sciences
, pp. 324 - 345
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, D. M., Glibert, P. M., & Burkholder, J. M. (2002). Harmful algal blooms and eutrophication: nutrient sources, composition and consequences. Estuaries, 25, 704–26.CrossRefGoogle Scholar
Anderson, N. J. & Vos, P. (1992). Learning from the past: diatoms as palaeoecological indicators of changes in marine environments. Netherlands Journal of Aquatic Ecology, 26, 19–30.CrossRefGoogle Scholar
Appleby, P. G. (2001). Chronostratigraphic techniques in recent sediments. In Tracking Environmental Change Using Lake Sediments, Volume 1: Basin Analysis, Coring and Chronological Techniques, ed. Last, W. M. & Smol, J. P., New York: Springer, pp. 171–203.Google Scholar
Armitage, A. R., Frankovich, T. A., Heck, K. L., & Fourqurean, J. W. (2005). Experimental nutrient enrichment causes complex changes in seagrass, microalgae, and macroalgae community structure in Florida Bay. Estuaries, 28, 422–34.CrossRefGoogle Scholar
Balcom, N. & Howell, P. (2006). Responding to a resource disaster: American lobsters in Long Island Sound 1999–2004. Connecticut Sea Grant Publication, CTSG-06–02.
Bao, R., Alonso, A., Delgado, C., & Pagés, J. L. (2007). Identification of the main driving mechanisms in the evolution of a small coastal wetland (Traba, Galicia, NW Spain) since its origin 5700 cal yr BP. Palaeogeography, Palaeoclimatology, Palaeoecology, 247, 296–312.CrossRefGoogle Scholar
Barker, P., Fontes, J.-C., Gasse, F., & Druart, J.-C. (1994). Experimental dissolution of diatom silica in concentrated salt solutions and implications for paleoenvironmental reconstruction. Limnology and Oceanography, 39, 99–110.CrossRefGoogle Scholar
Battarbee, R. W., Jones, V. J., Flower, R. J., et al. (2001). Diatoms. In Tracking Environmental Change Using Lake Sediments, Volume 3: Terrestrial, Algal, and Siliceous Indicators, ed. Smol, J. P., Birks, H. J. B. & Last, W. M., Dordrecht: Kluwer Academic Publishers, pp. 155–202.Google Scholar
Bell, J. D. & Westoby, M. (1986). Abundance of macrofauna in dense seagrass is due to habitat preference, not predation. Oecologia, 68, 205–9.CrossRefGoogle Scholar
Birks, H. J. B. (1995). Quantitative paleoenvironmetal reconstructions. In Statistical Modelling of Quaternary Science Data, Technical Guide No. 5, ed. Maddy, D. & Brew, J. S., Cambridge: Quaternary Research Association, pp. 161–236.Google Scholar
,Blue Ribbon Study Commission on Agricultural Waste (1996). Report to the 1995 General Assembly of North Carolina 1996 regular session, Raleigh, NC: North Carolina Legislative Research Commission.
Boesch, D. F. (2002). Challenges and opportunities for science in reducing nutrient over-enrichment of coastal ecosystems. Estuaries, 25, 886–900.CrossRefGoogle Scholar
Boström, C., Bonsdorff, E., Kangas, P., & Norkko, A. (2002). Long-term changes of a brackish-water eelgrass (Zostera marina L.) community indicate effects of coastal eutrophication. Estuaries, Coastal and Shelf Science, 55, 795–804.CrossRefGoogle Scholar
Boyer, E.W., Goodale, C. L., Jaworski, N. A., & Haworth, R.W. (2002). Anthropogenic nitrogen sources and relationships to riverine nitrogen export in the northeastern U.S.A. Biogeochemistry, 57, 137–69.CrossRefGoogle Scholar
Brandenberger, J. M., Crecelius, E. A., & Louchouarn, P. (2008a). Historical inputs and natural recovery rates of heavy metals and organic biomarkers in Puget Sound during the 20th century. Environmental Science and Technology, 42, 6786–90.CrossRefGoogle Scholar
Brandenberger, J. M., Crecelius, E. A., Louchouarn, P., et al. (2008b). Reconstructing trends in hypoxia using multiple paleoecological indicators recorded in sediment cores from Puget Sound, WA. National Oceanic and Atmospheric Administration, Pacific Northwest National Laboratory Report No. PNWD-4013.
Brewster-Wingard, G. L. & Ishman, S.E. (1999). Historical trends in salinity and substrate in central and northern Florida Bay: a paleoecological reconstruction using modern analogue data. Estuaries, 22, 369–83.CrossRefGoogle Scholar
Bricker, S., Longstaff, B., Dennison, W., et al. (2007). Effects of Nutrient Enrichment in the Nations' Estuaries: A Decade of Change. NOAA Coastal Ocean Program Decision Analysis Series No. 26. Silver Spring, MD: National Centers for Coastal Ocean Science.Google Scholar
Brush, G. S. (1989). Rates and patterns of estuarine sediment accumulation. Limnology and Oceanography, 34, 1235–46.CrossRefGoogle Scholar
Buchholtz ten Brink, M. R., Mecray, E. L., & Galvin, E. L. (2000). Clostridium perfringens in Long Island Sound sediments: an urban sedimentary record. Journal of Coastal Research 16(3), 591–612.Google Scholar
Capriulo, G. M., Smith, G., Troy, R., et al. (2002). The planktonic food web structure of a temperate zone estuary, and its alteration due to eutrophication. Hydrobiologia, 475–476, 263–333.CrossRefGoogle Scholar
Chmura, G. L., Santos, A., Pospelova, V., et al. (2004). Response of three paleo-primary production proxy measures to development of an urban estuary. Science of the Total Environment, 320, 225–43.CrossRefGoogle ScholarPubMed
Clark, J. S., Carpenter, S. R., Barber, M., et al. (2001). Ecological forecasts: an emerging imperative. Science, 293, 657–60.CrossRefGoogle ScholarPubMed
Clarke, A., Juggins, S., & Conley, D. (2003). A 150-year reconstruction of the history of coastal eutrophication in Roskilde Fjord, Denmark. Marine Pollution Bulletin, 46, 1615–29.CrossRefGoogle ScholarPubMed
Clarke, A. L., Weckström, K., Conley, D. J., et al. (2006). Long-term trends in eutrophication and nutrients in the coastal zone. Limnology and Oceanography, 51, 385–97.CrossRefGoogle Scholar
Cloern, J. E. (2001). Our evolving conceptual model of the coastal eutrophication problem. Marine Ecology Progress Series, 210, 223–53CrossRefGoogle Scholar
Cohen, J. E., Small, C., Mellinger, A., et al. (1997). Estimates of coastal populations. Science, 278, 1211–12.CrossRefGoogle Scholar
Conley, D. J., Kilham, S. S., & Theriot, E. (1989). Differences in silica content between marine and freshwater diatoms. Limnology and Oceanography, 34, 205–13.CrossRefGoogle Scholar
Conley, D. J., Likens, G. E., Buso, D. C., et al. (2008). Deforestation causes increased dissolved silicate losses in the Hubbard Brook Experimental Forest. Global Change Biology, 14, 2548–54.Google Scholar
Conley, D. J. & Malone, T. C. (1992). Annual cycle of dissolved silicate in Chesapeake Bay: implications for the production and fate of phytoplankton biomass. Marine Ecology Progress Series, 81, 121–8.CrossRefGoogle Scholar
Conley, D. J., Paerl, H. W., Howarth, R. W., et al. (2009). Controlling eutrophication: nitrogen and phosphorus. Science, 323, 1014–15.CrossRefGoogle ScholarPubMed
Conley, D. J. & Schelske, C. L. (2001). Biogenic silica. In Tracking Environmental Change Using Lake Sediments, Volume 3: Terrestrial, Algal, and Siliceous Indicators, ed. Smol, J. P., Birks, H. J. B., & Last, W. M., Dordrecht: Kluwer Academic Publishers, pp. 281–93.Google Scholar
Cooper, S. R. (1995a). Chesapeake Bay watershed historical land use: impact on water quality and diatom communities. Ecological Applications, 5, 703–23.CrossRefGoogle Scholar
Cooper, S. R. (1995b). Diatoms in sediment cores from the mesohaline Chesapeake Bay, U. S. A. Diatom Research, 10, 39–89.CrossRefGoogle Scholar
Cooper, S. R. (1995c). An abundant, small brackish water Cyclotella species in Chesapeake Bay, U.S.A. In A Century of Diatom Research in North America: A Tribute to the Distinguished Careers of Charles W. Reimer and Ruth Patrick, ed. Kociolek, J. P. & Sullivan, M. J., Champaign, IL: Koeltz Scientific Books, pp. 133–40.Google Scholar
Cooper, S. R. & Brush, G. S. (1991). Long-term history of Chesapeake Bay anoxia. Science, 254, 992–96.CrossRefGoogle ScholarPubMed
Cooper, S. R. & Brush, G. S. (1993). A 2,500-year history of anoxia and eutrophication in Chesapeake Bay. Estuaries, 16, 617–26.CrossRefGoogle Scholar
Cooper, S. R., Goman, M., & Richardson, C. J. (2008). Historical changes in water quality and vegetation in WCA-2A determined by paleoecological analyses. In The Everglades Experiments: Lessons for Ecosystem Restoration, ed. Richardson, C. J., Springer Ecological Studies, vol. 201, pp. 321–50.CrossRefGoogle Scholar
Cooper, S. R., McGlothlin, S. K., Madritch, M., & Jones, D. L. (2004a). Water quality history of the Neuse and Pamlico estuaries of North Carolina using paleoecological methods. Estuaries, 27, 619–35.CrossRefGoogle Scholar
Cooper, S. R., Thomas, E., & Varekamp, J. C. (2004b). Long Island Sound: diatoms from sediment cores as part of environmental and ecological change studies. Abstracts of the Ecological Society of America Mid-Atlantic Ecology Conference, Lancaster, PA, March 27, p. 6. See http://esa.org/midatlantic/conferences/Abstracts04.pdf.
Costanza, R., d'Arge, R., Groot, R., et al. (1997). The value of the world's ecosystem services and natural capital. Nature, 387, 253–60.CrossRefGoogle Scholar
Cronin, T. M., Holmes, C. W., Brewster-Wingard, G. L., et al. (2001). Historical trends in epiphytal ostracodes from Florida Bay: implication for seagrass and macro-benthic algal variability. Bulletin of American Paleontology, 361, 159–97.Google Scholar
Culliton, T. J., Warren, M. A., Goodspeed, T. R., et al. (1990). 50 Years of Population Change along the Nation's Coasts 1960–2010. Silver Spring, MD: National Oceanic and Atmospheric Administration.Google Scholar
Cummins, S. P., Roberts, D. E., Ajani, P., & Underwood, A. J. (2004). Comparisons of assemblages of phytoplankton between open water and seagrass habitats in a shallow coastal lagoon. Marine and Freshwater Research, 55, 447–56.CrossRefGoogle Scholar
Daehnick, A. E., Sullivan, M. J., & Moncreiff, C. A. (1992). Primary production of the sand microflora in seagrass beds of Mississippi Sound. Botanica Marina, 35, 131–9.CrossRefGoogle Scholar
Day, J. W. Jr., & Yanez-Arancibia, A. (1982). Ecology of coastal ecosystems in the Southern Gulf of Mexico: the Terminos Lagoon region. CIENC. InterAmericana, 22, 11–26.Google Scholar
Day, J. W. Jr., Hall, C. A. S., Kemp, W. M., & Yanez-Arancibia, A. (1989). Estuarine Ecology. New York, NY: John Wiley & Sons.Google Scholar
Dortch, Q. & Whitledge, T. E. (1992). Does nitrogen or silicon limit phytoplankton production in the Mississippi River plume and nearby regions? Continental Shelf Research, 12, 1293–309.CrossRefGoogle Scholar
Dugmore, A. J. & Newton, A. J. (1992). Thin tephra layers in peat revealed by X-radiography. Journal of Archaeological Science, 19, 163–70.CrossRefGoogle Scholar
Dyer, K. R. (1995). Sediment transport processes in estuaries. In Geomorphology and Sedimentology of Estuaries. Developments in Sedimentology 53, ed. Perillo, G. M. E., Amsterdam: Elsevier Science Publishers, pp. 423–49.CrossRefGoogle Scholar
Ellegaard, M., Clarke, A., Rauss, N., et al. (2006). Multi-proxy evidence of long-term changes in ecosystem structure in a Danish marine estuary, linked to increased nutrient loading. Estuarine, Coastal and Shelf Science, 68, 567–78.CrossRefGoogle Scholar
Farella, N., Lucotte, M., Louchouarn, P., & Roulet, M. (2001). Deforestation modifying terrestrial organic transport in the Rio Tapajos, Brazilian Amazon. Organic Geochemistry, 32, 1443–58.CrossRefGoogle Scholar
Fluin, J., Gell, P., Haynes, D., Tibby, J., & Hancock, G. (2007). Paleolimnological evidence for the independent evolution of neighboring terminal lakes, the Murray Darling Basin, Australia. Hydrobiologia, 591, 117–34.CrossRefGoogle Scholar
Fourqurean, J. W., Boyer, J. N., Durako, M. J., Hefty, L. N., & Peterson, B. J. (2003). Forecasting responses of seagrass distributions to changing water quality using monitoring data. Ecological Applications, 13, 474–89.CrossRefGoogle Scholar
Frankovich, J. W. & Fourqurean, J. W. (1997). Seagrass epiphyte loads along a nutrient availability gradient, Florida Bay, USA. Marine Ecology Progress Series, 159, 37–50.CrossRefGoogle Scholar
Frankovich, T. A., Gaiser, E. E., Zieman, J. C., & Wachnicka, A. H. (2006). Spatial and temporal distributions of epiphytic diatoms growing on Thalassia testudinum Banks ex König: relationships to water quality. Hydrobiologia, 569, 259–71.CrossRefGoogle Scholar
Gaiser, E. (2008). Periphyton as an indicator of restoration in the Everglades. Ecological Indicators, DOI:10.1016/j.ecolind.2008.08.004.CrossRef
Gaiser, E. E., Wachnicka, A., Ruiz, P., Tobias, F. A., & Ross, M. S. (2005). Diatom indicators of ecosystem change in coastal wetlands. In Estuarine Indicators, ed. Bortone, S., Boca Raton, FL: CRC Press, pp. 127–44.Google Scholar
Gaiser, E. E., Zafiris, A., Ruiz, P. L., Tobias, F. A. C. & Ross, M. S. (2006). Tracking rates of ecotone migration due to salt-water encroachment using fossil mollusks in coastal south Florida. Hydrobiologia, 569, 237–57.CrossRefGoogle Scholar
Gasse, F., Juggins, S., & BenKhelifa, L. (1995). Diatom-based transfer functions for inferring past hydrochemical characteristics of African lakes. Palaeogeography, Palaeoclimatology, Palaeoecology, 117, 31–54.CrossRefGoogle Scholar
Gehrels, W. R., Roe, H. M., & Charman, D. J. (2001). Foraminifera, testate amoebae and diatoms as sea-level indicators in UK saltmarshes: a quantitative multiproxy approach. Journal of Quaternary Science, 163, 201–20.CrossRefGoogle Scholar
Gell, P., Bulpin, S., Wallbrink, P., Bickford, S., & Hancock, G. (2005). Tareena Billabong – a paleolimnological history of an everchanging wetland, Chowilla Floodplain, lower Murray–Darling Basin. Marine and Freshwater Research, 56, 441–56.CrossRefGoogle Scholar
Gell, P., Tibby, J., Little, F., Baldwin, D. & Hancock, G. (2007). The impact of regulation and salinisation on floodplain lakes: the lower River Murray, Australia. Hydrobiologia, 591, 135–46.CrossRefGoogle Scholar
Glew, J. R., Smol, J. P., & Last, W. M. (2001). Sediment core collection and extrusion. In Tracking Environmental Change Using Lake Sediments, Volume 1: Basin Analysis, Coring and Chronological Techniques, ed. Last, W. M. & Smol, J. P., New York: Springer, pp. 73–105.Google Scholar
Gross, M., Coleman, R., & MacDowell, R. (1988). Aquatic productivity and the evolution of diadromous fish migration. Science, 239, 1291–3.CrossRefGoogle ScholarPubMed
Hassan, G. S., Espinosa, M. A., & Isla, F. I. (2007). Dead diatom assemblages in surface sediments from a low impacted estuary: the Quequén Salado River, Argentina. Hydrobiologia, 579, 257–70.CrossRefGoogle Scholar
Hein, M. K., Winsborough, B. M., & Sullivan, M. J. (2008). Bacillariophyta (Diatoms) of the Bahamas. Iconographia Diatomologica, 19, 1–300.Google Scholar
Helz, G. R., Sinex, S. A., Ferri, K. L., & Nichols, M. (1985). Processes controlling Fe, Mn and Zn in sediments of northern Chesapeake Bay. Estuarine, Coastal and Shelf Science, 21, 1–16.CrossRefGoogle Scholar
Hemphill-Haley, E. (1995). Diatom evidence for earthquake-induced subsidence and tsunami 300 yr ago in southern coastal Washington. GSA Bulletin, 107, 367–78.2.3.CO;2>CrossRefGoogle Scholar
Hendey, N. I. (1964). An introductory account of the smaller algae of British coastal waters. Fishery Investigations Series IV. Part V. Bacillariophyceae (Diatoms). London, UK: Her Majesty's Stationery Office.Google Scholar
Hendey, N. I. (1976). The species diversity index of some in-shore diatom communities and its use in assessing the degree of pollution insult on parts of the north Coast of Cornwall. Nova Hedwigia, 54, 355–78.Google Scholar
Hennessee, E. L., Blakeslee, P. J., & Hill, J. M. (1986). The distributions of organic carbon and sulfur in surficial sediments of the Maryland portion of Chesapeake Bay. Journal of Sedimentary Petrology, 56, 674–83.Google Scholar
Hill, J. M., Halka, R. D., Conkwright, R. D., Koczot, K., & Park, J. (1992). Geologically constrained shallow gas in sediments of Chesapeake Bay: distribution and effects on bulk sediment properties. Continental Shelf Research, 12, 1219–29.CrossRefGoogle Scholar
Holmer, M., Duarte, C. M., & Marba, N. (2003). Sulfur cycling and seagrass (Posidonia oceanica) status in carbonate sediments. Biogeochemistry, 66, 223–39.CrossRefGoogle Scholar
Horton, B. P., Corbett, R., Culver, S. J., Edwards, R. J., & Hillier, C. (2006). Modern saltmarsh diatom distributions of the Outer Banks, North Carolina, and the development of a transfer function for high resolution reconstructions of sea level. Estuarine Coastal and Shelf Science, 69, 381–94.CrossRefGoogle Scholar
Horton, B. P., Zong, Y., Hillier, C., & Engelhart, S. (2007). Diatoms from Indonesian mangroves and their suitability as sea-level indicators for tropical environments. Marine Micropaleontology, 63, 155–68.CrossRefGoogle Scholar
Houel, S., Louchouarn, P., Lucotte, M., Canuel, R., & Ghaleb, B. (2006). Translocation of soil organic matter following reservoir impoundment in boreal systems: implications for in situ productivity. Limnology and Oceanography, 51(3), 1497–513.CrossRefGoogle Scholar
Hustedt, F. (1927–30). Die Kieselalgen Deutschlands, Österreichs und der Schweiz (three volumes). In Rabenhorst's Kryptogamen-Flora von Deutschland, Öterreich und der Schweiz. Band 7. Leipzig: Akademische Verlagsgesellschaft.Google Scholar
Hustedt, F. (1953). Die Systematik der Diatomeen in Ihren Beziehungen zur Geologie und Ökologie nebst einer Revision des Halobien-Systems. Svensk Botanisk Tidskrift, 47, 509–19.Google Scholar
Hustedt, F. (1955). Marine Littoral Diatoms of Beaufort, North Carolina. Durham, NC: Duke University Press.Google Scholar
Hustedt, F. (1957). Die Diatomeenflora des Fluss-Systems der Weser im Gebiet der Hansestadt Bremen. Abhandlungen des Naturwissenschaftlichen Vereins zu Bremen, 34, 181–440.Google Scholar
Huvane, J. K. & Cooper, S. R. (2001). Diatoms as indicators of environmental change in sediment cores from Northeastern Florida Bay. Bulletins of American Paleontology, 361, 145–58.Google Scholar
Jackson, J. B. C., Kirby, M. X., Berger, W. H., et al. (2001). Historical overfishing and the recent collapse of coastal ecosystems. Science, 293, 629–38.CrossRefGoogle ScholarPubMed
Jiang, H. (1996). Diatoms from the surface sediments of the Skagerrak and the Kattegat and their relationship to the spatial changes of environmental variables. Journal of Biogeography, 23, 129–37.CrossRefGoogle Scholar
Jickells, T. D. (1998). Nutrient biogeochemistry of the coastal zone. Science, 281, 217–22.CrossRefGoogle ScholarPubMed
Juggins, S. (1992). Diatoms in the Thames Estuary, England: ecology, paleoecology, and salinity transfer function. Bibliotheca Diatomologica, 25, 1–216.Google Scholar
Kemp, W. M., Boynton, W. R., Adolf, J. E., et al. (2005). Eutrophication of Chesapeake Bay: historical trends and ecological interactions. Marine Ecology Progress Series, 303, 1–29.CrossRefGoogle Scholar
Kennett, D. M. & Hargraves, P. E. (1984). Subtidal benthic diatoms from a stratified estuarine basin. Botanica Marina, 27, 169–83.CrossRefGoogle Scholar
Kennett, D. M. & Hargraves, P. E. (1985). Benthic diatoms and sulfide fluctuations: upper basin of Pettaquamscutt River, Rhode Island. Estuarine, Coastal and Shelf Science, 21, 577–86.CrossRefGoogle Scholar
Kennish, M. J. (1992). Ecology of Estuaries: Anthropogenic Effects. Marine Science Series. Boca Raton, FL: CRC Press, Inc.Google Scholar
Kistner, D. A. & Pettigrew, N. R. (2001). A variable turbidity maximum in the Kennebec estuary, Maine. Estuaries, 24, 680–7.CrossRefGoogle Scholar
Koch, M. S., Schopmeyer, S., Kyhn-Hansen, C. & Madden, C. J. (2007). Synergistic effects of high temperature and sulfide on tropical seagrass. Journal of Experimental Marine Biology and Ecology, 341, 91–101.CrossRefGoogle Scholar
Kolka, R. K. & Thompson, J. A. (2006). Wetland geomorphology, soils and formative processes. In Ecology of Freshwater and Estuarine Wetlands, ed. Batzer, D. P. & Sharitz, R. R., Los Angeles, CA: University of California Press, pp. 7–41.Google Scholar
Köster, D., Racca, J. M. J., & Pienitz, R. (2004). Diatom-based inference models and reconstructions revisited: methods and transformations. Journal of Paleolimnology, 32, 233–45.CrossRefGoogle Scholar
Köster, D., Lichter, J., Lea, P. D. & Nurse, A. (2007). Historical eutrophication in a river–estuary complex in mid-coast Maine. Ecological Applications, 17, 765–78.CrossRefGoogle Scholar
Krammer, K. & Lange-Bertalot, H. (1986–1991). Bacillariophyceae. In Süßwasserflora von Mitteleuropa Band 2/1–4, ed. Ettl, H., Heynig, H., & Mollenhauer, D., Stuttgart: Fischer.Google Scholar
Kucera, M., Rosell-Melé, A., Schneider, R., Waelbroeck, C., & Weinelt, M. (2005). Multiproxy approach for the reconstruction of the glacial ocean surface (MARGO). Quaternary Science Review, 24, 813–19.CrossRefGoogle Scholar
Kuylenstierna, M. (1990). Benthic algal vegetation in the Nordre Älv Estuary (Swedish west coast), 2 volumes. Ph.D. thesis, University of Göteborg, Göteborg, Sweden.
Laws, R. A. (1988). Diatoms (Bacillariophyceae) from surface sediments in the San Francisco Bay estuary. Proceedings of the California Academy of Sciences, 45, 133–254.Google Scholar
Lee, A. H. M. & Liu, J. H. (2002). Marine water quality in Hong Kong in 2001. Environmental Protection Department, The Government of the Hong Kong Special Administrative Region. Report Number EPD/TR1/02.
Louchouarn, P., Lucotte, M., & Farella, N. (1999). Historical and geographical variations of sources and transport of terrigenous organic matter within a large-scale coastal environment. Organic Geochemistry, 30, 675–99.CrossRefGoogle Scholar
McIntire, C. D. & Overton, W. S. (1971). Distributional patterns in assemblages of attached diatoms from Yaquina Estuary, Oregon. Ecology, 52, 758–77.CrossRefGoogle Scholar
Malmgren, B. A., Kucera, M., Nyberg, J., & Waelbroeck, C. (2001). Comparison of statistical and artificial neural network techniques for estimating past sea surface temperatures from planktonic foraminifer census data. Paleoceanography, 16, 520–30.CrossRefGoogle Scholar
Malmgren, B. A. & Nordlund, U. (1997). Application of artificial neural networks to paleoceanographic data. Palaeogeography, Palaeoclimatology, Palaeoecology, 136, 359–73.CrossRefGoogle Scholar
Mann, K. H. (2000). Ecology of Coastal Waters: With Implications for Management, 2nd edition, Malden, MA: Blackwell Science, Inc.Google Scholar
Mitsch, W. J. & Gosselink, J. G. (1986). Wetlands. New York: Van Nostrand Reinhold.Google Scholar
Moncreiff, C. A. & Sullivan, M. J. (2001). Trophic importance of epiphytic algae in subtropical seagrass beds: evidence from multiple stable isotope analyses. Marine Ecology Progress Series, 215, 93–106.CrossRefGoogle Scholar
Moncreiff, C. A., Sullivan, M. J. & Daehnick, A. E. (1992). Primary production dynamics in seagrass beds of Mississippi Sound: the contributions of seagrass, epiphytic algae, sand, microflora and phytoplankton. Marine Ecology Progress Series, 87, 161–71.CrossRefGoogle Scholar
Moser, K. A., MacDonald, G. M., & Smol, J. P. (1996). Applications of freshwater diatoms to geographical research. Progress in Physical Geography, 20, 21–52.CrossRefGoogle Scholar
Muylaert, K. & Sabbe, K. (1996). The diatom genus Thalassiosira (Bacillariophyta) in the estuaries of the Schelde (Belgium/the Netherlands) and the Elbe (Germany). Botanica Marina, 39, 103–15.CrossRefGoogle Scholar
Newton, J. (2007). Hood Canal, WA: the complex factors causing low dissolved oxygen events require ongoing research, monitoring, and modeling. In Effects of Nutrient Enrichment in the Nations' Estuaries: A Decade of Change, ed. Bricker, S., Longstaff, B., Dennison, W., et al., NOAA Coastal Ocean Program Decision Analysis Series No. 26, Silver Spring, MD: National Centers for Coastal Ocean Science, pp. 95–8.Google Scholar
Niemi, G., Wardrop, D., Brooks, R., et al. (2004). Rationale for a new generation of indicators for coastal waters. Environmental Health Perspectives, 112, 979–86.CrossRefGoogle ScholarPubMed
Nixon, S. W. (1995). Coastal marine eutrophication: a definition, social causes, and future concerns. Ophelia, 41, 199–219.CrossRefGoogle Scholar
Palmer, C. M. (1969). A composite rating of algae tolerating organic pollution. Journal of Phycology, 5, 78–82.CrossRefGoogle ScholarPubMed
Parsons, M. L. (1998). Salt marsh sedimentary record of the landfall of Hurricane Andrew on the Louisiana coast: diatoms and other paleoindicators. Journal of Coastal Research, 14, 939–50.Google Scholar
Parsons, M. L., Dortch, Q., & Turner, R. E. (2002). Sedimentological evidence of an increase in Pseudo-nitzschia (Bacillariophyceae) abundance in response to coastal eutrophication. Limnology and Oceanography, 47, 551–8.CrossRefGoogle Scholar
Parsons, M. L., Dortch, Q., Turner, R. E., & Rabalais, N. R. (2006). Reconstructing the development of eutrophication in Louisiana salt marshes. Limnology and Oceanography, 51, 534–44.CrossRefGoogle Scholar
Patrick, R. (1973). Use of algae, especially diatoms, in the assessment of water quality. American Society for Testing and Materials, Special Technical Publication, 528.Google Scholar
Patten, B. C. (1962). Species diversity in net plankton of Raritan Bay. Journal of Marine Research, 20, 57–75.Google Scholar
Peragallo, H. & Peragallo, M. (1897–1908). Diatomées marines de France et des districts maritimes voisins. Grez-sur-Loing: Micrographie-Editeur.Google Scholar
Perillo, G. M. E. (1995). Geomorphology and sedimentology of estuaries. In Geomorphology and Sedimentology of Estuaries: Developments in Sedimentology 53, ed. Perillo, G. M. E., Amsterdam: Elsevier Science Publishers, pp. 1–16.Google Scholar
Pinckney, J. L. & Micheli, F. (1998). Microalgae on seagrass mimics: does epiphyte community structure differ from live seagrasses? Journal of Experimental Marine Biology and Ecology, 221, 59–70.CrossRefGoogle Scholar
Pritchard, D. W. (1967). Observations of circulation in coastal plain estuaries. In Estuaries, ed. G. H. Lauff, American Association for the Advancement of Science Publication No. 83, pp. 37–44.
Puckett, L. J. (1995). Identifying the major sources of nutrient water pollution. Environmental Science & Technology, 29, 408–14.CrossRefGoogle Scholar
Puškaric, S., Berger, G. W., & Jorissen, F. J. (1990). Successive appearance of subfossil phytoplankton species in Holocene sediments of the northern Adriatic and its relation to the increased eutrophication pressure. Estuarine, Coastal and Shelf Science, 31, 177–87.CrossRefGoogle Scholar
Pyle, L., Cooper, S. R., & Huvane, J. K. (1998). Diatom paleoecology of Pass Key core 37, Everglades National Park, Florida Bay. U. S. Geological Survey Open-File Report 98–522.
Quinn, H. A., Tolson, J. P., Klein, C. J., Orlando, S. P., & Alexander, C. E. (1989). Strategic Assessment of Near Coastal Waters: Susceptibility of East Coast Estuaries to Nutrient Discharges, Albemarle/Pamlico Sound to Biscayne Bay. Rockville, MD: National Oceanic and Atmospheric Agency.Google Scholar
Rabalais, N. N., Turner, R. E., Sen Gupta, B. K., et al. (2007a). Hypoxia in the northern Gulf of Mexico: does the science support the plan to reduce, mitigate, and control hypoxia? Estuaries and Coasts, 30 (5), 753–72.CrossRefGoogle Scholar
Rabalais, N. N., Turner, R. E., Sen Gupta, B. K., Platon, E., & Parsons, M. L. (2007b). Sediments tell the history of eutrophication and hypoxia in the northern Gulf of Mexico. Ecological Applications, 17 (5), S129–S143.CrossRefGoogle Scholar
Racca, J. M. J., Gregory-Eaves, I., Pienitz, R., & Prairie, Y. T. (2004). Tailoring paleolimnological transfer functions. Canadian Journal of Fisheries and Aquatic Sciences, 61, 2440–54.CrossRefGoogle Scholar
Racca, J. M. J., Philibert, A., Racca, R., & Prairie, Y. T. (2001). A comparison between diatom-based pH inference models using artificial neural networks (ANNO) weighted averaging (WA) and weighted averaging partial least squares (WA-PLS) regressions. Journal of Paleolimnology, 26, 411–22.CrossRefGoogle Scholar
Riggs, S. R., Bray, J. T., Powers, E. R., et al. (1991). Heavy metals in organic-rich muds of the Neuse River estuarine system. Albemarle–Pamlico Estuarine Study Report No. 90–07, Raleigh, NC: Albemarle-Pamlico National Estuary Program.
Riggs, S. R., Powers, E. R., Bray, J. T., et al. (1989). Heavy metal pollutants in organic-rich muds of the Pamlico River estuarine system: their concentration, distribution, and effects upon benthic environments and water quality. Albemarle Pamlico Estuarine Study Report 89–06, Raleigh, NC: Albemarle-Pamlico National Estuary Program.
Riggs, S. R., York, L. L., Wehmiller, J. F., & Snyder, S. W. (1992). Depositional patterns resulting from high-frequency Quaternary sea-level fluctuations in northeastern North Carolina. SEPM Special Publication, 48, 141–53.Google Scholar
Ross, M. S., Gaiser, E. E., Meeder, J. F., & Lewin, M. T. (2001). Multi-taxon analysis of the “white zone”, a common ecotonal feature of South Florida coastal wetlands. In The Everglades, Florida Bay, and Coral Reefs of the Florida Keys, ed. Porter, J. & Porter, K., Boca Raton, FL: CRC Press, pp. 205–38.Google Scholar
Ruiz-Halpern, S., Macko, S., & Fourqurean, J. W. (2008). The effects of manipulation of sedimentary iron and organic matter on sediment biogeochemistry and seagrasses in a subtropical carbonate environment. Biogeochemistry, 87, 113–26.CrossRefGoogle Scholar
Ryves, D. B., Clarke, A. L., Appleby, P. G., et al. (2004). Reconstructing the salinity and environment of the Limfjord and Vejlerne Nature Reserve, Denmark, using a diatom model for brackish lakes and fjords. Canadian Journal of Fisheries and Aquatic Science, 61, 1988–2006.CrossRefGoogle Scholar
Sanford, L. P. (1992). New sedimentation, resuspension, and burial. Limnology and Oceanography, 37, 1164–78.CrossRefGoogle Scholar
Saunders, K. M., McMinn, A., Roberts, D., Hodgson, D., & Heijnis, H. (2007). Recent human-induced salinity changes in Ramsar-listed Orielton Lagoon, south-east Tasmania, Australia: a new approach for coastal lagoon conservation and management. Aquatic Conservation: Marine and Freshwater Ecosystems, 17, 51–70.CrossRefGoogle Scholar
Sawai, Y., Horton, B. P., & Nagumo, T. (2004). The development of a diatom-based transfer function along the Pacific coast of eastern Hokkaido, northern Japan – an aid in paleoseismic studies of the Kuril subduction zone. Quaternary Science Reviews, 23, 2467–83.CrossRefGoogle Scholar
Schelske, C. L. (1999). Diatoms as mediators of biogeochemical silica depletion in the Laurentian Great Lakes. In The Diatoms: Applications for the Environmental and Earth Sciences, ed. Stoermer, E. F. & Smol, J. P., New York, NY: Cambridge University Press, pp. 73–84.CrossRefGoogle Scholar
Schubel, J. R. (1968). Turbidity maximum of the northern Chesapeake Bay. Science, 161, 1013–15.CrossRefGoogle ScholarPubMed
Shaffer, G. P. & Sullivan, M. J. (1988). Water column productivity attributable to displaced benthic diatoms in well-mixed shallow estuaries. Journal of Phycology, 24, 132–40.CrossRefGoogle Scholar
Simonsen, R. (1962). Untersuchungen zur Systematik und Ökologie der Bodendiatomeen der Westlichen Ostsee. Internationale Revue der gesamten Hydrobiologie, 1, 1–144.Google Scholar
Slate, J. E. & Stevenson, R. J. (2000). Recent and abrupt environmental change in the Florida Everglades indicated from siliceous microfossils. Wetlands, 20, 346–56.CrossRefGoogle Scholar
Smol, J. P. (2008). Pollution of Lakes and Rivers: a Paleoenvironmental Perspective, Malden, MA: Blackwell Publishing, vol. 2.Google Scholar
Snoeijs, P. (1993). Intercalibration and Distribution of Diatom Species in the Baltic Sea, Uppsala: Opulus Press.Google Scholar
Snoeijs, P. & Balashova, N. (1998). Intercalibration and Distribution of Diatom Species in the Baltic Sea, Uppsala: Opulus Press, vol. 5.Google Scholar
Snoeijs, P. & Kasperoviĉienė, J. (1996). Intercalibration and Distribution of Diatom Species in the Baltic Sea, Uppsala: Opulus Press, vol. 4.Google Scholar
Snoeijs, P. & Potapova, M. (1995). Intercalibration and Distribution of Diatom Species in the Baltic Sea, Uppsala: Opulus Press, vol. 3.Google Scholar
Snoeijs, P. & Vilbaste, S. (1994). Intercalibration and Distribution of Diatom Species in the Baltic Sea, Uppsala: Opulus Press, vol. 2.Google Scholar
Stacey, P. E. (2007). Long Island Sound, CT & NY: point source reductions lessened hypoxia in 1990s. In Effects of Nutrient Enrichment in the Nations' Estuaries: a Decade of Change, NOAA Coastal Ocean Program Decision Analysis Series No. 26, ed. Bricker, S., Longstaff, B., Dennison, W., et al., Silver Spring, MD: National Centers for Coastal Ocean Science, pp. 101–103.Google Scholar
Stachura-Suchoples, K. (2001). Bioindicative values of dominant diatom species from the Gulf of Gdansk, southern Baltic Sea, Poland, In Lange-Bertalot-Festschrift, ed. Jahn, R., Kociolek, J. P., Witkowski, A., & Compere, P., Gantner: Ruggell, pp. 477–90.Google Scholar
Stanley, D. W. (1992). Historical Trends: Water Quality and Fisheries, Albemarle-Pamlico Sounds, with Emphasis on the Pamlico River Estuary. University of North Carolina Sea Grant Publication UNC-SG-92–04.
Stockner, J. G. & Benson, W. W. (1967). The succession of diatom assemblages in the recent sediments of Lake Washington. Limnology and Oceanography, 12, 513–32.CrossRefGoogle Scholar
Sullivan, M. J. (1982). Distribution of edaphic diatoms in a Mississippi salt marsh: a canonical correlation analysis. Journal of Phycology, 18, 130–3.CrossRefGoogle Scholar
Sullivan, M. J. & Currin, C. A. (2000). Community structure and functional dynamics of benthic microalgae in salt marshes. In Concepts and Controversies in Tidal Marsh Ecology, ed. Weinstein, M. P. & Kreeger, D. A., Dordrecht: Kluwer Academic Publishers, pp. 81–106.Google Scholar
Sullivan, M. J. & Moncreiff, C. A. (1988). Primary production of edaphic algal communities in a Mississippi salt marsh. Journal of Phycology, 24, 49–58.CrossRefGoogle Scholar
Swart, P. K., Healy, G. F., Dodge, R. E., et al. (1996). The stable oxygen and carbon isotopic record from a coral growing in Florida Bay: a 160-year record of climatic and anthropogenic influence. Palaeogeography, Palaeoclimatology, Palaeoecology, 123, 219–37.CrossRefGoogle Scholar
Sylvestre, F., Beck-Eichler, B., Duleba, W., & Debenay, J.-P. (2001). Modern benthic diatom distribution in a hypersaline coastal lagoon: the Lagoa de Araruama (R. J.), Brazil. Hydrobiologia, 443, 213–31.CrossRefGoogle Scholar
Sylvestre, F., Guiral, D., & Debenay, J. P. (2004). Modern diatom distribution in mangrove swamps from the Kaw Estuary (French Guiana). Marine Geology, 208, 281–93.CrossRefGoogle Scholar
Taffs, K. H., Farago, L. J., Heijnis, H., & Jacobsen, G. (2008). A diatom-based Holocene record of human impact from a coastal environment: Tuckean Swamp, eastern Australia. Journal of Paleolimnology, 39, 71–82.CrossRefGoogle Scholar
Braak, C. J., Juggins, S., Birks, H. J. B., & Voet, H. (1993). Weighted averaging partial least squares regression (WA-PLS): definition and comparison with other methods for species environment calibration. In Multivariate Environmental Statistics, ed. Patil, G. R. & Rao, C. R., Amsterdam: North-Holland, pp. 525–60.Google Scholar
Thomas, E., Abramson, I., Varekamp, J. C., & Buchhotz ten Brink, M. R. (2004a). Eutrophication of Long Island Sound as traced by benthic foraminifera. Sixth Biennual Long Island Sound Research Conference Proceedings, pp. 87–91.
Thomas, E., Cooper, S., Sangiorgi, F., et al. (2004b). The eutrophication of Western Long Island Sound. Geological Society of America Abstracts, 36(5), 493.Google Scholar
Tibby, J., Gell, P. A., Fluin, J., & Sluiter, I. R. K. (2007). Diatom–salinity relationships in wetlands: assessing the influence of salinity variability on the development of inference models. Hydrobiologia, 591, 207–18.CrossRefGoogle Scholar
Tomas, C. R. (1997). Identifying Marine Phytoplankton, San Diego, CA: Academic Press.Google Scholar
Trainer, V. L., Adams, N. G., Bill, B. D., et al. (2000). Domoic acid production near California coastal upwelling zones, June 1998. Limnology and Oceanography, 45, 1818–33.CrossRefGoogle Scholar
Tréguer, P., Nelson, D. M., Bennekom, A. J., et al. (1995). The silica balance in the world ocean: a reestimate. Science, 268, 375–9.CrossRefGoogle ScholarPubMed
Valiela, I., McClelland, J., Hauxwell, J., et al. (1997). Macroalgal blooms in shallow estuaries: controls and ecophysiological and ecosystem consequences. Limnology and Oceanography, 42, 1105–18.CrossRefGoogle Scholar
Cappellen, P., Dixit, S., & Beusekom, J. (2002). Biogenic silica dissolution in the oceans: reconciling experimental and field-based dissolution rates. Global Biogeochemical Cycles, 16(4), DOI:10.1029/2001GB001431.Google Scholar
Dam, H. (1982). On the use of measures of structure and diversity in applied diatom ecology. Nova Hedwigia, 73, 97–115.Google Scholar
Varekamp, J. C., Thomas, E., Altabet, M., Cooper, S. R., & Brinkhuis, H. (2010). Environmental Change in Long Island Sound in the Recent Past: Eutrophication and Climate Change, Hartford, CT: CT Department of Environmental Protection.Google Scholar
Varekamp, J. C., Thomas, E., Lugolobi, F., & Buchholtz ten Brink, M. R. (2004). The paleo-environmental history of Long Island Sound as traced by organic carbon, biogenic silica and stable isotope/trace element studies in sediment cores. Sixth Biennual Long Island Sound Research Conference Proceedings, Groton, CT: Connecticut Sea Grant, pp. 109–13.Google Scholar
Verleyen, E., Hodgson, D. A., Leavitt, P. R., Sabbe, K., & Vyverman, W. (2004). Quantifying habitat-specific diatom production: a critical assessment using morphological and biogeochemical markers in Antarctic marine and lake sediments. Limnology and Oceanography, 49, 1528–39.CrossRefGoogle Scholar
Vos, P. C. & Wolf, H. (1993). Diatoms as a tool for reconstructing sedimentary environments in coastal wetlands: methodological aspects. Hydrobiologia, 269, 285–96.CrossRefGoogle Scholar
Wachnicka, A. (2009). Diatom-based paleoecological evidence of combined effects of anthropogenic and climatic impacts on salinity, nutrient levels and vegetation cover in Florida Bay and Biscayne Bay, USA. Unpublished Ph.D. thesis, Florida International University, Miami, FL.
Wachnicka, A. & Gaiser, E. E. (2007). Characterization of Amphora and Seminavis from South Florida. Diatom Research, 22, 387–455.CrossRefGoogle Scholar
Washington, H. G. (1984). Diversity, biotic, and similarity indices: a review with special relevance to aquatic ecosystems. Water Research, 18, 653–94.CrossRefGoogle Scholar
Weckström, K. (2006). Assessing recent eutrophication in coastal waters of the Gulf of Finland (Baltic Sea) using subfossil diatoms. Journal of Paleolimnology, 35(3), 571–92.CrossRefGoogle Scholar
Weckström, K. & Juggins, S. (2005). Coastal diatom–environment relationships from the Gulf of Finland, Baltic Sea. Journal of Phycology, 42, 21–35.CrossRefGoogle Scholar
Weckström, K., Juggins, S., & Korhola, A. (2004). Quantifying background nutrient concentrations in coastal waters: a case study from an urban embayment of the Baltic Sea. Ambio, 33, 324–7.CrossRefGoogle ScholarPubMed
Wendker, S. (1990). Untersuchungen zur subfossilen und rezenten Diatomeenflora des Schlei-Ästuars (Ostsee). In Bibliotheca Diatomologica, 20, 1–268 (with eight plates).Google Scholar
Wilderman, C. C. (1986). Techniques and results of an investigation into the autecology of some major species of diatoms from the Severn River Estuary, Chesapeake Bay, Maryland, U.S.A. In Proceedings of the 8th International Diatom Symposium, ed. Ricard, M., Königstein: Koeltz Scientific Books, pp. 631–43.Google Scholar
Willard, D. A., Weimer, L. M., & Riegel, W. L. (2001). Pollen assemblages as paleoenvironmental proxies in the Florida Everglades. Review of Palaeobotany and Palynology, 113, 213–35.CrossRefGoogle ScholarPubMed
Witkowski, A., Lange-Bertalot, H., & Metzeltin, D. (2000). Diatom Flora of Marine Coasts I, ed. Lange-Bertalot, H., Königstein: Koeltz Scientific Books.Google Scholar
,World Resources Institute, United Nations Environment Programme, United Nations Development Programme and The World Bank. (1996). World Resources: a Guide to the Global Environment 1996–97. New York, NY: Oxford University Press.Google Scholar
Xu, Y., Jaffé, R., Wachnicka, A., & Gaiser, E. E. (2006). Occurrence of C25 highly branched isoprenoids (HBIs) in Florida Bay: paleoenvironmental indicators of diatom-derived organic matter inputs. Organic Geochemistry, 37, 847–59.CrossRefGoogle Scholar
Zimmerman, A. R. & Canuel, E. A. (2000). A geochemical record of eutrophication and anoxia in Chesapeake Bay sediments: anthropogenic influence on organic matter composition. Marine Chemistry, 69,117–37.CrossRefGoogle Scholar
Zimmerman, A. R. & Canuel, E. A. (2002). Sediment geochemical records of eutrophication in the mesohaline Chesapeake Bay. Limnology and Oceanography, 47, 1084–93.CrossRefGoogle Scholar
Zong, Y., Lloyd, J. M., Leng, M. J., Yim, W. W.-S., & Huang, G. (2006). Reconstruction of Holocene history from the Pearl River Estuary, southern China, using diatoms and carbon isotope ratios. The Holocene, 16, 251–63.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×